s

Data-Driven HSEO
with Python

Solve SEO Challenges with Data Science
Using Python

Andreas Voniatis

Foreword by Will Critchlow,
Founder and CEQ, SearchPilot

APIESS”®

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Andreas Voniatis

Data-Driven SEO with Python

Solve SEO Challenges with Data Science Using
Python

Foreword by Will Critchlow, Founder and CEO, SearchPilot

Apresse

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Andreas Voniatis
Surrey, UK

ISBN 978-1-4842-9174-0 e-ISBN 978-1-4842-9175-7
https://doi.org/10.1007/978-1-4842-9175-7

© Andreas Voniatis 2023
Apress Standard

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and
accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with
respect to the material contained herein or for any errors or omissions
that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Apress imprint is published by the registered company APress
Media, LLC, part of Springer Nature.

The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

https://doi.org/10.1007/978-1-4842-9175-7

>>>4f #ijackgoogleseo.com# B & 3 2. fih<<<

To Julia.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Foreword

The data we have access to as SEOs has changed a lot during my 17
years in the industry. Although we lost analytics-level keyword data,
and Yahoo! Site Explorer, we gained a wealth of opportunity in big data,
proprietary metrics, and even some from the horse’s mouth in Google
Search Console.

You don't have to be able to code to be an effective SEO. But there is
a certain kind of approach and a certain kind of mindset that benefits
from wrangling data in all its forms. If that’s how you prefer to work,
you will very quickly hit the limits of spreadsheets and text editors.
When you do, you'll do well to turn to more powerful tools to help you
scale what you're capable of, get things done that you wouldn’t even
have been able to do without a computer helping, and speed up every
step of the process.

There are a lot of programming languages, and a lot of ways of
learning them. Some people will tell you there is only one right way. I'm
not one of those people, but my personal first choice has been Python
for years now. I liked it initially for its relative simplicity and ease of
getting started, and very quickly fell for the magic of being able to
import phenomenal power written by others with a single line of code.
As I got to know the language more deeply and began to get some sense
of the “pythonic” way of doing things, [came to appreciate the brevity
and clarity of the language. am no expert, and I'm certainly not a
professional software engineer, but I hope that makes me a powerful
advocate for the approach outlined in this book - because [have been
the target market.

When [was at university, I studied neural networks among many
other things. At the time, they were fairly abstract concepts in
operations research. At that point in the late 90s, there wasn’t the
readily available computing power plus huge data sets needed to
realise the machine learning capabilities hidden in those nodes, edges,
and statistical relationships. I've remained fascinated by what is
possible and with the help of magical import statements and
remarkably mature frameworks, I have even been able to build and
train my own neural networks in Python. As a stats geek, [love that it’s

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

all stats under the hood, but at the same time, | appreciate the beauty
in a computer being able to do something a person can't.

A couple of years after university, | founded the SEO agency Distilled
with my co-founder Duncan Morris, and one of the things that we
encouraged among our SEO consultants was taking advantage of the
data and tools at their disposal. This led to fun innovation - both
decentralised, in individual consultants building scripts and notebooks
to help them scale their work, do it faster, or be more effective, and
centrally in our R&D team.

That R&D team would be the group who built the platform that
would become SearchPilot and launched the latest stage of my career
where we are very much leading the charge for data aware decisions in
SEO. We are building the enterprise SEO A/B testing platform to help
the world’s largest websites prove the value of their on-site SEO
initiatives. All of this uses similar techniques to those outlined in the
pages that follow to decide how to implement tests, to consume data
from a variety of APIs, and to analyse their results with neural
networks.

I believe that as Google implements more and more of their own
machine learning into their ranking algorithms, that SEO becomes
fundamentally harder as the system becomes harder to predict, and
has a greater variance across sites, keywords, and topics. It’s for this
reason that [am investing so much time, energy, and the next phase of
my career into our corner of data driven SEO. [hope that this book can
set a whole new cohort of SEOs on a similar path.

[first met Andreas over a decade ago in London. I've seen some of
the things he has been able to build over the years, and I'm sure he is
going to be an incredible guide through the intricacies of wrangling
data to your benefit in the world of SEO. Happy coding!

Will Critchlow, CEO, SearchPilot

September 2022

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Why I Wrote This Book

Since 2003, when I first got into SEO (by accident), much has changed
in the practice of SEO. The ingredients were lesser known even though
much of the focus was on getting backlinks, be they reciprocal, one-way
links or from private networks (which are still being used in the
gaming space). Other ingredients include transitioning to becoming a
recognized brand, producing high-quality content which is valuable to
users, a delightful user experience, producing and organizing content
by search intent, and, for now and tomorrow, optimizing the search
journey.

Many of the ingredients are now well known and are more
complicated with the advent of mobile, social media, and voice and the
increasing sophistication of search engines.

Now more than ever, the devil is in the details. There is more data
being generated than ever before from ever more third-party data
sources and tools. Spreadsheets alone won't hack it. You need a sharper
blade, and data science (combined with your SEO knowledge) is your
best friend.

I created this book for you, to make your SEO data driven and
therefore the best it can be.

And why now in 20237 Because COVID-19 happened which gave me
time to think about how I could add value to the world and in particular
the niche world of SEO.

Even more presciently, there are lots of conversations on Twitter
and LinkedIn about SEOs and the use of Python in SEO. So we felt the
timing is right as the SEO industry has the appetite and we have
knowledge to share.

[wish you the very best in your new adventure as a data-driven SEO
specialist!

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Who This Book Is For

We wrote this book to help you get ahead in your career as an SEO
specialist. Whether you work in-house for a brand, an advertising
agency, a consultant, or someone else (please write to us and introduce
yourself!), this book will help you see SEO from a different angle and
probably in a whole new way. Our goals for you are as follows:

» A data science mindset to solving SEO challenges: You'll start thinking
about the outcome metrics, the data sources, the data structures to
feed data into the model, and the models required to help you solve
the problem or at the very least remove some of the disinformation
surrounding the SEO challenge, all of which will take you several
steps nearer to producing great SEO recommendations and ideas for
split testing.

e A greater insight into search engines: You'll also have a greater
appreciation for search engines like Google and a more contextual
understanding of how they are likely to rank websites. After all,
search engines are computer algorithms, not people, and so building
your own algorithms and models to solve SEO challenges will give
you some insight into how a search engine may reward or not
reward certain features of a website and its content.

e (Code to get going: The best way to learn naturally is by doing. While
there are many courses in SEQ, the most committed students of SEO
will build their own websites and test SEO ideas and practices. Data
science for SEO is no different if you want to make your SEO data
driven. So, you'll be provided with starter scripts in Python to try
your own hand in clustering pages and content, analyzing ranking
factors. There will be code for most things but not for everything, as
not everything has been coded for (yet). The code is there to get you
started and can always be improved upon.

e Familiarity with Python: Python is the mainstay of data science in
industry, even though Ris still widely used. Python is free (open
source) and is highly popular with the SEO community, data
scientists, and the academic community alike. In fact, R and Python
are quite similar in syntax and structure. Python is easy to use, read,
and learn. To be clear, in no way do we suggest or advocate one

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

language is better than the other; it’s purely down to user preference
and convenience.

Beyond the Scope

While this book promises and delivers on making your SEO data
driven, there are a number of things that are better covered by other
books out there, such as

e How to become an SEO specialist: What this book won'’t cover is how
to become an SEO expert although you'll certainly come away with a
lot of knowledge on how to be a better SEO specialist. There are
some fundamentals that are beyond the scope of this book.

For example, we don’t get into how a search engine works, what a
content management system is, how it works, and how to read and
code HTML and CSS. We also don’t expose all of the ranking factors that
a search engine might use to rank websites or how to perform a site
relaunch or site migration.

This book assumes you have a rudimentary knowledge of how SEO
works and what SEO is. We will give a data-driven view of the many
aspects of SEO, and that is to reframe the SEO challenge from a data
science perspective so that you have a useful construct to begin with.

e How to become a data scientist: This book will certainly expose the
data science techniques to solve SEO challenges. What it won’t do is
teach you to become a data scientist or teach you how to program in
the Python computing language.

To become a data science professional requires a knowledge of
maths (linear algebra, probability, and statistics) in addition to
programming. A true data scientist not only knows the theory and
underpinnings of the maths and the software engineering to obtain and
transform the data, they also know how and when to deploy certain
models, the pros and cons of each (say Random Forest vs. AdaBoost),
and how to rebuild each model from scratch. While we won'’t teach you
how to become a fully fledged data scientist, you'll understand the
intuition behind the models and how a data scientist would approach
an SEO challenge.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

There is no one answer of course; however, the answers we provide
are based on experience and will be the best answer we believe at the
time of writing. So you'll certainly be a data-driven SEO specialist, and
if you take the trouble to learn data science properly, then you're well
on your way to becoming an SEO scientist.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

How This Book Works

Each chapter covers major work streams of SEO which will be familiar

to you:
1.

Keyword research
2.

Technical
3.

Content and UX
4.

Authority
5.

Competitor analysis
6.

Experiments
7.

Dashboards
8.

Migration planning and postmortems
0.

Google updates
10.

Future of SEO

Under each chapter, we will define as appropriate

SEO challenge(s) from a data perspective
Data sources

Data structures

Models

Model output evaluation

Activation suggestions

I've tried to apply data science to as many SEO processes as
possible in the areas identified earlier. Naturally, there will be some
areas that could be applied that have not. However,; technology is
changing, and Google is already releasing updates to combat Al-written

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

content. So I'd imagine in the very near future, more and more areas of
SEO will be subject to data science.

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub
(https://github.com/Apress). For more detailed information, please
visit http://www.apress.com/source-code.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Acknowledgments

It’s my first book and it wouldn’t have been possible without the help of
a few people. I'd like to thank Simon Dance, my contributing editor, who
has asked questions and made suggested edits using his experience as
an SEO expert and commercial director. I'd also like to thank all of the
people at Springer Nature and Apress for their help and support.
Wendy for helping me navigate the commercial seas of getting
published. Will Critchlow for providing the foreword to this book. All of
my colleagues, clients, and industry peers including SEOs, data
scientists, and cloud engineers that [have had the pleasure of working
with. Finally, my family, Petra and Julia.

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

Table of Contents
Chapter 1: Introduction
The Inexact (Data) Science of SEO
Noisy Feedback Loop
Diminishing Value of the Channel
Making Ads Look More like Organic Listings
Lack of Sample Data
Things That Can’t Be Measured
High Costs
Why You Should Turn to Data Science for SEO
SEO Is Data Rich
SEO Is Automatable
Data Science Is Cheap
Summary
Chapter 2: Keyword Research
Data Sources
Google Search Console (GSC)
Import, Clean, and Arrange the Data
Segment by Query Type
Round the Position Data into Whole Numbers
Calculate the Segment Average and Variation
Compare Impression Levels to the Average
Explore the Data
Export Your High Value Keyword List
Activation

Google Trends

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

Single Keyword

Multiple Keywords

Visualizing Google Trends
Forecast Future Demand

Exploring Your Data

Decomposing the Trend

Fitting Your SARIMA Model

Test the Model

Forecast the Future
Clustering by Search Intent

Starting Point

Filter Data for Page 1

Convert Ranking URLSs to a String

Compare SERP Distance
SERP Competitor Titles

Filter and Clean the Data for Sections Covering Only What
You Sell

Extract Keywords from the Title Tags
Filter Using SERPs Data

Summary

Chapter 3: Technical

Where Data Science Fits In

Modeling Page Authority
Filtering in Web Pages
Examine the Distribution of Authority Before Optimization

Calculating the New Distribution

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

Internal Link Optimization
By Site Level
By Page Authority
Content Type
Anchor Texts
Anchor Text Relevance
Core Web Vitals (CWV)
Summary

Chapter 4: Content and UX

Content That Best Satisfies the User Query
Data Sources

Keyword Mapping
String Matching

Content Gap Analysis
Getting the Data
Creating the Combinations
Finding the Content Intersection
Establishing Gap

Content Creation: Planning Landing Page Content
Getting SERP Data
Extracting the Headings
Cleaning and Selecting Headings
Cluster Headings
Reflections

Summary

Chapter 5: Authority

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

Some SEO History
A Little More History
Authority, Links, and Other
Examining Your Own Links
Importing and Cleaning the Target Link Data
Targeting Domain Authority
Domain Authority Over Time
Targeting Link Volumes
Analyzing Your Competitor’s Links
Data Importing and Cleaning
Anatomy of a Good Link
Link Quality
Link Volumes
Link Velocity
Link Capital
Finding Power Networks
Taking It Further
Summary
Chapter 6: Competitors
And Algorithm Recovery Too!
Defining the Problem
Outcome Metric
Why Ranking?
Features
Data Strategy

Data Sources

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

Explore, Clean, and Transform
Import Data - Both SERPs and Features
Start with the Keywords
Focus on the Competitors
Join the Data
Derive New Features
Single-Level Factors (SLFs)
Rescale Your Data
Near Zero Variance (NZVs)
Median Impute
One Hot Encoding (OHE)
Eliminate NAs
Modeling the SERPs
Evaluate the SERPs ML Model
The Most Predictive Drivers of Rank
How Much Rank a Ranking Factor Is Worth
The Winning Benchmark for a Ranking Factor
Tips to Make Your Model More Robust
Activation
Automating This Analysis
Summary
Chapter 7: Experiments
How Experiments Fit into the SEO Process
Generating Hypotheses
Competitor Analysis

Website Articles and Social Media

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

You/Your Team’s Ideas
Recent Website Updates
Conference Events and Industry Peers
Past Experiment Failures
Experiment Design
Zero Inflation
Split A/A Analysis
Determining the Sample Size
Running Your Experiment
Ending A/B Tests Prematurely
Not Basing Tests on a Hypothesis
Simultaneous Changes to Both Test and Control
Non-QA of Test Implementation and Experiment Evaluation
Split A/B Exploratory Analysis
Inconclusive Experiment Outcomes
Summary
Chapter 8: Dashboards
Data Sources
Don’t Plug Directly into Google Data Studio
Using Data Warehouses
Extract, Transform, and Load (ETL)
Extracting Data
Transforming Data
Loading Data
Visualization

Automation

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

Summary
Chapter 9: Site Migration Planning

Verifying Traffic and Ranking Changes
Identifying the Parent and Child Nodes
Separating Migration Documents

Finding the Closest Matching Category URL
Mapping Current URLs to the New Category URLs
Mapping the Remaining URLs to the Migration URL
Importing the URLs

Migration Forensics
Traffic Trends
Segmenting URLs
Time Trends and Change Point Analysis
Segmented Time Trends
Analysis Impact
Diagnostics
Road Map

Summary

Chapter 10: Google Updates

Algo Updates

Dedupe

Domains
Reach Stratified
Rankings
WAVG Search Volume
Visibility

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

Result Types
Cannibalization
Keywords
Token Length
Token Length Deep Dive
Target Level
Keywords
Pages
Segments
Top Competitors
Visibility
Snippets
Summary
Chapter 11: The Future of SEO
Aggregation
Distributions
String Matching
Clustering
Machine Learning (ML) Modeling
Set Theory
What Computers Can and Can’t Do
For the SEO Experts
Summary

Index

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

About the Author

Andreas Voniatis

is the founder of Artios and a SEO
consultant with over 20 year’s
experience working with ad agencies
(PHD, Havas, Universal Mcann,
Mindshare and iProspect), and brands
(Amazon EU, Lyst, Trivago, GameSys).
Andreas founded Artios in 2015 - to
apply an advanced mathematical
approach and cloud Al/Machine
Learning to SEO.

With a background in SEQO, data science and cloud engineering,
Andreas has helped companies gain an edge through data science and
automation. His work has been featured in publications worldwide
including The Independent, PR Week, Search Engine Watch, Search
Engine Journal and Search Engine Land.

Andreas is a qualified accountant, holds a degree in Economics
from Leeds University and has specialised in SEO science for over a
decade. Through his firm Artios, Andreas helps grow startups
providing ROI guarantees and trains enterprise SEO teams on data
driven SEO.

https://artios.io/
https://artios.io/

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

About the Contributing Editor

Simon Dance

is the Chief Commercial Officer at Lyst.com, a fashion shopping
platform serving over 200M users a year; an angel investor; and an
experienced SEO having spent a 15-year career working in senior
leadership positions including Head of SEO for Amazon’s UK and
European marketplaces and senior SEO roles at large-scale
marketplaces in the flights and vacation rental space as well as
consulting venture-backed companies including Depop, Carwow, and
HealthUnlocked. Simon has worn multiple hats over his career from
building links, manually auditing vast backlink profiles, carrying our
comprehensive bodies of keyword research, and writing technical
audit documents spanning hundreds of pages to building, mentoring,
and leading teams who have unlocked significant improvements in SEO
performance, generating hundreds of millions of dollars of incremental
revenue. Simon met Andreas in 2015 when he had just built a
rudimentary set of Python scripts designed to vastly increase the scale,
speed, and accuracy of carrying out detailed keyword research and
classification. They have worked together almost ever since.

>>>if fijackgoogleseo.com# M & 3 2. hik<<<

About the Technical Reviewer

Joos Korstanje

is a data scientist with over five years of
industry experience in developing
machine learning tools. He has a double
MSc in Applied Data Science and in
Environmental Science and has
extensive experience working with
geodata use cases. He has worked at a
number of large companies in the
Netherlands and France, developing
machine learning for a variety of tools.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_1

1. Introduction

Andreas Voniatis?

(1) Surrey, UK

Before the Google Search Essentials (formerly Webmaster Guidelines),
there was an unspoken contract between SEOs and search engines
which promised traffic in return for helping search engines extract and
index website content. This chapter introduces you to the challenges of
applying data science to SEO and why you should use data.

The Inexact (Data) Science of SEO

There are many trends that motivate the application of data science to

SEO; however, before we get into that, why isn’t there a rush of data

scientists to the industry door of SEO? Why are they going into areas of

paid search, programmatic advertising, and audience planning instead?
Here’s why:

Noisy feedback loop

Diminishing value of the channel

Making ads look more like organic listings
Lack of sample data

Things that can’t be measured

High costs

Noisy Feedback Loop

Unlike paid search campaigns where changes can be live after 15 mins,
the changes that affect SEO, be it on a website or indeed offsite, can

https://doi.org/10.1007/978-1-4842-9175-7_1

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

take anywhere between an hour and many weeks for Google and other
search engines to take note of and process the change within their
systems before it gets reflected in the search engine results (which
may or may not result in a change of ranking position).

Because of this variable and unpredictable time lag, this makes it
rather difficult to undertake cause and effect analysis to learn from SEO
experiments.

Diminishing Value of the Channel

The diminishing value of the channel will probably put off any decision
by a data scientist to move into SEO when weighing up the options
between computational advertising, financial securities, and other
industries. SEO is likely to fall by the wayside as Google and others do
as much as possible to reduce the value of organic traffic in favor of
paid advertising.

Making Ads Look More like Organic Listings

Google is increasing the amount of ads shown before displaying the
organic results, which diminishes the return of SEO (and therefore the
appeal) to businesses. Google is also monetizing organic results such
as Google Jobs, Flights, Credit Cards, and Shopping, which displaces the
organic search results away from the top.

Lack of Sample Data

It's the lack of data points that makes data-driven SEO analysis more
challenging. How many times has an SEO run a technical audit and
taken this as a reflection of the SEO reality? How do we know this
website didn’t have an off moment during that particular audit?

Thank goodness, the industry-leading rank measurement tools are
recording rankings on a daily basis. So why aren’t SEO teams auditing
on a more regular basis?

Many SEO teams are not set up to take multiple measurements
because most do not have the infrastructure to do so, be it because
they

e Don’t understand the value of multiple measurements for data
science

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

e Don't have the resources or don’t have the infrastructure

e Rely on knowing when the website changes before having to run
another audit (albeit tools like ContentKing have automated the
process)

To have a dataset that has a true representation of the SEO reality, it
must have multiple audit measurements which allow for statistics such
as average and standard deviations per day of

e Server status codes
e Duplicate content
e Missing titles

With this type of data, data scientists are able to do meaningful SEO
science work and track these to rankings and UX outcomes.

Things That Can’t Be Measured

Even with the best will to collect the data, not everything worth
measuring can be measured. Although this is likely to be true of all
marketing channels, not just SEQ, it’s not the greatest reason for data
scientists not to move into SEO. If anything, I'd argue the opposite in
the sense that many things in SEO are measurable and that SEO is data
rich.

There are things we would like to measure such as

e Search query: Google, for some time, has been hiding the search
query detail of organic traffic, of which the keyword detail in Google
Analytics is shown as “Not Provided.” Naturally, this would be useful
as there are many keywords to one URL relationship, so getting the
breakdown would be crucial for attribution modeling outcomes,
such as leads, orders, and revenue.

e Search volume: Google Ads does not fully disclose search volume per
search query. The search volume data for long tail phrases provided
by Ads is reallocated to broader matches because it’s profitable for
Google to encourage users to bid on these terms as there are more
bidders in the auction. Google Search Console (GSC) is a good
substitute, but is first-party data and is highly dependent on your
site’s presence for your hypothesis keyword.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

e Segment: This would tell us who is searching, not just the keyword,
which of course would in most cases vastly affect the outcomes of
any machine-learned SEO analysis because a millionaire searching
for “mens jeans” would expect different results to another user of
more modest means. After all, Google is serving personalized results.
Not knowing the segment simply adds noise to any SERPs model or
otherwise.

High Costs

Can you imagine running a large enterprise crawling technology like
Botify daily? Most brands run a crawl once a month because it’s cost
prohibitive, and not just on your site. To get a complete dataset, you'd
need to run it on your competitors, and that’s only one type of SEO
data.

Cost won't matter as much to the ad agency data scientist, but it will
affect whether they will get access to the data because the agency may
decide the budget isn't worthwhile.

Why You Should Turn to Data Science for SEO

There are many reasons to turn to data science to make your SEO
campaigns and operations data driven.

SEO Is Data Rich

We don’t have the data to measure everything, including Google’s user
response data to the websites listed in the Search Engine Results Pages
(SERPs), which would be the ultimate outcome data. What we do have
is first-party (your/your company’s data like Google /Adobe Analytics)
and third-party (think rank checking tools, cloud auditing software)
export data.

We also have the open source data science tools which are free to
make sense of this data. There are also many free highly credible
sources online that are willing to teach you how to use these tools to
make sense of the ever-increasing deluge of SEO data.

SEO Is Automatable

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

At least in certain aspects. We're not saying that robots will take over
your career. And yet, we believe there is a case that some aspects of
your job as an SEO a computer can do instead. After all, computers are
extremely good at doing repetitive tasks, they don’t get tired nor bored,
can “see” beyond three dimensions, and only live on electricity.

Andreas has taken over teams where certain members spent time
constantly copying and pasting information from one document to
another (the agency and individual will remain unnamed to spare their
blushes).

Doing repetitive work that can be easily done by a computer is not
value adding, emotionally engaging, nor good for your mental health.
The point is we as humans are at our best when we're thinking and
synthesizing information about a client’s SEO; that’s when our best
work gets done.

Data Science Is Cheap

We also have the open source data science tools (R, Python) which are
free to make sense of this data. There are also many free highly
credible sources online that are willing to teach you how to use these
tools to make sense of the ever-increasing deluge of SEO data.

Also, if there is too much data, cloud computing services such as
Amazon Web Services (AWS) and Google Cloud Platform (GCP) are also
rentable by the hour.

Summary
This brief introductory chapter has covered the following:

e The inexact science of SEO
e Why you should turn to data science for SEO

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A.Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_2

2. Keyword Research

Andreas Voniatis?!

(1) Surrey, UK

Behind every query a user enters within a search engine is a word or series of words. For instance, a user
may be looking for a “hotel” or perhaps a “hotel in New York City” In search engine optimization (SEO),
keywords are invariably the target, providing a helpful way of understanding demand for said queries and
helping to more effectively understand various ways that users search for products, services, organizations,
and, ultimately, answers.

As well as SEO starting from keywords, it also tends to end with the keyword as an SEO campaign may
be evaluated on the value of the keyword’s contribution. Even if this information is hidden from us by
Google, attempts have been made by a number of SEO tools to infer the keyword used by users to reach a
website.

In this chapter, we will give you data-driven methods for finding valuable keywords for your website (to
enable you to have a much richer understanding of user demand).

It’s also worth noting that given keyword rank tracking comes at a cost (usually charged per keyword
tracked or capped at a total number of keywords), it makes sense to know which keywords are worth the
tracking cost.

Data Sources
There are a number of data sources when it comes to keyword research, which we’ll list as follows:

Google Search Console
Competitor Analytics
SERPs

Google Trends

Google Ads

Google Suggest

We’ll cover the ones highlighted in bold as they are not only the more informative of the data sources,
they also scale as data science methods go. Google Ads data would only be so appealing if it were based on
actual impression data.

We will also show you how to make forecasts of keyword data both in terms of the amount of
impressions you get if you achieve a ranking on page 1 (within positions 1 to 10) and what this impact
would be over a six-month horizon.

Armed with a detailed understanding of how customers search, you're in a much stronger position to
benchmark where you index vs. this demand (in order to understand the available opportunity you can lean
into), as well as be much more customer focused when orienting your website and SEO activity to target
that demand.

Let’s get started.

Google Search Console (GSC)

Google Search Console (GSC) is a (free) first-party data source, which is rich in market intelligence. It’s no
wonder Google does everything possible to make it difficult to parse, let alone obfuscate, the data when
attempting to query the API at date and keyword levels.

https://doi.org/10.1007/978-1-4842-9175-7_2

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

GSC data is my first port of call when it comes to keyword research because the numbers are consistent,
and unlike third-party numbers, you'll get data which isn’t based on a generic click through a rate mapped to
ranking.!

The overall strategy is to look for search queries that have impressions that are significantly above the
average for their ranking position. Why impressions? Because impressions are more plentiful and they
represent the opportunity, whereas clicks tend to come “after the fact,” that is, they are the outcome of the
opportunity.

What is significant? This could be any search query with impression levels more than two standard
deviations (sigmas) above the mean (average), for example.

There is no hard and fast rule. Two sigmas simply mean that there’s a less than 5% chance that the
search query is actually less like the average search query, so a lower significance threshold like one sigma
could easily suffice.

Import, Clean, and Arrange the Data

import pandas as pd
import numpy as np
import glob

import os

The data are several exports from Google Search Console (GSC) of the top 1000 rows based on a number
of filters. The API could be used, and some code is provided in Chapter 10 showing how to do so.

For now, we're reading multiple GSC export files stored in a local folder.

Set the path to read the files:

os.path.join('data', 'csvs')
glob.glob(data dir + "/*.csv")

data dir
gsc_csvs

Initialize an empty list that will store the data being read in:
gsc_1li = []

The for loop iterates through each export file and takes the filename as the modifier used to filter the
results and then appends it to the preceding list:

for cf in gsc csvs:
df = pd.read csv(cf, index col=None, header=0)
df['modifier'] = os.path.basename (cf)

df .modifier = df.modifier.str.replace(' queries.csv', ''")
gsc_li.append (df)

Once the list is populated with the export data, it’s combined into a single dataframe:

gsc_raw_df = pd.DataFrame ()
gsc_raw_df = pd.concat(gsc_li, axis=0, ignore_ index=True)

The columns are formatted to be more data-friendly:
gsc_raw_df.columns =
gsc_raw_df.columns.str.strip().str.lower().str.replace(' ',
' ').str.replace('(', '').str.replace(')', '')

gsc_raw_df.head()

This produces the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

top_queries clicks impressions ctr position modifier
0 ps4 cd keys 17 206 8.25% 13.40 cdkeys
1 cheap ps4 cd keys 13 40 32.5% 9.38 cdkeys
2 ps4 cd key 12 34 35.29% 19.44 cdkeys
3 cheap cd keys ps4 11 21 52.38% 8.71 cdkeys
4 xbox cd keys 8 89 8.99% 13.46 cdkeys

With the data imported, we’ll want to format the column values to be capable of being summarized. For
example, we'll remove the percent signs in the ctr column and convert it to a numeric format:

gsc_clean ctr df['ctr'] gsc_clean ctr df['ctr'].str.replace('s', '")
gsc_clean ctr df['ctr'] = pd.to numeric(gsc clean ctr df['ctr'])

GSC data contains a funny character “<” in the impressions and clicks columns for values less than 10;
our job is to clean this up by removing them and then arranging impressions in descending order. In Python,
this would look like

gsc_clean ctr df['impressions'] =
gsc_clean ctr df.impressions.str.replace('<', '")
pd.to numeric(gsc_import df.impressions)

We’ll also deduplicate the top_queries column:

gsc_dedupe df = gsc_clean ctr df.drop duplicates(subset='top queries',
keep="first")

Segment by Query Type
The next step is to segment the queries by type. The reason for this is that we want to compare the
impression volumes within a segment as opposed to the overall website.

This makes numbers more meaningful in terms of highlighting opportunities within segments.
Otherwise, if we compared impressions to the website average, then we may miss out on valuable search

query opportunities.

The approach we’re using in Python is to categorize based on modifier strings found in the query
column:
retail vex = ['cdkeys', 'argos', 'smyth', 'amazon', 'cyberpunk', 'GAME']
platform vex = ['psb', 'xbox', 'playstation', 'switch', 'ps4', 'nintendo']
title_ve§ = ['blackops', 'pokemon', 'minecraft', 'mario',

'outriders', 'fifa', 'animalcrossing', 'resident', 'spiderman',
'newhorizons', 'callofduty']
network vex = ['ee', 'o02', 'vodafone', 'carphone']

gsc_segment strdetect = gsc dedupe df[['query', 'clicks', 'impressions',
'ctr', 'position']]

Create a list of our conditions:

query conds = |
gsc_segment strdetect['query
gsc_segment strdetect['query
gsc_segment strdetect['query'
gsc_segment strdetect['query'

.str.contains('|'.join(retail vex)),
.str.contains('|'.join(platform vex)),
.str.contains('|'.join(title vex)),
.str.contains('|'.join (network vex))

']
"]
]
]

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Create a list of the values we want to assign for each condition:

segment values = ['Retailer', 'Console', 'Title', 'Network'] #, 'Title’,
'Accessories', 'Network', 'Topl000', 'Broadband']

Create a new column and use np.select to assign values to it using our lists as arguments:
gsc_segment strdetect['segment'] = np.select(query conds, segment values)
gsc_segment strdetect

Here is the output:

query clicks impressions ctr position segment

0 ps4 cd keys 17 206 8.25 13.40 Console
1 cheap ps4 cd keys 13 40 325 9.38 Console
2 ps4 cd key 12 34 35.29 19.44 Console
3 cheap cd keys ps4 11 21 52.38 8.71 Console
4 xbox cd keys 8 89 8.99 13.46 Console
18567 nintendo switch lite on credit 48 94 51.06 2.73 Console
18568 nintendo switch limited edition 47 3430 1.37 13.27 Console
18569 the cheapest nintendo switch 47 1182 3.98 5.16 Console
18570 nintendo switch lite grey bundle 47 721 6.52 8.03 Console
18571 where to buy a nintendo switch uk 47 620 7.58 11.03 Console

15867 rows x 6 columns

Round the Position Data into Whole Numbers

Given the position column is a floating number (i.e., contains decimals), the reason we’d like to do this is
because we’ll be calculating the impression statistics per rounded ranking position. This will give us 100
statistics. Now imagine if we didn’t round it, we could have impression statistics for 10,000 ranking
positions and not all of them are useful.

gsc_segment strdetect['rank bracket'] =
gsc_segment strdetect.position.round(0)

gsc_segment strdetect

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

query clicks impressions ctr position segment rank_bracket

0 ps4 cd keys 17 206 825 13.40 Console 13.0
1 cheap ps4 cd keys 13 40 325 9.38 Console 9.0
2 ps4 cd key 12 34 35.29 19.44 Console 19.0
3 cheap cd keys ps4 11 21 52.38 8.71 Console 9.0
4 xbox cd keys 8 89 899 13.46 Console 13.0
18567 nintendo switch lite on credit 48 94 51.06 273 Console 3.0
18568 nintendo switch limited edition 47 3430 1.37 13.27 Console 13.0
18569 the cheapest nintendo switch 47 1182 3.98 5.16 Console 5.0
18570 nintendo switch lite grey bundle a7 721 6.52 8.03 Console 8.0
18571 where to buy a nintendo switch uk 47 620 7.58 11.03 Console 11.0

Calculate the Segment Average and Variation

Now the data is segmented, we compute the average impressions and the lower and upper percentiles of
impressions for the ranking position. The aim is to identify queries that have impressions two standard
deviations or more above the ranking position. This means the query is likely to be a great opportunity for
SEO and well worth monitoring.

The reason we're doing it this way, as opposed to just selecting high impression keywords per se, is
because many keyword queries have high impressions just by virtue of being in the top 20 in the first place.
This would make the number of queries to track rather large and expensive.

queries rank imps = gsc_segment strdetect[['rank bracket', 'impressions']]
group_by rank bracket = queries rank imps.groupby (['rank bracket'],

as_index=False)

def imp_ aggregator (col):

d = {}

d['avg imps'] = col['impressions'].mean/()

d['imps median'] = col['impressions'].quantile(0.5)
d['imps 1g'] = col['impressions'].quantile(0.25)
d['imps uq'] = col['impressions'].quantile(0.95)
d['n count'] = col['impressions'].count()

return pd.Series(d, index=['avg imps', 'imps median', 'imps 1q',
'"imps uq', 'n _count'])

overall rankimps agg = group by rank bracket.apply(imp aggregator)
overall rankimps_ agg

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

rank_bracket avg_imps Iimps_median imps_lq imps_uq n_count

0 1.0 784.795848 132.0 43.25 2970.35 578.0

1 2.0 991.002639 153.0 24.00 2830.20 1137.0
2 3.0 1816.848187 159.5 35.00 6628.15 1324.0
3 4.0 2234.595041 151.0 22.00 8387.55 1452.0

4 5.0 2529.486692 153.0 22.00 917460 1315.0
97 98.0 36.000000 36.0 20.50 63.90 2.0
98 99.0 5.666667 6.0 5.00 6.90 3.0
29 105.0 1.000000 1.0 1.00 1.00 1.0
100 108.0 1.000000 1.0 1.00 1.00 1.0
101 110.0 4.000000 4.0 4.00 4.00 1.0

In this case, we went with the 25th and 95th percentiles. The lower percentile number doesn’t matter as
much as we're far more interested in finding queries with averages beyond the 95th percentile. If we can do
that, we have a juicy keyword. Quick note, in data science, a percentile is known as a “quantile.”

Could we make a table for each and every segment? For example, show the statistics for impressions by
ranking position by section. Yes, of course, you could, and in theory, it would provide a more contextual
analysis of queries performed vs. their segment average. The deciding factor on whether to do so or not
depends on how many data points (i.e., ranked queries) you have for each rank bracket to make it
worthwhile (i.e., statistically robust). You'd want at least 30 data points in each to go that far.

Compare Impression Levels to the Average
Okay, now let’s left join (think vlookup or index match) the table from the previous set and then join it to the
segmented data. Then we have a dataframe that shows the query data vs. the expected average and upper
quantile.

Join accessories_rankimps_agg onto accessory_queries by rank_bracket:

query quantile stats = gsc_segment strdetect.merge(overall rankimps agg, on
=['rank bracket'], how='left')
query quantile stats

This results in the following:

query clicks imp: | ctr posit rank_brach avg _imps [mps_median imps lg Imps uq n_count

o psd cd keys 17 206 B8.25 13.40 Retailer 13.0 5819412587 50.0 6.00 1241450 288.0

1 cheap psd cd keys 13 40 325 9.38 Retailer 9.0 2823.633851 720 B.25 12480.15 1158.0

= psd cd kay 12 34 3529 19.44 Retailer 19.0 1385.688889 8.0 1.00 8170.05 80.0

3 cheap cd keys psd 1" 21 5238 BT Retailer 9.0 2823.633851 720 B.25 12480.15 1158.0

4 xbox cd keys 8 89 B8.99 13.46 Retailer 13.0 5619.412587 50.0 6.00 12414.50 286.0
15862 nintendo switch lite on credit 48 94 51.06 273 Console 3.0 1816.848187 158.5 35.00 6628.15 1324.0
15863 nintendo switch limited edition 47 3430 1.37 13.27 Console 13.0 5619.412587 50.0 6.00 12414.50 286.0
15864 the cheapest nintendo switch 47 182 3.8 516 Console 5.0 2529.4B6692 153.0 2200 917460 1315.0
15865 nintendo switch lite grey bundie 47 721 6.52 8.03 Console 8.0 2164.032761 58.0 8.00 10308.25 1282.0
15866 where to buy a nintendo switch uk 47 620 7.5B 11.03 Console 11.0 4645420894 220 5.00 13306.00 756.0

Explore the Data

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Now you might be wondering, how many keywords are punching above and below their weight (i.e., above
and below their quantile limits relative to their ranking position) and what are those keywords?
Get the number of keywords with high volumes of impressions:

query stats ug = query quantile stats.loc[query quantile stats.impressions >
query quantile stats.imps_uqg]
query stats ug['query'].count ()
This results in the following:
8390
Get the number of keywords with impressions and ranking beyond page 1:
query stats uqg p2b =
query quantile stats.loc[(query quantile stats.impressions >
query quantile stats.imps uqg) & (query quantile stats.rank bracket > 10)]
query stats ug p2b['query'].count ()
This results in the following:

2510

Depending on your resources, you may wish to track all 8390 keywords or just the 2510. Let’s see how
the distribution of impressions looks visually across the range of ranking positions:

import seaborn as sns
import matplotlib.pyplot as plt
from pylab import savefig

Set the plot size:

sns.set (rc={"'figure.figsize': (15, 6)})

Plot impressions vs. rank_bracket:

imprank plt = sns.relplot(x = "rank bracket", y = "impressions",
hue = "quantiled", style = "quantiled",
kind = "line", data = overall rankimps agg long)

Save Figure 2-1 to a file for your PowerPoint deck or others:
imprank plt.savefig("images/imprank plt.png")

What's interesting is the upper quantile impression keywords are not all in the top 10, but many are on
pages 2,4, and 6 of the SERP results (Figure 2-1). This indicates that the site is either targeting the high-
volume keywords but not doing a good job of achieving a high ranking position or not targeting these high-
volume phrases.

>>>4f fi.jackgoogleseo.com# B & $ 2. $ fif<<<

40000
30000
g quantiled
] — @vg_mps
§ - === mps_median
E. o — T e T 1 — .mps_]q
-e=s mps_uq
== n_count
10000

rank_bracket

Figure 2-1 Line chart showing GSC impressions per ranking position bracket for each distribution quantile

Let’s break this segment down.
Plot impressions vs. rank bracket by segment:

imprank seg = sns.relplot (x="rank bracket", y="impressions",
hue="quantiled", col="segment",
kind="1line", data = overall rankimps agg long,
facet kws=dict (sharex=False))
Export the file:

imprank seg.savefig("images/imprank seg.png")

Most of the high impression keywords are in Accessories, Console, and of course Top 1000 (Figure 2-2).

segment = Accessonies segment = Console segment = Network segment = Retailer segment = Tille segment = Top 1000 segment = Broadband

500000

400000
@ quantied
£ 00000 — avg_imps
g —— mps_median
E_ — mps_lq
: — mps_ug

200000 n_ 1

100000 l

o Mﬂﬁ haea TR 7 Ak
] % 00 50 0 50 100 0 S0 100 0 50 100 © 2 4 0 50
rank_bracket rank_bracket rank_bracket rank_bracket rank_bracket ank_bracket rank_bracket

Figure 2-2 Line chart showing GSC impressions per ranking position bracket for each distribution quantile faceted by segment

Export Your High Value Keyword List
Now that you have your keywords, simply filter and export to CSV.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Export the dataframe to CSV:

query stats uqg p2b.to csv('exports/query stats ug p2b TOTRACK.csv')

Activation
Now that you've identified high impression value keywords, you can

¢ Replace or add those keywords to the ones you're currently tracking and campaigning

¢ Research the content experience required to rank on the first page

e Thinkabout how to integrate these new targets into your strategy

e Explore levels of on-page optimization for these keywords, including where there are low-hanging fruit
opportunities to more effectively interlink landing pages targeting these keywords (such as through blog
posts or content pages)

e Consider whether increasing external link popularity (through content marketing and PR) across these
new landing pages is appropriate

Obviously, the preceding list is reductionist, and yet as a minimum, you have better nonbrand targets to
better serve your SEO campaign.

Google Trends

Google Trends is another (free) third-party data source, which shows time series data (data points over
time) up to the last five years for any search phrase that has demand. Google Trends can also help you
compare whether a search is on the rise (or decline) while comparing it to other search phrases. It can be
highly useful for forecasting.

Although no Google Trends API exists, there are packages in Python (i.e., pytrends) that can automate
the extraction of this data as we'll see as follows:

import pandas as pd
from pytrends.request import TrendReq
import time

Single Keyword

Now that you've identified high impression value keywords, you can see how they’ve trended over the last
five years:

kw list = ["Blockchain"]
pytrends.build payload(kw list, cat=0, timeframe='today 5-y', geo='GB',

gprop="")
pytrends.interest over time ()

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Blockchain isPartial

date
2016-06-19 8 False
2016-06-26 6 False
2016-07-03 7§ False
2016-07-10 6 False
2016-07-17 7 False
2021-05-09 42 False
2021-05-16 55 False
2021-05-23 43 False
2021-05-30 30 False
2021-06-06 34 True

260 rows x 2 columns

Multiple Keywords

As you can see earlier; you get a dataframe with the date, the keyword, and the number of hits (scaled from 0
to 100), which is great, and what if you had 10,000 keywords that you wanted trends for?

In that case, you'd want a for loop to query the search phrases one by one and stick them all into a
dataframe like so:

Read in your target keyword data:

csv_raw = pd.read csv('data/your keyword file.csv')
keywords df = csv _raw[['query']]

keywords list = keywords df['query'].values.tolist ()
keywords list

Here’s the output of what keywords_list looks like:

['nintendo switch',
'psé’,

'xbox one controller',
'xbox one',

'xbox controller',
'ps4d vr',

"Ps5' ...]

Let’s now get Google Trends data for all of your keywords in one dataframe:

dataset = []
exceptions = []

for g in keywords list:
gq_lst = I[q]

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

try:
pytrends.build payload(kw_list=q lst, timeframe='today 5-y',
geo="'GB', gprop='")
data = pytrends.interest over time()
data = data.drop(labels=['isPartial'],axis='columns')
dataset.append(data)
time.sleep (3)
except:
exceptions.append(q lst)

gtrends long = pd.concat (dataset, axis=1)

This results in the following:

nintendo switch ps4 xbox one controller xbox one xbox controller psd4vr ps5 ps5console ps5pre order xbox series x

date
2016-06-19 0 30 a0 a7 29 9 0 0 0 0
2016-06-26 0 31 26 34 31 6 0 0 0 0
2016-07-03 0o 3 26 36 26 70 0 0 0
2016-07-10 0 26 23 3 26 6 0 0 0 0
2016-07-17 0o 27 17 29 19 4 0 0 0 0
2021-05-09 20 24 18 14 o8 12 13 14 1 8
2021-05-16 18 22 14 15 29 9 12 10 0 8
2021-05-23 19 22 17 14 30 7 10 10 1 7
2021-05-30 20 23 13 15 a3 9 10 9 1 6
2021-06-06 17 20 12 14 27 7 H 10 1 7
260 rows x 10 columns
Let’s convert to long format:
gtrends long = gtrends raw.melt (id vars=['date'], var name = 'query',

value name = 'hits')
gtrends long

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

date query hits

0 2016-06-19 nintendo switch 0

1 2016-06-26 nintendo switch 0

2 2016-07-03 nintendo switch 0

3 2016-07-10 nintendo switch 0

4 2016-07-17 nintendo switch 0
3115 2021-05-09 id hits
3116 2021-05-16 id hits
3117 2021-05-23 id hits
3118 2021-05-30 id hits
3119 2021-06-06 id hits

Looking at Google Trends raw, we now have data in long format showing

e Date
» Keyword
o Hits

Let’s visualize some of these over time. We start by subsetting the dataframe:

k list = ['ps5', 'xbox one', 'ps4d’',
keyword gtrends = gtrends long.loc[gtrends long['query'].isin(k list)]

keyword gtrends

This results in the following:

'xbox series x',

'nintendo switch']

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

date query hits

0 2016-06-19 nintendo switch 0

1 2016-06-26 nintendo switch 0

2 2016-07-03 nintendo switch 0

3 2016-07-10 nintendo switch 0

4 2016-07-17 nintendo switch 0
2595 2021-05-09 xbox series x 8
2596 2021-05-16 xbox series x 7
2597 2021-05-23 xbox series x 6
2598 2021-05-30 xbox series x 6

2599 2021-06-06 Xbox series x 7

Visualizing Google Trends
Okay, so we’re now ready to plot the time series data as a chart, starting with the library import:

import seaborn as sns

Set the plot size:
sns.set (rc={'figure.figsize': (15, 6)})

Build and plot the chart:
keyword gtrends plt = sns.lineplot(data = keyword gtrends, x = 'date', y =
'hits', hue = 'query')

Save the image to a file for your PowerPoint deck or others:

keyword gtrends plt.figure.savefig("images/keyword gtrends.png")
keyword gtrends plt

Here, we can see that the “ps5” and “xbox series X" show a near identical trend which ramp up
significantly, while other models are fairly stable and seasonal until the arrival of the new models.

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

100 query
—— ninlendo switch
psd
xbox one
B0 — S
—— xbox series x
&0
a
£
40

i)

Figure 2-3 Time series plot of Google Trends keywords

Forecast Future Demand

While it’s great to see what’s happened in the last five years, it’s also great to see what might happen in the
future. Thankfully, Python provides the tools to do so. The most obvious use cases for forecasts are client
pitches and reporting.

Exploring Your Data

import pandas as pd

from statsmodels.tsa.statespace.sarimax import SARIMAX

from statsmodels.graphics.tsaplots import plot acf,plot pacf
from statsmodels.tsa.seasonal import seasonal decompose

from sklearn.metrics import mean squared error

from statsmodels.tools.eval measures import rmse

import warnings

warnings.filterwarnings ("ignore")

from pmdarima import auto arima

Import Google Trends data:

df = pd.read csv("exports/keyword gtrends df.csv", index col=0)
df.head()

This results in the following:

date query hits

1815 2021-05-09 ps5 12
1816 2021-05-16 ps5 11
1817 2021-05-23 ps5 10
1818 2021-05-30 ps5 10

1819 2021-06-06 pss5 10

As we’d expect, the data from Google Trends is a very simple time series with date, query, and hits spanning
a five-year period. Time to format the dataframe to go from long to wide:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

df unstacked = ps_trends.set index(["date",

df unstacked.columns.set names (['hits',
ps_unstacked = df unstacked.droplevel ('hits', axis=1)

ps_unstacked.columns = [c.replace(' ', '

'query'],

ps_unstacked = ps_unstacked.reset index()

ps_unstacked.head ()

This results in the following:

date ps4 ps5

4

2016-06-19
2016-06-26
2016-07-03
2016-07-10

2016-07-17

30
30
29
27

27

0

0

"query"]) .unstack (level=-1)
inplace=True)

') for ¢ in ps_unstacked.columns]

We no longer have a hits column as these are the values of the queries in their respective columns. This
format is not only useful for SARIMA? (which we will be exploring here) but also neural networks such as
long short-term memory (LSTM). Let’s plot the data:

ps_unstacked.plot (figsize=(10,5))

From the plot (Figure 2-4), you'll note that the profiles of both “PS4” and “PS5” are different.

100 A

20 4

— psd

ps5

T T

0 50
Figure 2-4 Time series plot of both ps4 and ps5

100

For the nongamers among you, “PS4” is the fourth generation of the Sony PlayStation console, and “PS5”
the fifth. “PS4” searches are highly seasonal and have a regular pattern apart from the end when the “PS5”
emerged. The “PS5” didn't exist five years ago, which would explain the absence of trend in the first four

years of the preceding plot.

Decomposing the Trend

>>>4f #ijackgoogleseo.com# B & 3 2 &4 fif<<<

Let’s now decompose the seasonal (or nonseasonal) characteristics of each trend:

ps_unstacked.set index("date", inplace=True)
ps_unstacked.index = pd.to datetime (ps_unstacked.index)

query col = 'psb'
a = seasonal decompose (ps unstacked[query col], model = "add")
a.plot();

Figure 2-5 shows the time series data and the overall smoothed trend showing it rises from 2020.

ps5
100 A

o b

2016-072017-012017-072018-012018-072019-012019-072020-012020-072021-01

e

2016-072017-02017-072018-02018-072019-02019-072020-012020-072021-01

20 i . . . -

0 -'I_ T | T | [T | T T
2016-072017-012017-072018-012018-072019-012019-072020-012020-072021-01
50 4 -

0 —W—

2016-072017-012017-072018-012018-072019-012019-072020-012020-072021-01

Figure 2-5 Decomposition of the ps5 time series

n
bt
o

Seasonal

Resid

The seasonal trend box shows repeated peaks which indicates that there is seasonality from 2016,
although it doesn’t seem particularly reliable given how flat the time series is from 2016 until 2020. Also
suspicious is the lack of noise as the seasonal plot shows a virtually uniform pattern repeating periodically.

The Resid (which stands for “Residual”) shows any pattern of what’s left of the time series data after
accounting for seasonality and trend, which in effect is nothing until 2020 as it’s at zero most of the time.

For “ps4,” see Figure 2-6.

>>>if fijackgoogleseo.com# M & 3 2. hik<<<

ps4
100 A]

50 'MW
2016-02017-012017-072018-012018-072019-012019-072020-012020-072021-01
40 T /\/‘\J’\f\/\—/\

35 -l L) L))))))))
2016-02017-012017-072018-012018-072019-012019-072020-012020-072021-01

0 -
2016-02017-02017-072018-02018-072019-02019-072020-02020-072021-01
50 L J

0 W
2016-072017-012017-072018-012018-072019-012019-072020-012020-02021-01

Figure 2-6 Decomposition of the ps4 time series

Tend

Seasonal

Resid

We can see fluctuation over the short term (Seasonality) and long term (Trend), with some noise
(Resid). The next step is to use the augmented Dickey-Fuller method (ADF) to statistically test whether a
given time series is stationary or not:

from pmdarima.arima import ADFTest
adf test = ADFTest (alpha=0.05)
adf test.should diff (ps unstacked[query col])

PS4: (0.09760939899434763, True)
PS5: (0.01, False)

We can see that the p-value of “PS5” shown earlier is more than 0.05, which means that the time series
data is not stationary and therefore needs differencing. “PS4” on the other hand is less than 0.05 at 0.01,
meaning it’s stationery and doesn’t require differencing.

The point of all this is to understand the parameters that would be used if we were manually building a
model to forecast Google searches.

Fitting Your SARIMA Model

Since we’ll be using automated methods to estimate the best fit model parameters (later), we're not going
to estimate the number of parameters for our SARIMA model.

To estimate the parameters for our SARIMA model, note that we set m to 52 as there are 52 weeks in a
year which is how the periods are spaced in Google Trends. We also set all of the parameters to start at 0 so
that we can let the auto_arima do the heavy lifting and search for the values that best fit the data for
forecasting:

ps5 s = auto_arima(ps_unstacked['ps4'],
trace=True,
m=52, #there are 52 period per season (weekly data)
start p=0,
start d=0,
start g=0,
seasonal=False)

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

This results in the following:

Performing stepwise search to minimize aic

ocNeoNoNoNoNoNoNoNoNoloNoNoNoNoNoloNolNolNeNolNe)

N N N N N NS N N S N NS S NS S NS NS S NS N oSNNS

ocNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoloNoNolNeNolNe)
NS N NS N N SN SN S S S S S S S S S S S S S SN
ocNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoloNoNolNoNolNe)
L e B e B B e B e R e R e R e R I R T R
ocNeoNoNoNoNoNoNoNoNoloNoNoNoNoNoloNoNoNoNoNe)

Best model:
Total fit time:

The preceding printout shows that the parameters that get the best results are

PS4
PS5:

ARIMA (4,0,3) (0,0,0)
ARIMA(3,1,3) (0,0,0)

intercept
intercept
intercept
intercept
intercept
intercept
intercept
intercept
intercept

ARIMA (4,0,3) (0,0,0)[0]
6.601 seconds

: AIC=1842.
: AIC=2651.
: AIC=1865.
: AIC=2370.

: AIC=1845

: AIC=1841

: AIC=1827

intercept

301,
089,
936,
569,

.911,
: AIC=1845.
: AIC=1838.
: AIC=1846.
: AIC=1843.
: AIC=1842.
: AIC=1841.
.893,
: AIC=1845.
: AIC=1824.
: AIC=1824.
: AIC=1826.
: AIC=1826.
: AIC=1827.
: AIC=1831.
: AIC=1825.

959,
349,
701,
754,
801,
447,

734,
187,
769,
970,
789,
114,
587,
359,

.292,
: AIC=1829.

109,

Time=0

Time=0.
Time=0.
Time=0.
Time=0.
Time=0.
Time=0.
.22
.25
.27

Time=0
Time=0
Time=0

Time=0.
.24
.29

Time=0
Time=0

Time=0.
Time=0.
Time=0.
Time=0.
Time=0.
Time=0.
Time=0.
Time=0.
Time=0.

The PS5 estimate is further detailed when printing out the model summary:

ps5_ s.summary ()

This results in the following:

.26

01
02
05
12
16
34

36

82
34
34
44
43
32
42
40
51

secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC
secC

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

SARIMAX Results

Dep. Variable: Yy No. Observations: 260
Model: SARIMAX(4, 0, 3) Log Likelihood -903.094

Date: Fri, 30 Jul 2021 AIC 1824.187
Time: 13:02:02 BIC 1856.233
Sample: 0 HQIC 1837.070
- 260
Covariance Type: opg
coef stderr z P>|z] [0.025 0.975]

intercept 8.7756 2.661 3.298 0.001 3.561 13.990
ar.L1 1.2577 0.325 3.872 0.000 0.621 1.894
arlL2 -0.1521 0.701 -0.217 0.828 -1.527 1.223
arlL3 -0.8086 0.652 -1.241 0.215 -2.086 0.469
arl4 0.4698 0.240 1.961 0.050 0.000 0.939

ma.L1 -0.6256 0.316 -1.979 0.048 -1.245 -0.006
ma.L2 -0.2806 0.455 -0.617 0.537 -1.172 0.611
ma.lL3 0.7784 0.294 2.648 0.008 0.202 1.355

sigma2 60.0816 3.039 19.771 0.000 54.125 66.038

Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB): 1449.21

Prob(Q): 0.90 Prob(JB): 0.00
Heteroskedasticity (H): 0.54 Skew: 2.24
Prob(H) (two-sided): 0.00 Kurtosis: 13.66

What'’s happening is the function is looking to minimize the probability of error measured by both the
Akaike information criterion (AIC) and Bayesian information criterion:

AIC = -2Log(L) + 2(p + g + k + 1)

such that L is the likelihood of the data,k=1ifc#0,and k=0ifc = 0.
BIC = AIC + [log(T) - 2] + (p + g + k + 1)

By minimizing AIC and BIC, we get the best estimated parameters for p and g.

Test the Model
Now that we have the parameters, we can now start making forecasts for both products:

ps4 order = ps4 s.get params() ['order']
ps4 seasorder = psé4 s.get params () ['seasonal order']

ps5 order = ps5 s.get params () ['order']

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

ps5 seasorder = ps5 s.get params () ['seasonal order']

params = {
"ps4": {"order": ps4 order, "seasonal order": ps4 seasorder},
"ps5": {"order": ps5 order, "seasonal order": ps5 seasorder}

Create an empty list to store the forecast results:

results = []
fig, axs = plt.subplots(len(X.columns), 1, figsize=(24, 12))

[terate through the columns to fit the best SARIMA model:

for i1, col in enumerate (X.columns) :
arima model = SARIMAX(train data[col],
order = params[col] ["order"],
seasonal order = params[col]["seasonal order"])
arima result = arima model.fit ()

Make forecasts:
arima pred = arima result.predict(start = len(train data),

end = len(X)-1, typ="levels")\
.rename ("ARIMA Predictions")

Plot predictions:

test data[col].plot (figsize = (8,4), legend=True, ax=axs[i])
arima_pred.plot (legend = True, ax=axs[i])

arima_ rmse error = rmse(test datal[col], arima pred)
mean value = X[col].mean ()

results.append((col, arima pred, arima rmse error, mean value))
print (f'Column: {col} --> RMSE Error: {arima rmse error} - Mean:
{mean value}\n')

This results in the following:

Column: ps4 --> RMSE Error: 8.626764032898576 - Mean: 37.83461538461538
Column: ps5 —--> RMSE Error: 27.552818032476257 - Mean: 3.973076923076923

For ps4, the forecasts are pretty accurate from the beginning until March when the search values start to
diverge (Figure 2-7), while the ps5 forecasts don’t appear to be very good at all, which is unsurprising.

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

ARIMA Predictions

Jan Feb Mar Apr May Jun
m 4
ARIMA Predictions
40 .

T T T ™ T ¥ T T

Jan Feb Mar Apr May Jun
2021

date

Figure 2-7 Time series line plots comparing forecasts and actual data for both ps4 and ps5

The forecasts show the models are good when there is enough history until they suddenly change like
they have for PS4 from March onward. For PS5, the models are hopeless virtually from the get-go. We know
this because the Root Mean Squared Error (RMSE) is 8.62 for PS4 which is more than a third of the PS5
RMSE of 27.5, which, given Google Trends varies from 0 to 100, is a 27% margin of error.

Forecast the Future
At this point, we'll now make the foolhardy attempt to forecast the future based on the data we have to date:

oos train data = ps unstacked
oos_train data.tail()

This results in the following:
ps4 ps5

date

2021-05-09 22 12
2021-05-16 22 11
2021-05-23 22 10
2021-05-30 23 10

2021-06-06 20 10
As you can see from the preceding table extract, we're now using all available data. Now we shall predict the
next six months (defined as 26 weeks) in the following code:

oos_results = []
weeks to predict = 26

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

fig, axs = plt.subplots(len(ps_unstacked.columns), 1, figsize=(24, 12))

Again, iterate through the columns to fit the best model each time:

for i, col in enumerate (ps_unstacked.columns) :

s = auto_arima(oos train data[col], trace=True)
cos_arima model = SARIMAX (oos train data[col],

order = s.get params() ['order'],

seasonal order = s.get params () ['seasonal order'])
ocos_arima result = oos_arima model.fit ()

Make forecasts:

oos_arima pred = oos_arima result.predict(start = len(oos_train data),
end = len(oos_train data) +
weeks to predict, typ="levels").rename ("ARIMA Predictions")
Plot predictions:

oos_arima pred.plot (legend = True, ax=axs[i])
axs[i].legend([col]);
mean value = ps unstacked[col].mean ()

oos_results.append((col, ocos_arima pred, mean value))
print (f'Column: {col} - Mean: {mean value}\n')

Here’s the output:

Performing stepwise search to minimize aic

ARIMA (2,0,2) (0,0,0) [0] intercept : AIC=1829.734, Time=0.21 sec
ARIMA (0,0,0) (0,0,0) [0] intercept : AIC=1999.661, Time=0.01 sec
ARIMA (1,0,0) (0,0,0) [0] intercept : AIC=1827.518, Time=0.03 sec
ARIMA (0,0,1) (0,0,0)[0] intercept : AIC=1882.388, Time=0.05 sec
ARIMA (0,0,0) (0,0,0) [0] : AIC=2651.089, Time=0.01 sec
ARIMA (2,0,0) (0,0,0) [0] intercept : AIC=1829.254, Time=0.04 sec
ARIMA (1,0,1) (0,0,0) [0] intercept : AIC=1829.136, Time=0.09 sec
ARIMA (2,0,1) (0,0,0) [0] intercept : AIC=1829.381, Time=0.26 sec
ARIMA (1,0,0) (0,0,0) [0] : AIC=1865.936, Time=0.02 sec

Best model: ARIMA(1,0,0)(0,0,0)[0] intercept
Total fit time: 0.722 seconds
Column: ps4 - Mean: 37.83461538461538

Performing stepwise search to minimize aic

ARIMA (2,1,2) (0,0,0) [0] intercept : AIC=1657.990, Time=0.19 sec
ARIMA (0,1,0) (0,0,0) [0] intercept : AIC=1696.958, Time=0.01 sec
ARIMA (1,1,0) (0,0,0)[0] intercept : AIC=1673.340, Time=0.04 sec
ARIMA (0,1,1) (0,0,0)[0] intercept : AIC=1666.878, Time=0.05 sec
ARIMA (0,1,0) (0,0,0)[0] : ATIC=1694.967, Time=0.01 sec
ARIMA(1,1,2) (0,0,0)[0] intercept : AIC=1656.899, Time=0.14 sec
ARIMA (0,1,2) (0,0,0) [0] intercept : AIC=1663.729, Time=0.04 sec
ARIMA (1,1,1) (0,0,0)[0] intercept : AIC=1656.787, Time=0.07 sec
ARIMA (2,1,1) (0,0,0) [0] intercept : AIC=1656.351, Time=0.16 sec
ARIMA (2,1,0) (0,0,0) [0] intercept : AIC=1672.668, Time=0.04 sec
ARIMA (3,1,1) (0,0,0)[0] intercept : AIC=1657.661, Time=0.11l sec
ARIMA (3,1,0) (0,0,0) [0] intercept : AIC=1670.698, Time=0.05 sec
ARIMA (3,1,2) (0,0,0) [0] intercept : AIC=1653.392, Time=0.33 sec
ARIMA (4,1,2) (0,0,0) [0] intercept : AIC=inf, Time=0.40 sec

ARIMA (3,1,3) (0,0,0) [0] intercept : AIC=1643.872, Time=0.45 sec

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

ARIMA (2,1,3) (0,0,0) [0] intercept : AIC=1659.698, Time=0.23 sec
ARIMA (4,1,3) (0,0,0) [0] intercept : AIC=inf, Time=0.48 sec

ARIMA (3,1,4) (0,0,0)[0] intercept : AIC=inf, Time=0.47 sec

ARIMA (2,1,4) (0,0,0)[0] intercept : AIC=1645.994, Time=0.52 sec
ARIMA (4,1,4) (0,0,0)[0] intercept : AIC=1647.585, Time=0.56 sec
ARIMA (3,1,3) (0,0,0) [0] : AIC=1641.790, Time=0.37 sec
ARIMA (2,1,3) (0,0,0) [0] : AIC=1648.325, Time=0.38 sec
ARIMA (3,1,2) (0,0,0)[0] : AIC=1651.416, Time=0.24 sec
ARIMA (4,1,3) (0,0,0) [0] : AIC=1650.077, Time=0.59 sec
ARIMA (3,1,4) (0,0,0) [0] : AIC=inf, Time=0.58 sec

ARIMA (2,1,2) (0,0,0) [0] : AIC=1656.290, Time=0.10 sec
ARIMA (2,1,4) (0,0,0)[0] : AIC=1644.099, Time=0.38 sec
ARIMA (4,1,2) (0,0,0) [0] : AIC=inf, Time=0.38 sec

ARIMA (4,1,4) (0,0,0) [0] : AIC=1645.756, Time=0.56 sec

Best model: ARIMA(3,1,3)(0,0,0)I([0]
Total fit time: 7.954 seconds
Column: ps5 - Mean: 3.973076923076923

This time, we automated the finding of the best-fitting parameters and fed that directly into the model.
The forecasts don’t look great (Figure 2-8) because there’s been a lot of change in the last few weeks of
the data; however; that’s in the case of those two keywords.

i

it R sen [+ B Dec
i1 J o

Figure 2-8 Out-of-sample forecasts of Google Trends for ps4 and ps5

The forecast quality will be dependent on how stable the historic patterns are and will obviously not
account for unforeseeable events like COVID-19.

Export your forecasts:
df pred = pd.concat([pd.Series(res[1l]) for res in oos_results], axis=l)
df pred.columns = [x + str(' preds') for x in ps_unstacked.columns]

df pred.to csv('your forecast data.csv')
What we learn here is where forecasting using statistical models are useful or are likely to add value for

forecasting, particularly in automated systems like dashboards, that is, when there’s historical data and not
when there is a sudden spike like PS5.

Clustering by Search Intent

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

Search intent is the meaning behind the search queries that users of Google type in when searching online.
So you may have the following queries:

“Trench coats”

“Ladies trench coats”

“Life insurance”

“Trench coats” will share the same search intent as “Ladies trench coats” but won’t share the same
intent as “Life insurance.” To work this out, a simple comparison of the top 10 ranking sites for both search
phrases in Google will offer a strong suggestion of what Google thinks of the search intent between the two
phrases.

It’s not a perfect method, but it works well because you're using the ranking results which are a
distillation of everything Google has learned to date on what content satisfies the search intent of the
search query (based upon the trillions of global searches per year). Therefore, it's reasonable to surmise
that if two search queries have similar enough SERPs, then the search intent is shared between keywords.

This is useful for a number of reasons:

e Rank tracking costs: If your budget is limited, then knowing the search intent means you can avoid
incurring further expense by not tracking keywords with the same intent as those you're tracking. This
comes with a risk as consumers change and the keyword not tracked may not share the same intent
anymore.

e Core updates: With changing consumer search patterns come changing intents, which means you can see
if keywords change clusters or not by comparing the search intent clusters of keywords before and after
the update, which will help inform your response.

e Keyword content mapping: Knowing the intent means you can successfully map keywords to landing
pages. This is especially useful in ensuring your site architecture consists of landing pages which map to
user search demand.

e Paid search ads: Good keyword content mappings also mean you can improve the account structure and
resulting quality score of your paid search activity.

Starting Point

Okay, time to cluster. We’ll assume you already have the top 100 SERPs? results for each of your keywords
stored as a Python dataframe “serps_input” The data is easily obtained from a rank tracking tool, especially
if they have an API:

serps_input

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword rank url se_results_count

0 xbox one x controller 1 https://www.xbox.com/en-GB/accessories 144000000
1 xbox one x controller 2 None 144000000
2 xbox one x controller 3 hitps://www.xbox.com/en-GB/accessories/control... 144000000
3 xbox one x controller 4 https://www.argos.co.uk/browse/technology/vide... 144000000
4 xbox one x controller 5 https://www.game.co.uk/en/accessories/xbox-one... 144000000
5 xbox one x controller 6 https://www.currys.co.uk/gbuk/xbox-one-control... 144000000
6 xbox one x controller 7 https://www.amazon.co.uk/xbox-one-controller/s... 144000000
7 xbox one x controller 8 None 144000000
8 xbox one x controller 9 https://www.ebay.co.uk/b/Microsoft-Xbox-One-Co... 144000000
9 xbox one x controller 10 https://www.amazon.com/Xbox-Wireless-Controlle... 144000000
10 xbox one x controller 11 https://www.powera.com/product_platform/xbox-one/ 144000000
11 xbox one x controller 12 https://www.pricerunner.com/sp/xbox-one-x-cont... 144000000
12 xbox one x controller 13 https://en.wikipedia.org/wiki/Xbox_Wireless_Co... 144000000
13 xbox one x controller 14 https://scufgaming.com/uk/xbox 144000000
14 xbox one x controller 15 https://www.digitaltrends.com/gaming/how-to-sy... 144000000

Here, we're using DataForSEQ’s SERP APL* and we have renamed the column from “rank_absolute” to
“rank.”

Filter Data for Page 1

Because DataForSEQ’s numbers to individual results are contained within carousels, People Also Ask, etc.,
we’'ll want to compare the top 20 results of each SERP to each other to get the approximate results for page
1. We'll also filter out URLs that have the value “None.” The programming approach we’ll take is “Split-
Apply-Combine.” What is Split-Apply-Combine?

e Split the dataframe into keyword groups
e Apply the filtering formula to each group
e Combine the keywords of each group

Here it goes:
Split:

serps_grpby keyword = serps input.groupby ("keyword")
Apply the function, before combining:
def filter twenty urls(group df):
filtered df = group df.loc[group df['url'].notnull ()]
filtered df = filtered df.loc[filtered df['rank'] <= 20]
return filtered df
filtered serps = serps grpby keyword.apply(filter twenty urls)
Combine and add prefix to column names:

normed = normed.add prefix('normed ')

Concatenate with an initial dataframe:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

filtered serps df = pd.concat ([filtered serps],axis=0)

Convert Ranking URLSs to a String

To compare the SERPs for each keyword, we need to convert the SERPs URL into a string. That’s because
there’s a one (keyword) to many (SERP URLs) relationship. The way we achieve that is by simply
concatenating the URL strings for each keyword, using the Split-Apply-Combine approach (again). Convert
results to strings using SAC:

filtserps grpby keyword = filtered serps df.groupby ("keyword")

def string serps(df):
df['serp string'] = '"'.join(df['url'])
return df

Combine
strung serps = filtserps grpby keyword.apply (string serps)

Concatenate with an initial dataframe and clean:

strung serps = pd.concat ([strung serps],axis=0)

strung serps = strung serps[['keyword',6 'serp string']]#.head(30)
strung_ serps strung serps.drop duplicates|()

strung_serps

This results in the following:

keyword serp_string

0 fifa 19 ps4 https://www.amazon.co.uk/Electronic-Arts-22154...

18 gaming broadband https://www.bt.com/products/broadband/gaminght...

37 playstation vr https://www.playstation.com/en-gb/ps-vr/https:...
54 ps4 https://www.playstation.com/en-gb/ps4/https://...
72 ps4 console https://www.game.co.uk/en/hardware/playstation...
91 ps4 controller https://www.playstation.com/en-gb/ps4/ps4-acce...

109 ps4 controllers https://www.playstation.com/en-gb/ps4/ps4-acce...

127 ps4 vr https://www.playstation.com/en-gb/ps-vr/https:...
146 ps5 https://direct.playstation.com/en-us/ps5https:...
162 ps5 console https://direct.playstation.com/en-us/ps5https....

Now we have a table showing the keyword and their SERP string, we're ready to compare SERPs. Here’s an
example of the SERP string for “fifa 19 ps4”:

strung serps.loc[l, 'serp string']
This results in the following:

'https://www.amazon.co.uk/Electronic-Arts-221545-FIFA-PS4/dp/BO7DLXBGN8https:,
GAMES/dp/B07DL2SY2Bhttps://www.game.co.uk/en/fifa-19-2380636https://www.ebay.«
Games/139973/bn_7115134270https://www.pricerunner.com/pl/1422-4602670/PlayStat
Priceshttps://pricespy.co.uk/games-consoles/computer-video-games/psd/fifa-19-g

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

p4766432https://store.playstation.com/en-gb/search/fifa%2019%ttps://www.amazor
4/dp/B07DL2SY2Bhttps://www.tesco.com/groceries/en-GB/products/301926084https:,
games/ps-4-£ifa-19/1000076097883https://uk.webuy.com/product-detail/?id=50309¢
software&superCatName=gaming&title=fifa-
19https://www.pushsquare.com/reviews/ps4/fifa 19https://en.wikipedia.org/wiki,
Arts-Fifal9SEPS4-Fifa-PS4/dp/BO07DVWWF44https://www.vgchartz.com/game/222165/f:
19/https://www.metacritic.com/game/playstation-4/fifa-19https://www.johnlewis.
ps4/p3755803https://www.ebay.com/p/22045274968"

Compare SERP Distance

The SERPs comparison will use string distance techniques which allow us to see how similar or dissimilar
one keyword’s SERPs are. This technique is similar to how geneticists would compare one DNA sequence to
another.

Naturally, we need to get the SERPs into a format ready for Python to compare SERPs. To do this, we
need to convert each SERP to a string and then put them side by side. Group the table by keyword:

filtserps grpby keyword = filtered serps df.groupby ("keyword")
def string serps(df):

df['serp string'] = ' '.join(df['url'])

return df

Combine using the preceding function:

strung serps = filtserps grpby keyword.apply(string serps)
Concatenate with an initial dataframe and clean:

strung serps = pd.concat ([strung serps],axis=0)

strung serps = strung serps[['keyword',K 'serp string']]#.head(30)

strung serps = strung serps.drop duplicates()

#strung serps['serp string'] =

strung serps.serp string.str.replace("https://www\.", "")

strung serps.head(15)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword serp_string

0 Dbeige trench coats https://www.zalando.co.uk/womens-clothing-coat...
9 blue trench coats https://www.johnlewis.com/browse/women/womens-...
19 buy ps4 https://www.playstation.com/en-gb/ps4/buy-ps4/...

24 |adies trench coats htips://www.johnlewis.com/browse/women/womens-...

34 mens trench coats https://uk.burberry.com/mens-trench-coats/ htt...
43 ps4 https://www.playstation.com/en-gb/ps4/ https:/...
51 ps4 console https://www.game.co.uk/en/hardware/playstation...
60 ps4 vr https://www.playstation.com/en-gb/ps-vr/ https...
69 psS https://direct.playstation.com/en-us/ps5 https...
78 ps5 console https://www.game.co.uk/playstation-5 https://d...
86 ps5 news https://www.pushsquare.com/ps5 https://www.pla...
95 psS pre order https://www.playstation.com/en-gb/ps5/buy-now/...
104 trench coats https://uk.burberry.com/womens-trench-coats/ h...
112 xbox controller https://www.xbox.com/en-GB/accessories/control...
120 xbox one https://www.xbox.com/ https://www.xbox.com/en-...

Here, we now have the keywords and their respective SERPs all converted into a string which fits into a
single cell. For example, the search result for “beige trench coats” is

'"https://www.zalando.co.uk/womens-clothing-coats-trench-coats/ beige/
https://www.asos.com/women/coats-jackets/trench-coats/cat/?2cid=15143
https://uk.burberry.com/womens-trench-coats/beige/

https://www2.hm.com/en gb/productpage.0751992002.xhtml
https://www.hobbs.com/clothing/coats-jackets/trench/beige/
https://www.zara.com/uk/en/woman-outerwear—trench-11202.xhtml
https://www.ebay.co.uk/b/Beige-Trench-Coats-for-Women/63862/bn 7028370345
https://www.johnlewis.com/browse/women/womens—-coats-jackets/trench-
coats/ /N-flvz1lz0Ornyl https://www.elle.com/uk/fashion/what-to-
wear/articles/g30975/best-trench-coats-beige-navy-black/"'

Time to put these side by side. What we're effectively doing here is taking a product of the column to
itself, that is, squaring it, so that we get all the SERPs combinations possible to put the SERPs side by side.
Add a function to align SERPs:

def serps align(k, df):
prime df = df.loc[df.keyword == k]

prime df = prime df.rename(columns = {"serp string" : "serp string a",
'keyword': 'keyword a'})

comp df = df.loc[df.keyword != k].reset index(drop=True)

prime df =

prime df.loc[prime df.index.repeat (len(comp df.index))].reset index (drop=True)

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

prime df = pd.concat ([prime df, comp df], axis=1)

prime df = prime df.rename(columns = {"serp string" : "serp string b",
'keyword': 'keyword b', "serp string a" : "serp string", 'keyword a':
'keyword'})

return prime df
Test the function on a single keyword:
serps_align('ps4', strung serps)
Set up desired dataframe columns:
columns = ['keyword', 'serp string', 'keyword b', 'serp string b']
matched serps = pd.DataFrame (columns=columns)
matched serps = matched serps.fillna(0)
Call the function for each keyword:
for g in queries:
temp df = serps align(q, strung serps)

matched serps = matched serps.append(temp df)

This results in the following:

keyword serp_string keyword b serp_string_ b

0 ps4 https:/fwww.playstation.com/en-gb/ps4/ https:/... beige trench coats https:/fwww.zalando.co.uk/womens-clothing-coat...

1 ps4 https:/fwww.playstation.com/en-gb/ps4/ https:/... blue trench coats https://www.johnlewis.com/browse/women/womens-...

2 psd https:/fwww.playstation.com/en-gb/ps4/ https:/... buy ps4 https:/fwww.playstation.com/en-gh/psd/buy-ps4/...

3 psd https:/fwww. playstation.com/en-gb/ps4/ https:/... ladies trench coats https://www.johnlewis.com/browse/women/womens-...

4 ps4 https://www.playstation.com/en-gb/ps4/ https:/... mens trench coats https://uk.burberry.com/mens-trench-coats/ htt...
267 blue trench coats https://www.johnlewis.com/browse/women/womens-... trench coats https://uk.burberry.com/womens-trench-coats/ h...
268 blue trench coats https://www.johnlewis.com/browse/women/womens-... xbox controller https://www.xbox.com/en-GB/accessories/control...
269 blue trench coats hitpsy/www.johnlewis.com/browse/women/womens-... xbox one https:/fwww.xbox.com/ https://www.xbox.com/en-...
270 blue trench coats hitps://fwww.johnlewis.com/browse/women/womens-... xbox one controlier https:/fwww.xbox.com/en-GB/accessories https:/...
271 blue trench coats https://'www.johnlewis.com/browsa/women/womens-... xbox series x https:/fwww. xbox.com/en-GB/consoles/xbox-serig. ..

The preceding result shows all of the keywords with SERPs compared side by side with other keywords and
their SERPs. Next, we'll infer keyword intent similarity by comparing serp_strings, but first here’s a note on
the methods like Levenshtein, Jaccard, etc.

Levenshtein distance is edit based, meaning the number of edits required to transform one string (in
our case, serp_string) into the other string (serps_string_b). This doesn’t work very well because the
websites within the SERP strings are individual tokens, that is, not a single continuous string.

Sorensen-Dice is better because it is token based, that is, it treats the individual websites as individual
items or tokens. Using set similarity methods, the logic is to find the common tokens and divide them by
the total number of tokens present by combining both sets. It doesn’t take the order into account, so we
must go one better.

M Measure which looks at both the token overlap and the order of the tokens, that is, weighting the
order tokens earlier (i.e., the higher ranking sites/tokens) more than the later tokens. There is no API for
this unfortunately, so we wrote the function for you here:

import py stringmatching as sm
ws_tok = sm.WhitespaceTokenizer ()

Only compare the top k_urls results:

def serps similarity(serps strl, serps str2, k=15):

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

denom = k+1

norm = sum([2*(1/1 - 1.0/ (denom)) for i in range(l, denom)])
#fuse to tokenize the URLs

ws_tok = sm.WhitespaceTokenizer ()

#keep only first k URLs

serps_1 = ws_tok.tokenize (serps strl) [:k]

serps_2 = ws_tok.tokenize (serps str2) [:k]

#get positions of matches

match = lambda a, b: [b.index(x)+1 if x in b else None for x in a]

#positions intersections of form [(pos 1, pos 2), ...]

pos_intersections = [(i+1l,J) for i,J in enumerate (match(serps 1,
serps_2)) if j is not None]

pos_inl not in2 = [i+1 for i,Jj in enumerate (match(serps 1, serps 2)) if
J 1s None]

pos_1in2 not inl = [i+1 for i,Jj in enumerate (match(serps 2, serps 1)) if

3 is None]

a sum = sum([abs(1/i -1/3j) for i,J in pos_intersections])
b sum = sum([abs(1/1i -1/denom) for i in pos inl not in2])

c_sum = sum([abs(1/i -1/denom) for i in pos in2 not inl])
intent prime = a sum + b _sum + c_sum
intent dist = 1 - (intent prime/norm)

return intent dist
Apply the function:
matched serps['si simi'] = matched serps.apply(lambda x:
serps_similarity(x.serp string, x.serp string b), axis=1)

matched serps|[["keyword", "keyword b", "si simi"]]

This is the resulting dataframe:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

keyword keyword b si_simi

0 ps4 beige trench coats 0.058203

1 ps4 blue trench coats 0.050328

2 ps4 buy ps4 0.314561

3 ps4 ladies trench coats 0.050328

4 ps4 mens trench coats 0.058203
267 blue trench coats trench coats 0.096999
268 blue trench coats xbox controller 0.050328
269 blue trench coats xbox one 0.050328

270 blue trench coats xbox one controller 0.040118

271 Dblue trench coats xbox series X 0.063454

272 rows x 3 columns

Before sorting the keywords into topic groups, let’s add search volumes for each. This could be an imported
table like the following one called “keysv_df”:

keysv df

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword search_volume

0 best isa rates 40500
1 isa 49500
2 savings account 60500
3 cash isa 14800
4 isa account 9900
5 child savings account 14800
6 fixed rate bonds 12100
7 isa rates 8100
8 savings account interest rate 9900
9 fixed rate isa 5400
10 isa interest rates 5400
11 savings accounts uk 6600
12 cash isa rates 4400
13 easy access savings account 3600
14 savings rates 5400
15 easy access savings 3600
16 fixed rate savings 4400
17 isa savings 3600
18 kids savings account 4400
19 online savings account 2400

Let’s now join the data. What we’re doing here is giving Python the ability to group keywords according to
SERP similarity and name the topic groups according to the keyword with the highest search volume.

Group keywords by search intent according to a similarity limit. In this case, keyword search results
must be 40% or more similar. This is a number based on trial and error of which the right number can vary
by the search space, language, or other factors.

simi lim = 0.4

Append topic vols:
keywords crossed vols = serps compared.merge (keysv df, on = 'keyword', how =
'left")
keywords crossed vols = keywords crossed vols.rename (columns = {'keyword':
'topic', 'keyword b': 'keyword', 'search volume': 'topic volume'})

Append keyword vols:

keywords crossed vols keywords crossed vols.merge (keysv df, on =

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

'keyword', how = 'left')
Simulate si_simi:

#keywords crossed vols['si simi'] =

np.random.rand (len(keywords crossed vols.index))

keywords crossed vols.sort values('topic volume', ascending = False)
Strip the dataframe of NAN:

keywords filtered nonnan = keywords crossed vols.dropna/()

We now have the potential topic name, keyword SERP similarity, and search volumes of each. You'll note
the keyword and keyword_b have been renamed to topic and keyword, respectively. Now we’re going to
iterate over the columns in the dataframe using list comprehensions.

List comprehension is a technique for looping over lists. We applied it to the Pandas dataframe because
it's much quicker than the .iterrows() function. Here it goes.

Add a dictionary comprehension to create numbered topic groups from keywords_filtered_nonnan:

{1: [k1, k2, ..., knl, 2: [k1, k2, ..., knl, ..., n: [k1l, k2, ..., kn]l}
Convert the top names into a list:

queries in df = list(set (keywords filtered nonnan.topic.to list()))
Set empty lists and dictionaries:

topic groups numbered = {}
topics_added = []

Define a function to find the topic number:

def latest index(dicto):

if topic_groups numbered == {}:
i=0
else:
1 = list(topic_groups numbered) [-1]

return i

Define a function to allocate keyword to topic:

def find topics(si, keyw, topc):

i = latest index(topic groups numbered)

if (si >= simi 1im) and (not keyw in topics_added) and (not topc in
topics_added) :

#print(si, ', kw=' , keyw,', tpc=', topc,', ', i,', ',
topic groups numbered)

i+=1

topics added.extend([keyw, topc])

topic _groups numbered[i] = [keyw, topc]

elif si >= simi 1lim and (keyw in topics_added) and (not topc in
topics_added) :

#print (si, ', kw=' , keyw,', tpc=', topc,', ', 1i,"', ',
topic groups numbered)
j = [key for key, value in topic groups numbered.items() if keyw in

value]
topics added.extend (topc)
topic _groups numbered[][0]].append (topc)

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

elif si >= simi lim and (not keyw in topics_added) and (not topc in
topics added) :
#print (si, ', kw=' , keyw,', tpc=', topc,', ', i,', ',
topic groups numbered)
J = list(mydict.keys()) [list (mydict.values()) .index (keyw)]
topic _groups numbered[][0]].append (topc)

The list comprehension will now apply the function to group keywords into clusters:

[find topics(x, y, z) for x, y, z in zip(keywords filtered nonnan.si simi,
keywords filtered nonnan.keyword,

keywords filtered nonnan.topic)]
topic groups numbered

This results in the following:

{l: ['easy access savings',
'savings account',
'savings accounts uk',
'savings rates',
'online savings account',
'online savings account',
'online savings account'],
2: ['isa account', 'isa', 'isa savings', 'isa savings'],
3: ['kids savings account', 'child savings account'],
4: ['best isa rates',
'cash isa’',
'fixed rate isa’',
'fixed rate isa’,
'isa rates',
'isa rates',
'isa rates'],
5: ['savings account interest rate',
'savings accounts uk',
'online savings account'],
6: ['easy access savings account', 'savings rates', 'online savings
account'],
7: ['cash isa rates', 'fixed rate isa', 'isa rates'],
8: ['isa interest rates', 'isa rates'],
9: ['fixed rate savings', 'fixed rate bonds', 'online savings account']}

The preceding results are statements printing out what keywords are in which topic group. We do this
to make sure we don’t have duplicates or errors, which is crucial for the next step to perform properly. Now
we’re going to convert the dictionary into a dataframe so you can see all of your keywords grouped by
search intent:

topic groups lst = []
for k, 1 in topic groups numbered.items() :
for v in 1:
topic _groups_ lst.append([k, v])

topic groups dictdf = pd.DataFrame (topic groups lst, columns=
['topic group no', 'keyword'])
topic groups_dictdf

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

topic_group_no keyword

0 1 easy access savings
1 1 savings account
2 1 savings accounts uk
3 1 savings rates
4 1 online savings account
5 1 online savings account
6 1 online savings account
7 2 isa account
8 2 isa
9 2 isa savings
10 2 isa savings
11 3 kids savings account
12 3 child savings account
13 4 best isa rates
14 4 cash isa
15 4 fixed rate isa
16 4 fixed rate isa
17 4 isa rates

As you can see, the keywords are grouped intelligently, much like a human SEO analyst would group these,
except these have been done at scale using the wisdom of Google which is distilled from its vast number of
users. Name the clusters:

topic _groups_vols = topic_groups dictdf.merge(keysv _df, on = 'keyword',6 how
= 'left'")

def highest demand (df) :
df = df.sort values('search volume', ascending = False)
del df['topic_group no']
max sv = df.search volume.max ()
df = df.loc[df.search volume == max sv]
return df

topic _groups_vols keywgrp = topic groups vols.groupby ('topic group no')
topic _groups_vols keywgrp.get group(l)

Apply and combine:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

high demand topics =

topic groups vols keywgrp.apply(highest demand) .reset index()

del high demand topics['level 1']

high demand topics = high demand topics.rename(columns = {'keyword':
"topic'})

def shortest name (df) :
df['k len'] = df.topic.str.len()
min kl = df.k len.min ()
df = df.locl[df.k len == min kl]
del df['topic_group no']
del df['k len']
del df['search volume']
return df

high demand topics spl = high demand topics.groupby ('topic group no')
Apply and combine:

named topics = high demand topics_ spl.apply(shortest name) .reset index()
del named topics['level 1']

Name topic numbered keywords:
topic_keyw map = pd.merge (named topics, topic groups dictdf, on =
'topic _group no', how = 'left')

topic keyw map

The resulting table shows that we now have keywords clustered by topic:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

topic_group_no topic keyword

0 1 savings account savings accounts uk
1 1 savings account savings account
2 1 savings account savings account interest rate
3 1 savings account easy access savings
4 1 savings account savings rates
5 1 savings account fixed rate savings
6 1 savings account fixed rate bonds
7 1 savings account online savings account
8 1 savings account easy access savings account
9 2 isa isa
10 2 isa isa account
11 2 isa isa savings
12 3 child savings account kids savings account
13 3 child savings account child savings account
14 4 best isa rates cash isa
15 4 best isa rates best isa rates

Let’s add keyword search volumes:

topic _keyw vol map = pd.merge (topic keyw map, keysv _df, on = 'keyword',6 how
= 'left')

topic_keyw vol map

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

topic_group_no topic keyword search_volume

0 1 savings account savings accounts uk 6600
1 1 savings account savings account 60500
2 1 savings account savings account interest rate 9900
3 1 savings account easy access savings 3600
4 1 savings account savings rates 5400
5 1 savings account fixed rate savings 4400
6 1 savings account fixed rate bonds 12100
7 1 savings account online savings account 2400
8 1 savings account easy access savings account 3600
9 2 isa isa 49500
10 2 isa isa account 9900
11 2 isa isa savings 3600
12 3 child savings account kids savings account 4400
13 3 child savings account child savings account 14800
14 4 best isa rates cash isa 14800
15 4 best isa rates best isa rates 40500

This is really starting to take shape, and you can quickly see opportunities emerging.

SERP Competitor Titles

If you don’t have much Google Search Console data or Google Ads data to mine, then you may need to resort
to your competitors. You may or may not want to use third-party keyword research tools such as SEMRush.
And you don’t have to.

Tools like SEMRush, Keyword.io, etc., certainly have a place in the SEO industry. In the absence of any
other data, they are a decent ready source of intelligence on what search queries generate relevant traffic.

However, some work will need to be done in order to weed out the noise and extract high value phrases
- assuming a competitive market. Otherwise, if your website (or niche) is so new in terms of what it offers
that there’s insufficient demand (that has yet to be created by advertising and PR to generate nonbrand
searches), then these external tools won't be as valuable. So, our approach will be to

1.
Crawl your own website

2.
Filter and clean the data for sections covering only what you sell

3.
Extract keywords from your site’s title tags

4.
Filter using SERPs data (next section)

Filter and Clean the Data for Sections Covering Only What You Sell

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

The required data for this exercise is to literally take a site auditor® and crawl your website. Let’s assume
you've exported the crawl data with just the columns: URL and title tag; we’ll import and clean:

import pandas as pd
import numpy as np

crawl import df = pd.read csv('data/crawler-filename.csv')
crawl import df

This results in the following:

deeprank page_title url redirected_to_url htip_status_code indexable

(1] 0.71 Growing blueberries in pots - Saga https./www.saga.co.uk/magazine/home-garden/ga... MNaM 200 True

1 0.66 How to grow succulents - Saga hitps://www.saga.co.uk/magazine/nome-garden/ga... MNaM 200 True

2 0.49 Creating a wildlife garden: courtyards & small... hitps./www.saga.co.uk/magazine/home-garden/ga... MNaM 200 True

3 0.55 Plants for clay soil - Saga https.//www.saga.co.uk/magazine/home-garden/ga... MNaM 200 True

4 028 The brambling: diet, identifcation & location ... hitpsi//www.saga.co.uk/magazine/home-garden/ga... NaN 200 True
7026 049 The best plants to complement roses - Saga hitps://www.saga.co.uk/magazine/home-garden/ga... MaM 200 True
7027 077 How to buy outdoor security lights for your ga... hitps://www.saga.co.uk/magazine/home-garden/ga... MNaN 200 True
7028 0.39 Wiidiife watch: lesser spotted woodpecker - Saga hitps://www.saga.co.uk/magazine/mome-garden/ga... Nah 200 True
7029 0.25 Has my border collie's coat been damaged by cl... hitps://www.saga.co.uk/magazine/home-garden/pe... MaN 200 True
7030 0.32 The best daffodil varieties that bloom all spr... hitps://www.saga.co.uk/magazine/home-garden/ga... MNaM 200 False

The preceding result shows the dataframe of the crawl data we've just imported. We're most interested in
live indexable® URLs, so let’s filter and select the page_title and URL columns:

titles urls df = crawl import df.loc[crawl import df.indexable == True]
titles urls df = titles urls df[['page title', 'url']]
titles urls df

This results in the following:

page_title url

0 Growing blueberries in pots - Saga https://www.saga.co.uk/magazine/home-garden/ga...

1 How to grow succulents - Saga https://www.saga.co.uk/magazine/home-garden/ga...

2 Creating a wildlife garden: courtyards & small... https://www.saga.co.uk/magazine/home-garden/ga...

3 Plants for clay soil - Saga https://www.saga.co.uk/magazine/home-garden/ga...

4 The brambling: diet, identifcation & location ... https://www.saga.co.uk/magazine/home-garden/ga...
7025 Avoid these online tolls and road charges scam... https://www.saga.co.uk/magazine/motoring/cars/...
7026 The best plants to complement roses - Saga https://www.saga.co.uk/magazine/home-garden/ga...

7027 How to buy outdoor security lights for your ga... https://www.saga.co.uk/magazine/home-garden/ga...
7028 Wildlife watch: lesser spotted woodpecker - Saga https://www.saga.co.uk/magazine/home-garden/ga...
7029 Has my border collie's coat been damaged by cl... https://www.saga.co.uk/magazine/home-garden/pe...
Now we're going to clean the title tags to make these nonbranded, that is, remove the site name and the

magazine section.

titles urls df['page title'] = titles urls df.page title.str.replace(' -

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Saga', vv)

titles urls df =

titles urls df.loc[~titles urls df.url.str.contains('/magazine/')]
titles urls df

This results in the following:

page_title url

9 Travel money | Saga | Safe and quick order today https://www.saga.co.uk/insurance/travel-money

21 MySaga https://www.saga.co.uk/mysaga/manage-policy/html/
31 Direct Choice Contact Us https://www.saga.co.uk/insurance/car-insurance...
48 Personal SOS Alarms Service | Saga Healthcare https://www.saga.co.uk/sos-personal-alarm
49 Tailor Your Cover With Optional Extras | Saga ... https://www.saga.co.uk/insurance/car-insurance...
6991 At home with John Sergeant https://www.saga.co.uk/membership/articles/at-...
6994 Policy Documents | Policy Books | Saga Home In... https://www.saga.co.uk/insurance/home-insuranc...
6995 Health and Beauty Offers From Saga https://www.saga.co.uk/membership/categories/h...
6996 Single Trip Travel Insurance for Over 50s | Sa... https://www.saga.co.uk/insurance/travel-insura...
7008 Oleanna https://www.saga.co.uk/membership/tickets/lond...

We now have 349 rows, so we will query some of the keywords to illustrate the process.

Extract Keywords from the Title Tags

We now desire to extract keywords from the page title in the preceding dataframe. A typical data science
approach would be to break down the titles into all kinds of combinations and then do a frequency count,
maybe weighted by ranking.

Having tried it, we wouldn’t recommend this approach; it's overkill and there is probably not enough
data to make it worthwhile. A more effective and simpler approach is to break down the titles by
punctuation marks. Why? Because humans (or probably some Al nowadays) wrote those titles, so these are
likely to be natural breakpoints for target search phrases.

Let’s try it; break the titles into n grams:

pd.set option('display.max rows', 1000)

serps ngrammed = filtered serps df.set index(["keyword", "rank absolute"])\
.apply(lambda x: x.str.split('[-,|?2()&:;\

[\N]=1") .explode ())\
.dropna () \
.reset index()

serps_ngrammed.head (10)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword rank_absolute

title

o

Care Funding Advice Service

—

Care Funding Advice Service
Care Funding Advice Service
Care Funding Advice Service
Care Funding Advice Service
Care Funding Advice Service
Care Funding Advice Service
Care Funding Advice Service

Care Funding Advice Service

w o N o 4 A W N

Care Funding Advice Service

1

R

B B W W

5

5

care funding advice service
saga

how does the saga care funding advice service ...

paying for care

money advice service
care funding advice
hub financial solutions
care advice service

paying for care fees in sussex and ...

Courtesy of the explode function, the dataframe has been unnested such that we can see the keyword rows
expanded for the different text previously within the same title and conjoined by the punctuation mark.

Filter Using SERPs Data

Now all we have to do is perform a frequency count of the top three titles and then filter for any that appear

three times or more:

serps_ngrammed grp = serps ngrammed.groupby (['keyword', 'title'])

keyword ideas df =

serps_ngrammed grp.size().reset index(name='freq').sort values(['keyword',

'freq'], ascending = False)

keyword ideas df = keyword ideas df[keyword ideas df.freqg > 2]
keyword ideas df = keyword ideas_ df[keyword ideas df.title.str.contains('[a-

z]")]

keyword ideas df
'keyword idea'})
keyword ideas df

This results in the following:

keyword ideas df.rename (columns = {'title':

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

keyword rank_absolute

title

0 Care Funding Advice Service
1 Care Funding Advice Service

2 Care Funding Advice Service

W

Care Funding Advice Service
Care Funding Advice Service
Care Funding Advice Service

Care Funding Advice Service

~ o o &b

Care Funding Advice Service

Care Funding Advice Service

© o

Care Funding Advice Service

1

n

B B W W

5

care funding advice service
saga

how does the saga care funding advice service ...

paying for care
money advice service
care funding advice
hub financial solutions
care advice service

paying for care fees in sussex and ...

Eh voila, the preceding result shows a dataframe of keywords obtained from the SERPs. Most of it makes
sense and can now be added to your list of keywords for serious consideration and tracking.

Summary

This chapter has covered data-driven keyword research, enabling you to

¢ Find standout keywords from GSC data
¢ Obtain trend data from Google Trends

e Forecast future organic traffic using time series techniques

e Cluster keywords by search intent

e Find keywords from your competitors using SERPs data

In the next chapter, we will cover the mapping of those keywords to URLs.

Footnotes

1 In 2006, AOL shared click-through rate data based upon over 35 million search queries, and since then it has inspired numerous models to try and
estimate the click-through rate (CTR) by search engine ranking position. That is, for every 100 people searching for “hotels in New York,” 30% (for
example) click on the position 1 ranking, with just 16% clicking on position 2 (hence the importance of achieving the top ranked position, in order

to, effectively, double your traffic (for that keyword))

2 Seasonal Autoregressive Integrated Moving Average

3 Search Engine Results Pages (SERP)

4 Availableathttps://dataforseo.com/apis/serp-api/

5 Like Screaming Frog, OnCraw], or Botify, for instance

6 Thatis, pages with a 200 HTTP response that do block search indexing with “noindex”

https://dataforseo.com/apis/serp-api/

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A.Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_3

3. Technical

Andreas Voniatis?!

(1) Surrey, UK

Technical SEO mainly concerns the interaction of search engines and websites such that

¢ Website content is made discoverable by search engines.

e The priority of content is made apparent to search engines implied by its proximity to the home page.

» Search engine resources are conserved to access content (known as crawling) intended for search result
inclusion.

e Extract the content meaning from those URLs again for search result inclusion (known as indexing).

In this chapter, we’ll look at how data-driven approach can be taken toward improving technical SEO in
the following manner:

e Modeling page authority: This is useful for helping fellow SEO and non-SEOs understand the impact of
technical SEO changes.

e Internal link optimization: To improve the use of internal links used to make content more discoverable
and help signal to search engines the priority of content.

e Core Web Vitals (CWV): While the benefits to the UX are often lauded, there are ranking boost benefits to
an improved CWV because of the conserved search engine resources used to extract content from a web

page.
By no means will we claim that this is the final word on data-driven SEO from a technical perspective.

What we will do is expose data-driven ways of solving technical SEO issues using some data science such as
distribution analysis.

Where Data Science Fits In

An obvious challenge of SEO is deciding which pages should be made accessible to the search engines and
users and which ones should not. While many crawling tools provide visuals of the distributions of pages by
site depth, etc., it never hurts to use data science, which we will go into more detail and complexity, which
will help you

e Optimize internal links
e Allocate keywords to pages based on the copy
¢ Allocate parent nodes to the orphaned URLs

Ultimately, the preceding list will help you build better cases for getting technical recommendations
implemented.

Modeling Page Authority

Technical optimization involves recommending changes that often make URLs nonindexable or
canonicalized (for a number of reasons such as duplicate content). These changes are recommended with
the aim of consolidating page authority onto URLs which will remain eligible for indexing.

The following section aims to help data-driven SEO quantify the beneficial extra page authority. The
approach will be to

1. Filter in web pages

https://doi.org/10.1007/978-1-4842-9175-7_3

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

2.
Examine the distribution of authority before optimization

3.
Calculate the new distribution (to quantify the incremental page authority following a decision on
which URLs will no longer be made indexable, making their authority available for reallocation)

First, we need to load the necessary packages:

import re

import time

import random

import pandas as pd

import numpy as np

import datetime

import requests

import json

from datetime import timedelta

from glob import glob

import os

from client import RestClient # If using the Data For SEO API
from textdistance import sorensen dice

from plotnine import *

import matplotlib.pyplot as plt

from pandas.api.types import is string dtype
from pandas.api.types import is numeric_dtype
import uritools

from urllib.parse import urlparse

import tldextract

pd.set option('display.max colwidth', None)
Smatplotlib inline

Set variables:
root domain = 'boundlesshg.com'
hostdomain = 'www.boundlesshqg.com'
hostname = 'boundlesshqg'
full domain = 'https://www.boundlesshqg.com'
client name = 'Boundless'
audit monthyear = 'jul 2022'

Import the crawl data from the Sitebulb desktop crawler. Screaming Frog or any other site crawling
software can be used; however, the column names may differ:

crawl csv =
pd.read csv('data/boundlesshg com all urls excluding uncrawled filtered.csv'

Clean the column names using a list comprehension:

crawl csv.columns =
[col.lower () .replace('.',"").replace('(',"'").replace(")"',"'") .replace ("
l,l_l)

for col in crawl csv.columns]
crawl csv

Here is the result of crawl_csv:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url crawl_depth craw

0 https://boundlesshg.com/ 1]
1 https://boundiessh Vwp-canter ds/oxyg 920.cs8 1
https://bat.bing ion/07i=14900i gtm002&Ver=2&mid=40c45240-b5a7-4d30-9cc3-
2 28fB%fc1e1654&sid=d7008f20086011 4 Tohvidee23f2 11ec9112856dedalibatvids=08gtm_tag_: 18&pi=208322081651g 1
US&sw=15128&sh=2828sc=3041=Blog%20-
%20BoL hitps $63A M 2F ¥ 2F n¥e2Fblog #2F Sr=8it=1347 &evi=pageLoaddmsclkid=MNasv=1&m=541225
3 hittps: J.comiwp- F 2022/06/touch-handy.png 1
4 https:ift J-com/wp-cor £ /oxygen/css/S983.css 1
5417 https:/fwww.convertcalculator.corm/_next/static/chunks/d a6446d46110f5.js 1
5418 https://static.cloudflareinsights. com/beacon.min.js 1
5419 https://fonts.gstatic com/s/inter/v12/UcCT3FwK3iLTeHUS_fvOtMwCp5S0KnMat ZLTWOQS5nw. woff2 1
5420 hitps:/fwww. rtcalculator.com/_t ic/dt_ps-wEsto6ZaMDrAxIf/_ssgManifest.js 1
5421 hitps:/fwww.convertcalculator.com/_next/static/chunks/webpack-abdbié124310705¢.js 1

5422 rows = 25 columns

The dataframe is loaded into a Pandas dataframe. The most important fields are as follows:

e url: To detect patterns for noindexing and canonicalizing

e ur: URL Rating, Sitebulb’s in-house metric for measuring internal page authority
e content_type: For filtering

e passes_pagerank: So we know which pages have authority

e indexable: Eligible for search engine index inclusion

Filtering in Web Pages
The next step is to filter in actual web pages that belong to the site and are capable of passing authority:

crawl html = crawl csv.copy ()
crawl html = crawl html.loc[crawl html['content type'] == 'HTML']
crawl html = crawl html.loc[crawl html['host'] == root domain]
crawl html = crawl html.loc[crawl html['passes pagerank'] == 'Yes']
crawl html
url crawl_depth crawl_status host is_subdomain scheme crawl_source
o hitpsz//boundlesshg.com/ o Success boundlesshg.com No https Crawler
6 https://boundiesshq.com/blog/ 1 Success boundlesshg.com No https Crawler https:/
7 https:// diassh f al 1 Success boundlesshg.com Mo https Crawler https
hittps://boundiessh blog/emp rorh)
28 Is-an-employer-of-record/ 1 Success boundlesshg.com No https Crawler hitps:f
47 hitps: diesshq fhow-it-works/’ 1 Success boundlesshg.com No https Crawler hitps:/
5354 hitpsi/bouw q. y/blog/page/3/ 4 Success boundlesshg.com No hitps Crawler https://boundlesshg.
5356 https:/bou q. gory/blog/page/2/ 4 Success boundlesshg.com No https Crawler hitps://boundlesshg.
5358 https://boundl q. gory/blog/pagedd/ 4 Success boundlesshg.com No https Crawlar https://boundlesshg.
B3T0 https:/boundi gory/blog/page/1/ 5 Aedirect boundlesshg.com No https Crawler https://boundlesshg.com/cat
5386 https://boundlesshg.comyul 1 port Mot Set Success boundlesshg.com No hitps XML Sitemap

309 rows x 25 columns

The dataframe has been reduced to 309 rows. For ease of data handling, we’ll select some columns:

crawl select = crawl html[['url"',
'http status_code', 'indexable',

'indexable status', 'passes pagerank', 'total impressions',
'first parent url', 'meta robots response']].copy ()

ur', 'crawl depth', 'crawl source',

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Examine the Distribution of Authority Before Optimization
It is useful for groupby aggregation and counting:

crawl select['project']

= client name
crawl select['count'] = 1

Let’s get some quick stats:

print (crawl select['ur'].sum(),
crawl select['ur'].sum()/crawl select.shape[0])

10993 35.57605177993528

URLSs on this site have an average page authority level (measured as UR). Let’s look at some further
stats, indexable and nonindexable pages. We'll dimension on (I) indexable and (II) passes pagerank to sum
the number of URLs and UR (URL Rating):

overall pagerank agg = crawl select.groupby (['indexable',
'passes pagerank']) .agg({'count':
'sum',
'ur':

'sum'}) .reset index()

Then we derive the page authority per URL by dividing the total UR by the total number of URLs:
overall pagerank agg['PA'] = overall pagerank agg['ur'] /
overall pagerank agg['count']

overall pagerank agg

This results in the following:

indexable passes_pagerank count ur PA
0 No Yes 32 929 29.03125
1 Yes Yes 277 10064 36.33213

We see that there are 32 nonindexable URLs with a total authority of 929 that could be consolidated to the
indexable URLs.
There are some more stats, this time analyzed by site level purely out of curiosity:

site pagerank agg = crawl select.groupby(['indexable',
'crawl depth']) .agg({'count':
'sum',
'ur':
'sum'}) .reset index()
site pagerank agg['PA'] = site pagerank agg['ur'] /
site pagerank agg['count']

site pagerank agg

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

indexable crawl_depth count ur PA

0 No 1 2 186 93.000000
1 No 2 1 20 20.000000
2 No 3 19 640 33.684211
3 No 4 9 73 8.111111
4 No 5 1 10 10.000000
5 Yes 0 1 95 95.000000
6 Yes 1 13 1127 86.692308
7 Yes 2 46 2052 44.608696
8 Yes 3 196 6470 33.010204
9 Yes 4 20 320 16.000000
10 Yes Not Set 1 0 0.000000

Most of the URLs that have the authority for reallocation are four clicks away from the home page.
Let’s visualize the distribution of the authority preoptimization, using the geom_histogram function:

pageauth dist plt = (

ggplot (crawl select, aes(x = 'ur')) +

geom_histogram(alpha = 0.7, fill = 'blue', bins = 20) +

labs(x = 'Page Authority', y = 'URL Count') +

theme (legend position = 'none', axis text x=element text (rotation=0,

hjust=1, size = 12))
)

pageauth dist plt.save(filename = 'images/l pageauth dist plt.png',
height=5, width=8, units = 'in', dpi=1000)
pageauth dist plt

As we’d expect from looking at the stats computed previously, most of the pages have between 25 and
50 UR, with the rest spread out (Figure 3-1).

>>>4f fi.jackgoogleseo.com# B & $ 2. $ fif<<<

75~

50 -

URL Count

25~

0 25 50 75 100

Page Authority
Figure 3-1. Histogram plot showing URL count of URL Page Authority scores

Calculating the New Distribution
With the current distribution examined, we’ll now go about quantifying the new page authority distribution
following optimization.

We'll start by getting a table of URLs by the first parent URL and the URL's UR values which will be our
mapping for how much extra authority is available:

parent pa map = crawl select[['first parent url', 'ur']].copy()
parent pa map = parent pa map.rename (columns = {'first parent url': 'url' ,
'ur': 'extra ur'})

parent pa map
This results in the following:

url extra_ur

0 None 95

6 https://boundlesshg.com/ 80

7 https://boundlesshqg.com/ 70

28 https://boundlesshg.com/ 88
47 https://boundlesshq.com/ 91
5354 https://boundlesshqg.com/category/blog/ 10
5356 https://boundlesshqg.com/category/blog/ 10
5358 https://boundlesshqg.com/category/blog/ 10
5370 https://boundlesshg.com/category/blog/page/2/ 10
5385 None 0

309 rows x 2 columns

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

The table shows all the parent URLs and their mapping.
The next step is to mark pages that will be noindexed, so we can reallocate their authority:

crawl optimised = crawl select.copy()

Create a list of URL patterns for noindex:

reallocate conds = [
crawl optimised['url'].str.contains('/page/[0-9]/"),
crawl optimised['url'].str.contains('/country/")

Values if the URL pattern conditions are met.
reallocate vals = [1, 1]

The reallocate column uses the np.select function to mark URLs for noindex. Any URLs not for noindex
are marked as “0,” using the default parameter:

crawl optimised['reallocate'] = np.select(reallocate conds, reallocate vals,
default = 0)

crawl optimised
This results in the following:

first_parent_url meta_robots_response project count reallocate

index, follow, max-
image-preview:large,
max-snippet:-1, max-
video-preview:-1

None Boundless 1 0

index, follow, max-
image-preview:large,
max-snippet:-1, max-
video-preview:-1

https://boundlesshg.com/ Boundless 1 0

index, follow, max-
image-preview:large,
max-snippet:-1, max-
video-preview:-1

https://boundlesshg.com/ Boundless 1 0

index, follow, max-
image-preview:large,
max-snippet:-1, max-
video-preview:-1

https://boundlesshg.com/ Boundless 1 0

index, follow, max-
image-preview:large,
max-snippet:-1, max-
video-preview:-1

https://boundlesshg.com/ Boundless 1 0

The reallocate column is added so we can start seeing the effect of the reallocation, that is, the potential
upside of technical optimization.
As usual, a groupby operation by reallocate and the average PA are calculated:

reallocate agg = crawl optimised.groupby ('reallocate').agg({'count': sum,
'ur': sum}).reset index()

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

reallocate agg['PA'] = reallocate agg['ur'] / reallocate agg['count']
reallocate agg

This results in the following:

reallocate count ur PA
0 0 285 10312 36.182456
| 1 24 681 28.375000

So we'll be actually reallocating 681 UR from the noindex URLSs to the 285 indexable URLs. These noindex
URLs have an average UR of 28.

We filter the URLs just for the ones that will be noindexed to help us in determining what the extra page
authority will be:

no_indexed = crawl optimised.loc[crawl optimised['reallocate'] == 1]

We aggregate by the first parent URL (the parent node) for the total URLs within and their URL, because
the URis likely to be reallocated to the remaining indexable URLs that share the same parent node:

no_indexed map = no_indexed.groupby ('first parent url').agg({'count': 'sum',
'ur': sum}).reset index()

add_ur is a new column created representing the additional authority as a result of the optimization.
This is the total UR divided by the number of URLs:

no_indexed map['add ur'] = (no_indexed map['ur'] /

no indexed map['count']) .round(0)

Drop columns not required for joining later:

no indexed map.drop(['ur', 'count'], inplace = True, axis = 1)
no_ indexed map

This results in the following:

first_parent_url add_ur

0 https://boundlesshg.com/category/blog/ 10.0
1 https://boundlesshq.com/category/blog/employment/ 2.0
2 https://boundlesshg.com/category/blog/employment/page/2/ 2.0
3 https://boundlesshqg.com/category/blog/page/2/ 10.0
4 https://boundlesshq.com/guides/australia/ 35.0
5 https://boundlesshqg.com/guides/brazil/ 38.0
6 https://boundlesshq.com/guides/canada/ 35.0
7 https://boundlesshqg.com/guides/chile/end-of-employment/ 31.0

The preceding table will be merged into the indexable URLs by the first parent URL.
Filter the URLs just for the indexable and add more authority as a result of the noindexing reallocate
URLs:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

crawl new
crawl new

crawl optimised.copy ()
crawl new.loc[crawl new['reallocate'] == 0]

Join the no_indexed_map to get the amount of authority to be added:

crawl new = crawl_new.merge(no_indexed_map, on = 'first_parent_url', how =
'left'")

Often, when joining data, there will be null values for first parent URLs not in the mapping. np.where() is
used to replace those null values with zeros. This enables further data manipulation to take place as you’ll
see shortly.

crawl new['add ur'] = np.where(crawl new['add ur'].isnull(), O,
crawl new['add ur'])

New_ur is the new authority score calculated by adding ur to add_ur:
crawl new['new ur'] = crawl new['ur'] + crawl new['add ur']
crawl new

This results in the following:

first_parent_url meta_robots_response project count reallocate add ur new_ur

index, follow, max-
image-preview:large,
max-snippet:-1, max-
video-preview:-1

None Boundless 1 0 0.0 95.0

index, follow, max-
image-preview:large,
max-snippet:-1, max-
video-preview:-1

https://boundlesshq.com/ Boundless 1 0 0.0 80.0

index, follow, max-
image-preview:large,
max-snippet:-1, max-
video-preview:-1

https://boundlesshg.com/ Boundless 1 0 0.0 70.0

index, follow, max-
image-preview:large,
max-snippet:-1, max-
video-preview:-1

https://boundlesshq.com/ Boundless 1 0 0.0 88.0

index, follow, max-
image-preview:large,
max-shippet:-1, max-
video-preview:-1

https://boundlesshq.com/ Boundless 1 0 0.0 91.0

The indexable URLs now have their authority scores post optimization, which we’ll visualize as follows:

pageauth newdist plt = (

ggplot (crawl new, aes(x = 'new ur')) +

geom histogram(alpha = 0.7, fill = 'lightgreen', bins = 20) +
labs(x = 'Page Authority', y = 'URL Count') +

theme (legend position = 'none', axis text x=element text (rotation=0,

hjust=1, size = 12))
)

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

pageauth newdist plt.save(filename = 'images/2 pageauth newdist plt.png’,
height=5, width=8, units = 'in', dpi=1000)
pageauth newdist plt

The pageauth_newdist_plt in Figure 3-2 shows the distribution of page-level authority (page authority).

60 -

40-

URL Count

20-

0 25 50 75 100
Page Authority

Figure 3-2 Histogram of the distribution of page-level authority (page authority)
The impact is noticeable, as we see most pages are above 60 UR post optimization, should the

implementation move forward.
There are some quick stats to confirm:

new pagerank agg = crawl new.groupby(['reallocate']).agg({'count': 'sum',
'ur': 'sum',
'new_ur':

'sum'}) .reset ex()

new pagerank agg['PA'] = new pagerank aggl['new ur'] /
new pagerank aggl['count']

print (new_pagerank agg)

reallocate count ur new_ur PA
0 0 285 10312 16209.0 57.0

The average page authority is now 57 vs. 36, which is a significant improvement. While this method is
not an exact science, it could help you to build a case for getting your change requests for technical SEO
fixes implemented.

Internal Link Optimization
Search engines are highly dependent on links in order to help determine the relative importance of pages
within a website. That’s because search engines work on the basis of assigning probability that content will
be found by users at random based on the random surfer concept. That is, a content is more likely to be
discovered if there are more links to the content.

If the content has more inbound links, then search engines also assume the content has more value,
having earned more links.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Search engines also rely on the anchor text to signal what the hyperlinked URL's content will be about
and therefore its relevance to keywords.

Thus, for SEOQ, internal links play a key role in website optimization, helping search engines decide which
pages on the site are important and their associated keywords.

Here, we shall provide methods to optimize internal links using some data science, which will cover

Distributing authority by site level

Distributing authority by external page authority accrued from external sites

Anchor text

import pandas as pd

import numpy as np

from textdistance import sorensen dice
from plotnine import *

import matplotlib.pyplot as plt

from mizani.formatters import comma format

target name = 'ON24'
target filename = 'on24'
website = 'www.on24.com'

The link data is sourced from the Sitebulb auditing software which is being imported along with making
the column names easier to work with:

link raw = pd.read csv('data/'+ client filename + ' links.csv')
link data = link raw.copy ()

link data.drop('Unnamed: 13', axis = 1, inplace = True)

link data.columns =

[col.lower () .replace('.',"'").replace('(',"") . .replace(")"',"'") .replace ('
]]])

r_

for col in link data.columns]

link data
referring_url referring_url_rank_ur target_url target_url_rank_ur anchor_text location crawl_status no
L] https:/www.on24.com/ 96 FHES W Coed ovauieeoLices ARt eblngh- 92 Fteg'lj‘;: Content Success
1 https:/fwww.on24.com/ a6 hitps:/fwww.on24.com/contact-us/ 96 Contactls Header Success
2 hittps:/www.on24,com/ a6 hitps:/iwww.on24.comlogin/ 100 Login Header Success
3 https:/fwww.on24.com/ 96 hitps:/fwww.on24, com/resources/ 96 Resources Header Success
4 https: fAwww.on24.com/ a6 https:fwaww.on24.com/live-demo/ a8 Live Dema Header Success
406022 https./f'www.on24.com/zapier/ o https:/fwww.on24.com/about-us/careers/ 96 GCareers Footer Success
406023 https.//'www.on24.com/zapier’ o hittpsa//www.on24.com/newsroom/ 98 In The News Footer Success
406024 https./fwww.on24.com/zapier/ o hittps:/fwww.on24.com/press-releases/ 96 Rel:a::: Footer Success
& X Contact
406025 https./fwww.on24.com/zapier 0 https:/fwww.on2d . com/contact-us/ 96 Salas Footer Success
406026 hittps://www,on24.com/zapler/ 0 hitpsi/fwww.on24.co,jp/ 0 w‘;:‘:; Footer Success

406027 rows x 13 columns

The link dataframe shows us a list of links in terms of

» Referring URL: Where they are found

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Target URL: Where they point to

Referring URL Rank UR: The page authority of the referring page
Target URL Rank UR: The page authority of the target page

e Anchor text: The words used in the hyperlink

e Location: Where the link can be found

Let’s import the crawl data, also sourced from Sitebulb:
crawl data = pd.read_csv('data/'+ client filename + ' crawl.csv')
crawl data.drop('Unnamed: 103', axis = 1, inplace = True)

crawl data.columns =

[col.lower () .replace('.',"").replace('(',"'") .replace(")"',"'"') .replace ("
| | |

')

for col in crawl data.columns]
crawl data

This results in the following:

url base url crawl_depth crawl_status host htip_protocol Is_subdomain no_query_string_keys «

[+] https:/fwww.on24.com! No Data 4] Success www.on24.com http/1.1 No [1]

https:/fwww.on24.com/customer-

1 stories/align-te... Mo Data 1 Mot Found www.on24.com http/1.1 No 0

2 https://www.on24 com/eontact-us/ No Data 1 Success www.on24.com hitp/1.1 No 13

3 hitps:/fwww.on24 comiresources/ No Data 1 Success Www.0n24.com httpi1.1 No 0

hitps:/fwww.on24.com/blog/how-

4 juniper- ks, Mo Data 1 Success www.on24.com http/1.1 Na 1]
8606 httpsifon2d.influitive.comisamifinitialize No Data Mot Set Redirect on24.influitive.com http/1.1 No 1]
8607 hitps:fwww.contenttechsummit.com/ No Data Not Set Redirect www.contenttechsummit.com httpi1.1 No a
8608 https://newsnetwork.mayeclinic.org/ No Data Mot Sat Sucecess newsnetwork.mayoclinic.ong http/1.1 No (1]
8609 https://www.eetimes.com/ No Data Mot Set Success www.eatimes.com http/1.1 No [1]
8610 hitp://ofiers.hubspot.com/mow-to- . oy, Not Set Redirect offers.hubspot.com hitp/1.1 No 0

Dromota-a-wor...

8611 rows » 104 columns

So we have the usual list of URLs and how they were found (crawl source) with other features spanning over
100 columns.

As you’d expect, the number of rows in the link data far exceeds the crawl dataframe as there are many
more links than pages!

Import the external inbound link data:

ahrefs raw = pd.read_csv('data/'+ client filename + ' ahrefs.csv')

ahrefs raw.columns =

[col.lower () .replace('.',"'").replace('(',""') . .replace(")"',"'") .replace ('
1 1 1)

r_

for col in ahrefs raw.columns]
ahrefs raw

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url_rating_desc page_url page_title referring_d. i dofoll I i first_seen size coi
Webinar
Software
; & Virtual 20/M12/2018 32
0 1 81 hittps:/fwww.on2d.com/ Event 3215 64144 18915 48 1702 k8 2
Platform |
On24
1 2 54 hitpy/www.on24.com/ NaN 856 4666 1017 175, SRS 182, oy
2 3 52 hitpss/vshow.on24.com/view/vis/emrorhtmi?cod. . Error 643 3455 280 0 72”2‘;225_%? kg 2
3 4 = https://on24.com/ NaN 668 46501 4628 0 ”"12?3%? o @
Deliver
Better
3 : Webcasts o4/n/201e 33
4 5 41 https:/fwww.on24.com/live-webcast-elite/ on ON24 208 173 363 1] 01557 kB 2
Webcast
Elite ...
210399 210400 0 hitps//www.on24.comiww19internal/ NaM 1 o] 10 o MaN o
210400 210401 0 https:/fwww.on24.com/youre-in/ NaM 1] 10 a NaMN 1
210401 210402 4] https://www-staging.on24.com/ Nah 1 2 o o NaN o
210402 210403 0 hitpe rtachuelo.xy t.on2d.com/... MNaM 1 5 o o NaM 1]
210403 210404 0 hitps://golearnership.co.zasvent.on24.com/even.., Nal i 22 v] o MNaN 0

210404 rows = 13 columns

There are over 210,000 URLs with backlinks, which is very nice! There’s quite a bit of data, so let’s simplify a
little by removing columns and renaming some columns so we can join the data later:

ahrefs df = ahrefs raw[['page url', 'url rating desc', 'referring domains']]

ahrefs df = ahrefs df.rename(columns = {'url rating desc': 'page authority',
'page _url': 'url'})
ahrefs df

This results in the following:

url page_authority referring_domains

0 https://www.on24.com/ 81 3215
1 http://www.on24.com/ 54 856
2 https://vshow.on24.com/view/vts/error.html?cod... 52 643
3 https://on24.com/ 43 668
4 https://www.on24.com/live-webcast-elite/ a1 208
210399 https://www.on24.com/ww19internal/ 0 1
210400 https://www.on24.com/youre-in/ 0 1
210401 https://www-staging.on24.com/ 0 1
210402 http://acueductoportachuelo.xyzevent.on24.com/... 0 1
210403 https://golearnership.co.zaevent.on24.com/even... 0 1

210404 rows x 3 columns

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Now we have the data in its simplified form which is important because we’re not interested in the detail of
the links but rather the estimated page-level authority that they import into the target website.

By Site Level

With the data imported and cleaned, the analysis can now commence.
We’re always curious to see how many URLs we have at different site levels. We’ll achieve this with a
quick groupby aggregation function:

redir live urls.groupby(['crawl depth']).size()
This results in the following:

crawl depth

0 1
1 70
10 5
11 1
12 1
13 2
14 1
2 303
3 378
4 347
5 253
6 194
7 96
8 33
9 19
Not Set 2351

dtype: int64

We can see how Python is treating the crawl depth as a string character rather than a numbered
category, which we can fix shortly.

Most of the site URLs can be found in the site depths of 2 to 6. There are over 2351 orphaned URLs,
which means these won’t inherit any authority unless they have backlinks.

We’ll now filter for redirected and live links:

redir live urls = crawl data[['url', 'crawl depth', 'http status code',
'indexable', 'no _internal links to url', 'host', 'title']]

The dataframe is filtered to include URLs that are indexable:

redir live urls = redir live urls =
redir live urls.loc[redir live urls['indexable'] == 'Yes']

Crawl depth is set as a category and ordered so that Python treats the column variable as a number as
opposed to a string character type:

redir live urls['crawl depth'])

redir live urls['crawl depth']

redir live urls['crawl depth'].astype('category')
]
]

redir live urls['crawl depth'] =
redir live urls['crawl depth'
141,
151, 161, 171, 181, 191,
'10', 'Not Set'
1)

redir live urls = redir live urls.loc[redir live urls.host == website]

.cat.reorder categories(['0', '1', '2', '3',

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

redir live urls.drop('host',

redir live u

rls

This results in the following:

axis

1,

inplace = True)

url crawl_depth http_status_code indexable indexable_status no_internal_links_to_url title

Webinar Software &

(1] https:/fwww.on24.com/ o 200 Yes Indexable 4139 Virtual Event Platform |

ON24

Contact Us | Global

2 hitps://www.on24.com/contact-us/ 1 200 Yes Indexable 11189 Office Locations | ON24

Te...

Webinar, White Paper,

3 hitps:/f/www.on24.com/resources’ 1 200 Yes Indexable 11155 and Video Resources |

ON24

. _ How Juniper Networks

4 Fetpees e S e DI GO i 1 200 Yes Indexable 17 SetUp a Global Virtual
natworks... s,

Platform far

6 https:fwww.on24 com/solutions/manufacturing/ 1 200 Yes Indexable 7414 Manufacturing Industry |

Oon24

Shell expands global

6949 https://www.on24.com/customer-stories/sheli-ex... Not Set 200 Yas Indexabla i | brand awareness and

drive...

6950 hitpsy/www.on24.com/blog/category/featurs-fri... Not Set 200 Yes Indexable g, | PRERETHON “dg:;J

6951 hitpsy/www.on24.com/blog/use_cases/certificat... Not Set 200 Yes Indexable g, Cerification "do’";;l

Agilent Optimizes its

6955 https://www.on24 com/custormer-stories/agilent-.. Not Set 200 Yes Indexable 1 Global Digital

Marketing...

6956 hitps://www.on24.com/bloghtypes/beginner/ Not Set 200 Yes Indexable 0 e,

3483 rows x 7 columns

Let’s look at the number of URLs by site level.

redir live urls.groupby (['crawl depth']) .size()

crawl depth

O oo JoyUld WNE O

10
Not Set 2
dtype: intoc4

66
169
280
253
201
122

64

17

6
1
303

Note how the size has dropped slightly to 2303 URLSs. The 48 nonindexable URLs were probably

paginated pages.

Let’s visualize the distribution:

from plotnine import *
import matplotlib.pyplot as plt

pd.set option('display.max colwidth', None)

gmatplotlib inline

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

Distribution of internal links to URL by site level

ove intlink dist plt = (ggplot(redir live urls, aes(x =
'no_internal links to url')) +
geom_histogram(fill = 'blue', alpha = 0.6, bins = 7) +
labs(y = '"# Internal Links to URL') +
theme classic() +
theme (legend position = 'none')

)

ove intlink dist plt.save(filename =
'"images/1l overall intlink dist plt.png',

height=5, width=5, units = 'in', dpi=1000)
ove intlink dist plt

The plot ove_intlink_dist_plt in Figure 3-3 is a histogram of the number of internal links to a URL.

3000 4

2000 4

1000 4

Internal Links to URL

04 — —

5000 10000 15000
no_internal_links_to_url

o

Figure 3-3 Histogram of the number of internal links to a URL

The distribution is negatively skewed such that most pages have close to zero links. This would be of
some concern to an SEO manager.

While the overall distribution gives one view, it would be good to deep dive into the distribution of
internal links by crawl depth:

redir live urls.groupby('crawl depth').agg({'no internal links to url':
['describe']}) .sort values('crawl depth')

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

no_internal_links_to_url

describe
count mean std min 25% 50% 75% max
crawl_depth
0 1.0 4139.000000 NaN 4139.0 4139.00 4139.0 4139.0 4139.0
1 66.0 4808.257576 3507.312178 1.0 3713.00 3732.0 74425 18625.0
2 169.0 141.792899 640.547774 0.0 2.00 5.0 8.0 3720.0
3 280.0 3.928571 7.953397 0.0 1.00 2.0 4.0 82.0
4 253.0 2.754941 1.934243 0.0 2.00 2.0 4.0 15.0
5 201.0 2.477612 1.389513 0.0 2.00 2.0 3.0 10.0
6 122.0 2.319672 0.911509 0.0 2.00 2.0 3.0 5.0
7 64.0 1.984375 0.745190 0.0 2.00 2.0 2.0 4.0
8 17.0 1.882353 0.696631 0.0 2.00 2.0 2.0 3.0
9 6.0 1.500000 0.836660 0.0 1.25 2.0 2.0 2.0
10 1.0 2.000000 NaN 2.0 2.00 2.0 2.0 2.0

Not Set 2303.0 0.067304 0.489049 0.0 0.00 0.0 0.0 11.0

The table describes the distribution of internal links by crawl depth or site level. Any URL that is 3+ clicks
away from the home page can expect two internal links on average. This is probably the blog content as the
marketing team produces a lot of it.

To visualize it graphically

from plotnine import *

import matplotlib.pyplot as plt

pd.set option('display.max colwidth', None)
smatplotlib inline

intlink dist plt = (ggplot(redir live urls, aes(x = 'crawl depth', y =
'no_internal links to url')) +
geom boxplot (fill = 'blue', alpha = 0.8) +
labs(y = '# Internal Links to URL', x = 'Site Level') +
theme classic() +
theme (legend position = 'none')
)
intlink dist plt.save(filename = 'images/l intlink dist plt.png', height=5,
width=5, units = 'in', dpi=1000)

intlink dist plt

The plot intlink_dist_plt in Figure 3-4 is a histogram of the number of internal links to a URL by site level.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

]

15000 1
il
o
=
o
e
(Vg
v
£ 10000 4
=l
©
=
_
[F]
+—
=
#5000 -

®
3
0 - e P e P P P o —

0 1 2 3 4 5 6 7 8 9 10NotSet
Site Level

Figure 3-4 Box plot distributions of the number of internal links to a URL by site level

As suspected, the most variation is in the first level directly below the home page, with very little
variation beyond.

However, we can compare the variation between site levels for content in level 2 and beyond. For a quick
peek, we'll use a logarithmic scale for the number of internal links to a URL:

from mizani.formatters import comma format

intlink dist plt = (ggplot(redir live urls, aes(x = 'crawl depth', y =
'no_internal links to url')) +

geom boxplot (fill = 'blue', alpha = 0.8) +

labs(y = '"# Internal Links to URL', x = 'Site Level') +

scale y loglO(labels = comma format()) +

theme classic() +

theme (legend position = 'none')

)
intlink dist plt.save(filename = 'images/l_log_intlink_dist_plt.png',
height=5, width=5, units = 'in', dpi=1000)

intlink dist plt

The picture is clearer and more insightful, as we can see how much better and varied the distribution of
the lower site levels compared to each other (Figure 3-5).

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

10,000 4 ‘
i L]

=

X 1,000+ :

o

=

w

Y4

3 .

= 100 4 $.

, O

_

y e 3

= H s

s
1

10 (]

:

| i

0 1 2 3 4 5 6 7 8 9 10NotSet
Site Level

Figure 3-5 Box plot distribution of the number of internal links by site level with logarized vertical axis

For example, it’s much more obvious that the median number of inbound internal links for pages on site
level 2 is much higher than the lower levels.

It’s also very obvious that the variation in internal inbound links for pages in site levels 3 and 4 is higher
than those in levels 5 and 6.

Remember though the preceding example was achieved using a log scale of the same input variable.

What we’ve learned here is that having a new variable which is taking a log of the internal links would
yield a more helpful picture to compare levels from 2 to 10.

We’ll achieve this by creating a new column variable “log_intlinks” which is a log of the internal link
count. To avoid negative infinity values from taking a log of zero, we’ll add 0.01 to the calculation:

redir live urls['log intlinks'] =
np.log2(redir live urls['no internal links to url'] + .01)

Now we'll plot using the new logarized variable:

intlink dist plt = (ggplot(redir live urls, aes(x = 'crawl depth', y =
'log intlinks')) +

geom boxplot (fill = 'blue', alpha = 0.8) +

labs(y = '# Log Internal Links to URL', x = 'Site
Level') +

theme classic() +

theme (legend position = 'none')

)
intlink dist plt.save(filename = 'images/lc loglinks dist plt.png',
height=5, width=5, units = 'in', dpi=1000)

intlink dist plt

The intlink_dist_plt plot (Figure 3-6) is quite similar to the logarized scale, only this time the numbers
are easier to read because we’re using normal scales for the vertical axis. The comparative averages and

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

variations are easier to compare.

154
—& ®

l':_‘:]10- :
)
2
v]
=
- l
— ®
g ®]
[L
@ ! @ °
-E k1 ® :
o 0 [] ® @ ®] .-I ®
(@]
—
+H

-5

® @ @ @ ® @ @ ® e

0 1 2 3 4 5 6 7 8 9 10NotSet
Site Level

Figure 3-6 Box plot distributions of logarized internal links by site level

Site-Level URLs That Are Underlinked

Now that we know the lay of the land in terms of what the distributions look like at the site depth level,
we're ready to start digging deeper and see how many URLs are underlinked per site level.

For example, if the 35th percentile number of internal links to a URL is 10 for URLs at a given site level,
how many URLs are below that percentile?

That’s what we aim to find out. Why 35th and not 25th? It doesn’t really matter, a low cutoff point just
needs to be picked as the cutoff is arbitrary.

The first step is to calculate the averages of internal links for both nonlog and log versions, which will be
joined onto the main dataframe later:

intlink dist =
redir live urls.groupby('crawl depth').agg({'no _internal links to url':
['mean'],
'log intlinks':

['mean']

}) .reset index()
intlink dist.columns = [' '.join(col) for col in
intlink dist.columns.values]
intlink dist = intlink dist.rename (columns =
{'no_internal links to url mean': 'avg int links',

'log intlinks mean':
'logavg_int links',
})

intlink dist

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

crawl_depth_ avg_int_links logavg_int_links

0 0 4139.000000 12.015070
1 1 4808.257576 10.481776
2 2 141.792899 2.081835
3 3 3.928571 0.907680
4 4 2.754941 0.822429
5 5 2477612 0.789220
6 6 2.319672 0.843477
7 7 1.984375 0.558034
8 8 1.882353 0.508866
9 9 1.500000 -0.433453
10 10 2.000000 1.007196
11 Not Set 0.067304 -6.396314

The averages are in place by site level. Notice how the log column helps make the range of values between
crawl depths less extreme and skewed, that is, 4239 to 0.06 for the average vs. 12 to -6.39 for the log
average, which makes it easier to normalize the data.

Now we'll set the lower quantile at 35% for all site levels. This will use a customer function
quantile_lower:

def quantile lower (x):
return x.quantile (.35) .round(0)

quantiled intlinks = redir live urls.groupby('crawl depth').agg({'log intlinks
[quantile lov
quantiled intlinks.columns = [' '.join(col) for col in quantiled intlinks.colt
quantiled intlinks = quantiled intlinks.rename (columns = {'crawl depth ': 'cre
'log intlinks quant:
'sd intlink lowqua'})
quantiled intlinks

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

crawl_depth sd_intlink_lowqua

(=]

0 12.0

-

1 12.0

n

2.0
1.0
1.0
1.0
1.0
1.0

1.0

© 0 N o a0 2 O N

1.0

O © W ~N O U A w

—
o
—

1.0

11 Not Set -7.0

The lower quantile stats are set. Quartiles are limited to the 25th percentile, whereas a quantile means the
lower limits can be set to any number, such as 11th, 18th, 24th, etc., which is why we use quantiles instead
of quartiles. The next steps are to join the data to the main dataframe, then we’ll apply a function to mark
URLSs that are underlinked for their given site level:

redir live urls underidx = redir live urls.merge (quantiled intlinks, on =
'crawl depth', how = 'left')

The following function assesses whether the URL has less links than the lower quantile. If yes, then the
value of “sd_int_uidx” is 1, otherwise 0:

def sd intlinkscount underover (row) :

if row(['sd intlink lowqua'] > row['log intlinks']:
val = 1

else:
val = 0

return val

redir live urls underidx['sd int uidx'] =
redir live urls underidx.apply(sd intlinkscount underover, axis=1)

There’s some code to account for “Not Set” which are effectively orphaned URLs. In this instance, we set
these to 1 - meaning they’re underlinked:

redir live urls underidx['sd int uidx'] = np.where(redir live urls underidx['c
== 'Not Set', 1,
redir live urls underidx['s

redir live urls underidx

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

url crawl_depth hitp_status_code indexable indexable_status no_internal_links_to_url title log_intlinks sd_intlink_lowqua sd_int_uidx

Webinar
Software &
ttps:fiwww.on24.com/ o 200 Yes Indexable 4139 Virtual Event 12.015070 12.0 4]
Platform |
OnN24

Contact Us |
Global Office
on24.comfecontact-us/ i 200 Yas Indexable 11189 Locations | 13.449795 12.0 4]
ON24 Tearns |
Ohz24

Webinar,
White Paper,
ton2d.com/resources/ 1 200 Yes Indexable 11185 and Video 13.445404 12.0 o
Resources |
ON24

How Juniper

Networks Set

Iow-juniper-networks- Up a Global
-global-virtual-summit’ 1 200 Yoo Indexable 17 Virtual
Summit |

ON24 Blog

4.088311 12.0 1

Platform for
Manufacturing
Industry |
ON24

lutions/manufacturing/ 1 200 Yes Indexable 7414 12.856038 12.0 0

The dataframe shows that the column is in place marking underlinked URLs as 1. With the URLs marked,
we'’re ready to get an overview of how under-linked the URLs are, which will be achieved by aggregating by
crawl depth and summing the total number of underlinked URLSs:

intlinks agged =
redir live urls underidx.groupby ('crawl depth').agg({'sd int uidx': ['sum',

'count']}) .reset index()

The following line tidies up the column names by inserting an underscore using a list comprehension:

intlinks agged.columns = [' '.join(col) for col in
intlinks agged.columns.values]
intlinks agged = intlinks agged.rename (columns = {'crawl depth ':

'crawl depth'})
To get a proportion (or percentage), we divide the sum by the count and multiply by 100:

intlinks agged['sd uidx prop'] = (intlinks agged.sd int uidx sum) /
intlinks agged.sd int uidx count * 100

print (intlinks agged)
This results in the following:

crawl depth sd int uidx sum sd int uidx count sd uidx prop

0 0 0 1 0.000000
1 1 38 66 57.575758
2 2 67 169 39.644970
3 3 75 280 26.785714
4 4 57 253 22.529644
5 5 31 201 15.422886
6 6 9 122 7.377049
7 7 9 64 14.062500
8 8 3 17 17.647059
9 9 2 6 33.333333
10 10 0 1 0.000000
11 Not Set 2303 2303 100.000000

So even though the content in levels 1 and 2 have more links than any of the lower levels, they have a
higher proportion of underlinked URLs than any other site level (apart from the orphans in Not Set of

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

course).
For example, 57% of pages just below the home page are underlinked.
Let’s visualize:

plot the table

depth uidx plt = (ggplot (intlinks agged, aes(x = 'crawl depth', y =
'sd int uidx sum')) +
geom bar (stat = 'identity', fill = 'blue', alpha = 0.8)
+
labs(y = '# Under Linked URLs', x = 'Site Level') +
scale y loglO() +
theme classic() +
theme (legend position = 'none')
)
depth uidx plt.save(filename = 'images/l depth uidx plt.png', height=5,
width=5, units = 'in', dpi=1000)

depth uidx plt

It’s good to visualize using depth_uidx_plt because we can also see (Figure 3-7) thatlevels 2, 3, and 4
have the most underlinked URLs by volume.

10004

1004

0 1 2 3 4 5 6 7 8 9

Site Level

Under Linked URLs

-

10Not Set

Figure 3-7 Column chart of the number of internally under-linked URLSs by site level

Let’s plot the intlinks_agged table:

depth uidx prop plt = (ggplot(intlinks agged, aes(x = 'crawl depth', y =
'sd uidx prop')) +

geom bar (stat = 'identity', fill = 'blue', alpha = 0.8)
+

labs(y = '$ URLs Under Linked', x = 'Site Level') +

theme classic() +

theme (legend position = 'none')

)
depth uidx prop plt.save(filename = 'images/l depth uidx prop plt.png',
height=5, width=5, units = 'in', dpi=1000)

depth uidx prop plt

>>>4f fi.jackgoogleseo.com# B & $ 2. $ fif<<<

Plotting depth_uidx_prop_plt (Figure 3-8), we see it just so happens that although level 1 has a lower
volume, the proportion is higher. Intuitively, this is indicative of too many pages being linked from the home
page but unequally.

100 4
754

50 -

25- III I ‘
0] II..I

0 1 2 3 4 5 6 7 8 9 10NotSet
Site Level

Figure 3-8 Column chart of the proportion of under internally linked URLs by site level

% URLs Under Linked

It’s not a given that URLs in the site level that are underlinked are a problem or perhaps more so by
design. However, they are worth reviewing as perhaps they should be at that site level or they do deserve
more internal links after all.

The following code exports the underlinked URLs to a CSV which can be viewed in Microsoft Excel:

underlinked urls =

redir live urls underidx.loc[redir live urls underidx.sd int uidx == 1]
underlinked urls = underlinked urls.sort values(['crawl depth',
'no_internal links to url'])

underlinked urls.to csv('exports/underlinked urls.csv')

By Page Authority
Inbound links from external websites are a source of PageRank or;, if we're going to be search engine neutral
about it, page authority.

Given that not all pages earn inbound links, it is normally desired by SEOs to have pages without
backlinks crawled more often. So it would make sense to analyze and explore opportunities to redistribute
this PageRank to other pages within the website.

We'll start by tacking on the AHREFs data to the main dataframe so we can see internal links by page
authority.

intlinks pageauth = redir live urls underidx.merge (ahrefs df, on = 'url',
how = 'left'")
intlinks pageauth.head()

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

url crawl_depth http_status_code inch

status no_

I_links_to_url

title log_intlinks page_authority referring_domains

https:/fwww.on24.com’

wffwww.on2d.com/contact-us’

wi/fwww.on24 . comiresources

w.on24_com/blog/how-juniper-
et-up-a-global-virtual-surnmit/

_com/solutions/manufacturing’

We now have page authority and referring domains at the URL level. Predictably, the home page has a lot of

200

200

200

200

200

Indexable

Indexable

Indexable

Indexable

Indexable

4138

11188

11155

7414

Webinar
Software &
Virtual Event
Platform |
Onz4

Contact Us |
Globa! Office
Locations |
OM24 Tearns |
OM24

Webinar,
White Paper,
and Video
Resources |
24

How Juniper
Metworks Set
Up a Global

Virtual
Summit |

OnNz4

Blog

Flatform for
Manufacturing
Industry |
ON24

referring domains (over 3000) and the most page-level authority at 81.
As usual, we'll perform some aggregations and explore the distribution of the PageRank
(interchangeable with page authority).
First, we'll clean up the data to make sure we replace null values with zero:

intlinks pageauth['page authority'] =

np.where (intlinks pageauth['page authority'].isnull(),

intlinks pageauth['page authority'])

Aggregate by page authority:

intlinks pageauth.groupby ('page authority').agg({'no internal links to url':

['describe']l})

This results in the following:

no_internal_links_to_url

0,

12.015070

13.449795

13.445404

4.088311

12.856038

1.0

28.0

13.0

17.0

3215.0

42.0

7.0

describe
count mean std min 25% 50% 75% max
page_authority

0.0 1320.0 0.034848 0.240667 0.0 0.0 0.0 0.00 3.0
13.0 1077.0 7.839369 120.726053 0.0 0.0 2.0 3.00 3698.0
14.0 148.0 79.763514 524.905542 0.0 0.0 2.0 3.00 3720.0
15.0 725.0 13.477241 200.634714 0.0 0.0 0.0 0.00 3716.0
16.0 67.0 336.134328 1250.082093 0.0 0.0 2.0 5.00 7413.0
17.0 38.0 1082.684211 2095.249390 0.0 2.0 5.0 110.25 7414.0
18.0 22.0 1015.090909 2604.950231 0.0 2.0 3.0 6.75 7436.0
19.0 22.0 510.090908 1304.569147 0.0 2.0 3.5 8.00 3733.0
20.0 15.0 1735.666667 3093.162267 0.0 1.0 40 1877.00 7429.0

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

The preceding table shows the distribution of internal links by different levels of page authority.
At the lower levels, most URLs have around two internal links.
A graph will give us the full picture:

distribution of page authority

page_ authority dist plt = (ggplot (intlinks pageauth, aes(x =
'page_authority')) +
geom_histogram(fill = 'blue', alpha = 0.6, bins = 30
labs(y = '"# URLs', x = 'Page Authority') +
#scale y loglO() +
theme classic() +
theme (legend position = 'none')

)

page authority dist plt.save(filename =
'"images/2 page authority dist plt.png',
height=5, width=5, units = 'in', dpi=1000)

page authority dist plt

The distribution, shown in page_authority_dist_plt (Figure 3-9), is heavily negatively skewed when

plotting the raw numbers. Most of the site URLs have a PageRank of 15, of which the number of URLs with

higher authority shrinks dramatically. A very high number of URLs have no authority, because they are
orphaned.

20004

1500 4

10004

URLs

500 A

T T T T

0 20 40 60 80
Page Authority

Figure 3-9 Distribution of URLs by page authority
Using the log scale, we can see how the higher levels of authority compare:

distribution of page authority

page authority dist plt = (ggplot (intlinks pageauth, aes(x =
'page_authority')) +
geom_ histogram(fill = 'blue', alpha = 0.6, bins = 30
labs(y = '"# URLs (Log)', x = 'Page Authority') +

scale y 1loglO() +

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

theme classic() +
theme (legend position = 'none')

)

page authority dist plt.save(filename =
'images/2 page authority dist log plt.png',
height=5, width=5, units = 'in', dpi=1000)

page authority dist plt

Suddenly, the view shown by page_authority_dist_plt (Figure 3-10) is more interesting because as
authority increases by an increment of one, there are ten times less URLs than before - a pretty harsh

distribution of PageRank.

1000 A

100 -

101
¥ T T T

0 20 40 60 80
Page Authority

URLs (Log)

Figure 3-10 Distribution plot of URLs by logarized scale

]

Given this more insightful view, taking a log of “page_authority” to form a new column variable “log_pa’
is justified:

intlinks pageauth['page authority'] =

np.where (intlinks pageauth|['page authority']l == 0, .1,
intlinks pageauth['page authority'])
intlinks pageauth['log pa'] = np.log2(intlinks pageauth.page authority)

intlinks pageauth.head()

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url crawl_depth hitp_status code indexable status no_internal_links _to_url title log_intlinks page_authority referring_domains log_pa

Webinar
Software &
wfiwww.on24.com/ a 200 Indexable 4139 Mirtual Event 12.015070 B1.0 3215.0 £.339850
Platform |
ON24

Contact Us |
Global Office
4. com/contact-us/ 1 200 Indexable 11188 Locations | 13.449785 380 55.0 b5.168925
ON24 Teams |
ONZ24

Webinar,
White Paper,
24, com/resources/ 1 200 Indexable 11155 and Video 13.445404 28.0 420 4807355
Resources |
ON24

How Juniper
Metworks Set
Up a Global
Virtual

hlog/how-juniper-

pakvirtual-summit/ 1 200 Indexable 17

4.088311 130 1.0 3700440

Summit |
ON24 Blag

Platform for
Manufacturing
Indlustry |
ONZ4

ins/manufacturing/ 1 200 Indexable 7414 12.856038 17.0 7.0 4.087483

The log_pa column is in place; let’s visualize:

page authority trans dist plt = (ggplot (intlinks pageauth, aes(x =

'log pa')) +
geom_histogram(fill = 'blue', alpha = 0.6, bins = 30) +
labs(y = '"# URLs (Log)', x = 'Log Page Authority') +
scale y loglO() +
theme classic() +
theme (legend position = 'none')

)

page authority trans dist plt.save(filename =
'images/2 page authority trans dist plt.png',

height=5, width=5, units = 'in', dpi=1000)
page authority trans dist plt

Taking a log has compressed the range of PageRank, as shown by page_authority_trans_dist_plt (Figure
3-11), by making it less extreme as the home page has a log_pa value of 6, bringing it closer to the rest of the
site.

>>>if fijackgoogleseo.com# M & 3 2. hik<<<

1000 4

1004

URLs (Log)

10 1

-2 0 2 4 6
Log Page Authority

Figure 3-11 Distribution of URLs by log page authority
The decimal points will be rounded to make the 3000+ URLs easier to categorize:
intlinks pageauth['pa band'] = intlinks pageauth['log pa'].apply(np.floor)

display updated DataFrame
intlinks pageauth

wi_depth hitp_status code indexable indexable_status no_internal _links to_url title log_intlinks page_authority referring_domains log_pa pa_band

Webinar
Software &
o 200 Yos Indexable 4138 Virtual Event 12.015070 81.0 32150 6.339850 6.0
Platform |
ONz4

Contact Us |
Global Office
1 200 Yes Indexable 11189 Locations | 13.449795 36.0 55.0 5.188925 50
ONZ4 Teams |
ON24

Webinar,
White Paper,
1 200 Yes Indexable 11155 and Video 13.445404 28.0 420 4807355 40
Resources |
ON24

How Juniper

Networks Set

1 200 Yes Indexable 17 Upa?ﬂ'ﬁﬂi 4.088311 13.0 10 3.700440 3.0

Summit |
OM24 Blog

Platform for

1 200 Yes Indexable 7414 “"“"l’m’lm 12.856038 17.0 7.0 4087463 40
ON24

Page Authority URLs That Are Underlinked
With the URLs categorized into PA bands, we want to see if they have less internal links for their authority
level than they should. We’ve set the threshold at 40% so that any URL that has less internal links for their
level of PA will be counted as underlinked.

The choice of 40% is not terribly important at this stage as each website (or market even) is different.
There are more scientific ways of arriving at the optimal threshold, such as analyzing top-ranking

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

competitors for a search space; however, for now we'll choose 40% as our threshold.

def quantile lower (x):
return x.quantile (.4) .round(0)

quantiled pageau = intlinks pageauth.groupby('pa band') .agg({'no_internal linl

[quantile lower]}) .reset index()

quantiled pageau.columns = [' '.join(col) for col in quantiled pageau.columns.

quantiled pageau = quantiled pageau.rename (columns = {'pa band ': 'pa band',
'no_internal links to u

'pa_intlink lowqua'}l)

quantiled pageau

This results in the following:

pa_band pa_intlink_lowqua

0 -4.0 0.0
1 3.0 0.0
2 4.0 3.0
3 5.0 7446.0
4 6.0 4139.0

Going by PageRank, we now have the minimum threshold of inbound internal links we would expect. Time
to join the data and mark the URLs that are underlinked for their authority level:

intlinks pageauth underidx = intlinks pageauth.merge (quantiled pageau, on =
'pa band', how = 'left')
def pa intlinkscount underover (row) :
if row['pa intlink lowqua'] > row['no internal links to url']:
val = 1
else:
val = 0

return val

intlinks pageauth underidx['pa int uidx'] =
intlinks pageauth underidx.apply(pa_ intlinkscount underover, axis=1l)

This function will allow us to make some aggregations to see how many URLs there are at each
PageRank band and how many are under-linked:

pageauth agged =

intlinks pageauth underidx.groupby('pa band').agg({'pa int uidx': ['sum',
'count']}) .reset index()
pageauth agged.columns = [' '.join(col) for col in

pageauth agged.columns.values]

pageauth agged['uidx prop'] = pageauth agged.pa int uidx sum /
pageauth agged.pa int uidx count * 100

print (pageauth agged)
This results in the following:

pa_band pa int uidx sum pa int uidx count wuidx prop

>>>4f fi.jackgoogleseo.com# B & $ 2. $ fif<<<

0 -4.0 0 1320 0.000000
1 3.0 0 1950 0.000000
2 4.0 77 203 37.931034
3 5.0 4 9 44.444444
4 6.0 0 1 0.000000

Most of the underlinked content appears to be those that have the highest page authority, which is
slightly contrary to what the site-level approach suggests (that pages lower down are underlinked). That’s
assuming most of the high authority pages are closer to the home page.

What is the right answer? It depends on what we’re trying to achieve. Let’s continue with more analysis
for now and visualize the authority stats:

distribution of page authority
pageauth agged plt =
(ggplot (intlinks pageauth underidx.loc[intlinks pageauth underidx['pa int uid:

== 1,

aes(x = 'pa band')) +

geom_histogram(fill = 'blue', alpha = 0.6, bins = 10) +

labs(y = '# URLs Under Linked', x = 'Page Authority Level'
+

theme classic() +

theme (legend position = 'none')

)
pageauth agged plt.save(filename = 'images/2 pageauth agged hist.png',

height=5, width=5, units = 'in', dpi=1000)

pageauth agged plt

We see in pageauth_agged_plt (Figure 3-12) that there are almost 80 URLs underlinked at PageRank
level 4 and a few at PageRank level 5. This is quite an abstract concept admittedly.

80 4

60 4

40 -

URLs Under Linked

20 4

3.9 4.2 4.5 4.8 5.1
Page Authority Level

Figure 3-12 Distribution of under internally linked URLSs by page authority level

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Content Type

Perhaps it would be more useful to visualize this by content type just by a “quick and dirty” analysis using
the first subdirectory:

intlinks content underidx = intlinks depthauth underidx.copy ()

To get the first subfolder, we’ll define a function that allows the operation to continue in case of a fail
(which would happen for the home page URL because there is no subfolder). The k parameter specifies the
number of slashes in the URL to find the desired folder and parse the subdirectory name:

def get folder (fp, k=3):
try:
return os.path.split (fp) [0].split (os.sep) [k]
except:
return 'home'

intlinks content underidx(['content'] =
intlinks content underidx['url'].apply(lambda x: get folder(x))

Inspect the distribution of links by subfolder:

intlinks content underidx.groupby('content').agg({'no internal links to url':
['describe']})

This results in the following:

no_internal_links_to_url
describe
count mean std min 25% 50% 75% max

content

about-us 6.0 6203.000000 1921.783443 3713.0 4658.50 7442.0 7443.75 7446.0

accelerate-pipeline-on24 1.0 3.000000 NaN 3.0 3.00 3.0 3.00 3.0
accessibility 1.0 0.000000 NaN 0.0 0.00 0.0 0.00 0.0

act-on 1.0 0.000000 NaN 0.0 0.00 0.0 0.00 0.0

add-on-services 1.0 0.000000 NaN 0.0 0.00 0.0 0.00 0.0
webinarworidondemand-london 1.0 0.000000 NaN 0.0 0.00 0.0 0.00 0.0
webinarworldondemand-sydney 1.0 0.000000 NaN 0.0 0.00 0.0 0.00 0.0

webinerd-community 14.0 3.928571 3.452185 0.0 2.00 3.5 5.75 11.0
webinerd-education 2.0 7.500000 10.606602 0.0 3.75 T.D 11.25 15.0

zapier 1.0 0.000000 NaN 0.0 0.00 0.0 0.00 0.0
183 rows x 8 columns

Wow, 183 subfolders! That’s way too much for categorical analysis. We could break it down and aggregate it
into fewer categories using the ngram techniques described in Chapter 9; feel free to try.

In any case, it looks like the site architecture is too flat and could be better structured to be more
hierarchical, that is, more pyramid like.

Also, many of the content folders only have one inbound internal link, so even without the benefit of data
science, it’s obvious these require SEO attention.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Combining Site Level and Page Authority

Perhaps it would be more useful to visualize by combining site level and page authority?

intlinks depthauth underidx = intlinks pageauth underidx.copy ()
intlinks depthauth underidx['depthauth uidx'] = np.where((intlinks depthauth 1

intlinks depthauth ur
'"'"intlinks depthauth underidx|['depthauth uidx'] =

np.where ((intlinks depthauth underidx['sd int uidx'] == 1) &
(intlinks depthauth 1

==1), 1,)"’

depthauth uidx = intlinks depthauth underidx.groupby(['crawl depth',
'pa_band']) .agg({'depthauth uidx': 'sum'}).reset index()

depthauth urls = intlinks depthauth underidx.groupby(['crawl depth', 'pa band'

'count'}) .reset index()

depthauth stats = depthauth uidx.merge (depthauth urls,

on = ['crawl depth', 'pa banc
depthauth stats['depthauth uidx prop'] = (depthauth stats['depthauth uidx'] /
depthauth stats['url']).round(2)
depthauth stats.sort values('depthauth uidx', ascending = False)

This results in the following:

crawl_depth pa_band depthauth_uidx url depthauth_uidx_prop

57 Not Set 4.0 42 44 0.95
12 2 4.0 7 50 0.14
17 3 4.0 5 24 0.21
22 4 4.0 4 18 0.22
27 5 4.0 2 12 0.17
58 Not Set 5.0 1 1 1.00
32 6 4.0 1 4 0.25
47 9 4.0 1 1 1.00
0 0 -4.0 0 0 NaN
40 8 -4.0 0 0 NaN
H“ 8 3.0 0 15 0.00

Most of the underlinked URLs are orphaned and have page authority (probably from backlinks).
Visualize to get a fuller picture:

depthauth stats plt = (
ggplot (depthauth stats,

aes(x = 'pa band', y = 'crawl depth', fill = 'depthauth uidx')) +
geom tile(stat = 'identity', alpha = 0.6) +
labs(y ="', x="'") +

theme classic() +

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

theme (legend position = 'right')
)
depthauth stats plt.save(filename = 'images/3 depthauth stats plt.png',
height=5, width=10, units = 'in', dpi=1000)

depthauth stats plt

There we have it, depthauth_stats_plt (Figure 3-13) shows most of the focus should go into the
orphaned URLs (which they should anyway), but more importantly we know which orphaned URLs to
prioritize over others.

Not Set 4

depthi8uth_uidx
30

20
10

0

— T
—5 —&% 0

Figure 3-13 Heatmap of page authority level, site level, and underlinked URLs

We can also see the extent of the issue. The second highest priority group of underindexed URLs are at
site levels 2, 3, and 4.

Anchor Texts

If the count and their distribution represent the quantitative aspect of internal links, then the anchor texts
could be said to represent their quality.

Anchor texts signal to search engines and users what content to expect after accessing the hyperlink.
This makes anchor texts an important signal and one worth optimizing.

We'll start by aggregating the crawl data from Sitebulb to get an overview of the issues:

anchor issues _agg = crawl data.agg({'no_anchors with empty href': ['sum'],
'no_anchors with leading or trailing whitespace in href': ['st
'no_anchors with local file': ['sum'],
'no_anchors with localhost': ['sum'],
'no _anchors with malformed href': ['sum'],
'no_anchors with no text': ['sum'],
'no_anchors with non descriptive text': ['sum'],
'no_anchors with non-http protocol in href': ['sum'],
'no_anchors with url in onclick': ['sum'],
'no_anchors with username and password in href': ['sum'],
'no_image anchors with no alt text': ['sum']

}) .reset index()

anchor issues agg = pd.melt (anchor issues agg, var name=['issues'],
value vars=['no anchors with empty href',
'no _anchors with leading or trailing v
'no_anchors with local file', 'no_anche

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

'no_anchors with malformed href',
'no_anchors with no text',
'no_anchors with non descriptive text'
'no_anchors with non-http protocol in
'no_anchors with url in onclick’,
'no_anchors with username and passworc
'no_image anchors with no alt text'],
value name='instances'
)

anchor issues_agg
This results in the following:

issues instances

0 no_anchors_with_empty_href 19
1 no_anchors_with_leading_or_trailing_whitespace_in_href 3724
2 no_anchors_with_local_file 0
3 no_anchors_with_localhost 0
4 no_anchors_with_malformed_href 11
5 no_anchors_with_no_text 297
6 no_anchors_with_non_descriptive_text 4047
7 no_anchors_with_non-http_protocol_in_href 0
8 no_anchors_with_url_in_onclick 0
9 no_anchors_with_username_and_password_in_href 0
10 no_image_anchors_with_no_alt_text 112

Over 4000 links with no descriptive anchor text jump out as the most common issue, not to mention the 19
anchors with empty HREF (albeit very low in number).
To visualize

anchor issues count plt = (ggplot(anchor issues_agg, aes(x =

'reorder (issues, instances)', y = 'instances')) +
om bar(stat = 'identity', £fill = 'blue', alpha = 0.6) +
labs(y = '"# instances of Anchor Text Issues', x = '') +
theme classic() +
coord flip() +
theme (legend position = 'none')

)

anchor issues count plt.save(filename =
'images/4 anchor issues count plt.png',

height=5, width=5, units = 'in', dpi=1000)
anchor issues count plt

anchor_issues_count_plt (Figure 3-14) visually confirms the number of internal links with
nondescriptive anchor text.

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

no_anchors with_non_descriptive text 4
no_anchors_with_leading_or_trailing_whitespace_in_href -
no_anchors_with_no_text 4
no_image_anchors_with_no_alt_text -
no_anchors_with_empty_href -

no_anchors_with_malformed_href 4

no_anchors_with_username_and _password_in_href -
no_anchors_with_url_in_onclick 4
no_anchors_with_non-http_protocol_in_href
no_anchors_with_localhost -

no_anchors_with_local_file 4

1000 2000 3000 4000
instances of Anchor Text Issues

o4

Figure 3-14 Bar chart of anchor text issues

Anchor Issues by Site Level

We'll drill down on the preceding example by site level to get a bit more insight to see where the problems
are happening:

anchor issues levels =
crawl data.groupby ('crawl depth').agg({'no anchors with empty href': ['sum'],
'no_anchors with leading or trailing whitespace in href':

['sum'],
'no_anchors with local file': ['sum'],
'no_anchors with localhost': ['sum'],
'no_anchors with malformed href': ['sum'],
'no_anchors with no text': ['sum'],
'no_anchors with non descriptive text': ['sum'],
'no_anchors with non-http protocol in href': ['sum'],
'no_anchors with url in onclick': ['sum'],
'no_anchors with username and password in href': ['sum'],
'no_image anchors with no alt text': ['sum']

}) .reset index()

anchor issues levels.columns = [' '.join(col) for col in

anchor issues levels.columns.values]

anchor issues levels.columns = [str.replace(col, ' sum', '') for col in

anchor issues levels.columns.values]

anchor issues levels.columns = [str.replace(col, 'no_anchors with ', '') for ¢

in anchor issues levels.columns.values]

anchor issues levels = anchor issues levels.rename(columns = {'crawl depth ':

'crawl depth'})

anchor issues levels
var name=['issues'],

pd.melt (anchor issues levels, id vars=['crawl depth'],

value vars=['empty href',
'leading or trailing whitespace in hre
'local file','localhost',
'malformed href', 'no text',
'non_descriptive text',

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

'non-http protocol in href',

'url in onclick',

'username_and password in href',

'no_image anchors with no alt text'],
value name='instances'

)

print (anchor issues levels)

This results in the following:

crawl depth issues instances
111 Not Set non descriptive text 2458
31 Not Set leading or trailing whitespace in href 2295
104 3 non_descriptive text 350
24 3 leading or trailing whitespace in href 328
105 4 non_descriptive text 307
85 13 no_text 0
84 12 no_text 0
83 11 no_text 0
82 10 no_text 0
0 0 empty href 0

[176 rows x 3 columns]

Most of the issues are on orphaned pages followed by URLs three to four levels deep.
To visualize

anchor levels issues_count plt = (ggplot (anchor issues levels, aes(x =
'crawl depth',
y =
'issues', fill = 'instances')) +
geom tile() +
labs(y = '# instances of Anchor Text Issues', x = '') +
scale fill cmap(cmap name='viridis') +

theme classic()

)

anchor levels issues count plt.save(filename =
'images/4 anchor levels issues count plt.png',

height=5, width=5, units = 'in', dpi=1000)
anchor levels issues count plt

The anchor_levels_issues_count_plt graphic (Figure 3-15) makes it clearer; the technical issues with
anchor text lay with the orphaned pages.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

username_and_passwaord_in_href
url_in_onclick

non_descriptive text

instances
non-http_protocol_in_href 2000
no_text 1500
no_image_anchors_with_no_alt_text 1000
malformed_href 200
0

localhost

local_file

instances of Anchor Text Issues

leading_or_trailing_whitespace_in_href

empty_href

0 1 1011121314 2 3 4 5 6 7 8 ONotSet
Figure 3-15 Heatmap of site level, anchor text issues, and instances

Anchor Text Relevance
Of course, that’s not the only aspect of anchor text that SEOs are interested in. SEOs want to know the extent
of the relevance between the anchor text and the destination URL.

For that task, we’ll use string matching techniques on the Sitebulb link report to measure that relevance
and then aggregate to see the overall picture:

link df = link data[['target url', 'referring url', 'anchor text',
'location']]
link df = link df.rename(columns = {'target url':'url'})

Merge with the crawl data using the URL as the primary key and then filter for indexable URLs only:

anchor merge = crawl data.merge(link df, on = 'url', how = 'left')

anchor merge = anchor merge.loc[anchor merge['host'] == website]

anchor merge = anchor merge.loc[anchor merge['indexable'] == 'Yes']

anchor merge(['crawl depth'] = anchor merge['crawl depth'].astype('category')

anchor merge['crawl depth'] =

anchor merge['crawl depth'].cat.reorder categories(['O', '1', '2', '3', '4"',
I5l, I6l, I7l, I8l, I9l,

'10', 'Not Set'])

Then we compare the string similarity of the anchor text and title tag of the destination URLs:

anchor merge['anchor relevance'] = anchor merge.loc[:, ['title’,
'anchor text']].apply
x: sorensen dice (*x), axis=1)

And any URLs with less than 70% relevance score will be marked as irrelevant under the new column
“irrel_anchors” asal

Why 70%? This is from experience, and you're more than welcome to try different thresholds.

With Sorensen-Dice, which is not only fast but meets SEO needs for measuring relevance, 70% seems to
be the right limit between relevance and irrelevance, especially when accounting for the site markers in the
title tag string:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

anchor merge['irrel anchors'] = np.where (anchor merge['anchor relevance'] <
.7, 1, 0)

Having a single factor makes it easier to aggregate the entire dataframe by column although there are
alternative methods to this:

anchor merge['project'] = target name
anchor merge

This results in the following:

rect url redirect_url status redirect url_status code referring_url anchor_text anchor relevance irel anchors project

Mo Data Not Set Mot Set https:/fweww.on24.com/about-us/ ON24 0.153848 1 ON24

No Data Not Set Not Set hitpad NG convahnut- isionrd of onz4 0.153848 1 Onzd

directors/

Mo Data Not Set Mot Set https:/fwww.on24 . com/about-us/careers/ ON24 0.153848 1 OnN24

No Data Not Set Not Set https:/fwww.on24.com/about-us/careers’ https:/fwww.on24.com 0.289855 1 ON24

Mo Data Mot Set Mot Sat hitps:/www.on24.com/about-us/careers’ hitps:/f'www.on24.com 0.289855 1 ON24
Shell expands global

Mo Data Mot Set Mot Set htips:/feww.on2d.com/blog/business_typesfenter.. brand awaraness and 0.965517 0 ON24
drive...

Mo Data Not Set Not Set MaN nan 0.0606806 1 ON24

Mo Data Not Set Mot Set MaN nan 0125000 1 ON24
Agitent Optimizes its

Mo Data Mot Set Mot Set hitps:ifwww.on24.com/blog/solutions/manufactur.. Global Digital 0.956522 0 ON24
Marketing...

No Data Mot Set Mot Set MNaN nan 0.148148 1 Oh24

Because there is a many-to-many relationship between referring pages and destination URLs (i.e., a
destination URL can receive links from multiple URLs, and the former can link to multiple URLs), the
dataframe has expanded to over 350,000 rows from 8611.

Let’s aggregate by counting the number of URLs per referring URL:

anchor rel stats site agg =

anchor merge.groupby ('project').agg({'irrel anchors': 'sum'}).reset index()
anchor rel stats site agg['total urls'] = anchor merge.shape[0]

anchor rel stats site agg['irrel anchors prop'] =

anchor rel stats site agg['irrel anchors']

/anchor rel stats site agg['total urls']

print (anchor rel stats site agqg)

project irrel anchors total urls irrel anchors prop
0 ON24 333946 350643 0.952382

About 95% of anchor texts on this site are irrelevant. How does this compare to their competitors?
That’s your homework.
Let’s go slightly deeper and analyze this by site depth:

anchor rel depth irrels =

anchor merge.groupby (['crawl depth']).agg({'irrel anchors':

'sum'}) .reset index()

anchor rel depth urls =

anchor merge.groupby(['crawl depth']) .agg({'project':

'count'}) .reset index()

anchor rel depth stats =

anchor rel depth irrels.merge(anchor rel depth urls, on = 'crawl depth', how
= 'left'")

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

anchor rel depth stats['irrel anchors prop'] =
anchor rel depth stats['irrel anchors'] / anchor rel depth stats['project']

anchor rel depth stats
This results in the following:

crawl_depth irrel_anchors project irrel_anchors_prop

0 0 4139 4139 1.000000
1 1 306156 317345 0.964742
2 2 19162 23974 0.799283
3 3 655 11T 0.586392
4 4 608 713 0.852735
5 5 467 510 0.915686
6 6 278 289 0.961938
7 T 128 131 0.977099
8 8 33 33 1.000000
9 9 10 10 1.000000
10 10 2 2 1.000000
11 Not Set 2308 2380 0.969748

Virtually, all content at all site levels with the exception of those three clicks away from the home page
(probably blog posts) have irrelevant anchors.
Let’s visualize:

anchor issues text

anchor rel stats site agg plt = (ggplot(anchor rel depth stats,
aes(x = 'crawl depth', y =

'irrel anchors prop')) +

geom bar (stat = 'identity', fill = 'blue', alpha = 0.6)
+

labs(y = '"# irrel anchors', x = '") +

#scale y loglO() +

theme classic() +

coord flip() +

theme (legend position = 'none')

)

anchor rel stats site agg plt.save(filename =
'images/3 anchor rel stats site agg plt.png',

height=5, width=5, units = 'in', dpi=1000)
anchor rel stats site agg plt

Irrelevant anchors by site level are shown in the anchor_rel_stats_site_agg plt plot (Figure 3-16), where
we can see it is pretty much sitewide with less instances on URLs in site level 3.

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

Not Set

104

()]

54
4
34
2
14
04
0 0.25 0.50 0.75 1
irrel_anchors
Figure 3-16 Bar chart of irrelevant anchor texts by site level
Location
More insight could be gained by looking at the location of the anchors:
anchor rel locat irrels =
anchor merge.groupby (['location']).agg({'irrel anchors':

"sum'}) .reset index()

anchor rel locat urls = anchor merge.groupby(['location']) .agg({'project':
'count'}) .reset index()
anchor rel locat stats =

anchor rel locat irrels.merge(anchor rel locat urls, on = 'location', how =
'left")

anchor rel locat stats['irrel anchors prop'] =

anchor rel locat stats['irrel anchors'] / anchor rel locat stats['project']

—

anchor rel locat stats
This results in the following:

location irrel_anchors project irrel_anchors_prop

0 Footer 137470 148609 0.925045
1 Header 194183 199741 0.972174

The irrelevant anchors are within the header or footer which make these relatively easy to solve.

Anchor Text Words

Let’s look at the anchor texts themselves. Anchor texts are the words that make up the HTML hyperlinks.
Search engines use these words to assign some meaning to the page that is being linked to.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Naturally, search engines will score anchor texts that accurately describe the content of the page they’re
linking to, because if a user does click the link, then they will receive a good experience of the content such
that it matches their expectations created by the anchor text.

We'll start by looking at the most common words anchor texts used in the website:

anchor count = anchor mergel['anchor text']].copy ()
anchor count['count'] = 1
anchor count agg = anchor count.groupby('anchor text').agg({'count':

'sum'}) .reset index()
anchor count agg = anchor count agg.sort values('count',6 ascending = False)

anchor count agg

This results in the following:

anchor_text count

203 Contact Us 7427
551 Live Demo Discover how to create engaging webi... 7426
876 Resources 7426
550 Live Demo 7426
724 ON24 Webcast Elite 3851
916 Selling to Tech Means Investing in Customer Co... 1
915 Seismic shifted its APAC marketing strategy 1
176 Call-to-Action 1
181 Cassandra Clark Senior Manager of Webinar Prog... 1
1807 “The Ultimate Guide to Planning the Perfect We... 1

1808 rows x 2 columns

There are over 1,808 variations of anchor texts of which “Contact Us” is the most popular along with “Live
Demo” and “Resources.”

Let’s visualize using a word cloud. We'll have to import the WordCloud package and convert the
dataframe into a dictionary:

from wordcloud import WordCloud

data = anchor count agg.set index('anchor text').to dict() ['count']
data
{'Contact Us ': 7427,
'Live Demo Discover how to create engaging webinar experiences designed to
cativate and convert your audience. ': 7426,
'Resources ': 7426,

'Live Demo ': 7426,

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

'ON24 Webcast Elite ': 3851,
'ON24 platform ': 3806,
'Press Releases ': 3799, ..}

Once converted, we feed this into the wordcloud function, limiting the data to the 200 most popular
anchors:

wc = WordCloud (background color='white',

width=800, height=400,
max words=30) .generate from frequencies (anchor count agg)

import matplotlib.pyplot as plt
plt.figure(figsize= (10, 10))
plt.imshow(wc, interpolation='bilinear')

plt.axis('off")

Save image
wc.to file("images/wordcloud.png")

plt.show ()

The word cloud (Figure 3-17) could be used in a management presentation. There are some pretty long
anchors there!

0M24 Connect

Overview
Webinar Best Practices

Intelligence

Virtual Events 0424 Tarpet

[e 1]
P

d, interactive, data-rich webinars and digital experiences.

Contact Sales Why CN24 Engage audiences with personalize
Live Demo Discover how to create engaging webinar experiences designed to captivate and convert your audience.

M4 Engagement Hub here
Upcoming Webinars

ON24 Webcast Elite

Support

Figure 3-17 Word cloud of the most commonly used anchor texts

The activation from this point would be to see about finding semiautomated rules to improve the
relevance of anchor texts, which is made easier by virtue of the fact that these are within the header or

footer.

Core Web Vitals (CWV)
Core Web Vitals (CWV) is a Google initiative to help websites deliver a better UX. This includes speed, page
stability during load, and the time it takes for the web page to become user interactive. So if CWV is about
users, why is this in the technical section?

The technical SEO benefits which are less advertised help Google (and other search engines) mainly
conserve computing resources to crawl and render websites. So it’s a massive win-win-win for search
engines, users, and webmasters.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

So by pursuing CWV, you're effectively increasing your crawl and render budget which benefits your

technical SEO.

However, technical SEO doesn’t hold great appeal to marketing teams, whereas it’s a much easier sell to
marketing teams if you can imply the ranking benefits to justify web developments of improving CWV. And

that is what we’ll aim to do in this section.

We'll start with the landscape to show the overall competitive picture before drilling down on the
website itself for the purpose of using data to prioritize development.

Landscape

import re

import time

import random

import pandas as pd

import numpy as np

import requests

import json

import plotnine

import tldextract

from plotnine import *

from mizani.transforms import trans
from client import RestClient

target bu = 'boundless'
target site = 'https://boundlesshqg.com/"'
target name = target bu

We start by obtaining the SERPs for your target keywords using the pandas read_csv function. We're
interested in the URL which will form the input for querying the Google PageSpeed API which gives us the

CWV metric values:

desktop serps_df = pd.read csv('data/l desktop' + client name +

' serps.csv')
desktop_ serps df

This results in the following:

keyword rank_absolute url device

0 permanent establishment risk 1 https://papayaglobal.com/blog/how-to-avoid-per... desktop
1 permanent establishment risk 2 None desktop
2 permanent establishment risk 3 https://www.pwc.co.uk/assets/pdf/permanent-est... desktop
3 permanent establishment risk 4 https://www.safeguardglobal.com/resources/blog... desktop
4 permanent establishment risk 5 https://www.omnipresent.com/resources/permanen... desktop
5 permanent establishment risk 6 https://www.airswift.com/blog/permanent-establ... desktop
6 permanent establishment risk 7 https://www.gtn.com/resources/newsletters/perm... desktop
7 permanent establishment risk 8 https://www.letsdeel.com/blog/permanent-establ... desktop
8 permanent establishment risk 9 https://freemanlaw.com/the-tax-risk-of-a-perma... desktop
9 permanent establishment risk 10 https://www.oysterhr.com/library/avoid-permane... desktop
10 permanent establishment risk 1 https://nhglobalpartners.com/what-is-permanent... desktop

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

The SERPs data can get a bit noisy, and ultimately the business is only interested in their direct competitors,
so we'll create a list of them to filter the SERPs accordingly:

selected sites = [target site, 'https://papayaglobal.com/', 'https://www.airsu
'https://shieldgeo.com/"',

'https://remote.com/', 'https://www.letsdeel.com/',
'https://www.omnipresent.com/"']

desktop serps select = desktop serps df[~desktop serps df['url'].isnull()].cox
desktop serps select =
desktop_ serps select[desktop serps select['url'].str.contains('|'.join (selects

desktop serps select

keyword rank_absolute url device

0 permanent establishment risk 1 https://papayaglobal.com/blog/how-to-avoid-permanent-establishment-risk/ desktop

4 permanent establishment risk 5 https://www.omnipresent.com/resources/permar ablishment-risk-a-remote-workforce desktop

5 permanent establishment risk 6 https://www.airswift.com/blog/permanent-establishment-risks desktop

7 permanent establishrment risk 8 hitps://www.letsdeel.com/blog/permanent-establishment-risk desktop

14 permanent establishment risk 15 https://shieldgeo.com/ultimate-guide-permanent-establishment/ desktop
2355 eor country 32 https://papayaglobal.com/blog/differences-between-icps-why-it-matters/ desktop
2370 eor country 47 https://www.omnipresent.com/resources/peo-vs-eor-tapping-into-global-talent desktop
2374 eor country 51 https://boundlesshq.com/guides/croatia/ desktop
2376 eor country 53 https://www.letsdeel.com/blog/international-employes-experience desktop
2403 eor country B0 https://www.airswift.com/blog/what-is-an-employer-of-record desktop

114 rows x 4 columns

There are much less rows as a result, which means less API queries and less time required to get the data.
Note the data is just for desktop, so this process would need to be repeated for mobile SERPs also.
To query the PageSpeed API efficiently and avoid duplicate requests, we want a unique set of URLs. We
achieve this by
Exporting the URL column to a list

desktop serps urls desktop_ serps select['url'].to list()

Deduplicating the list

desktop serps urls
desktop serps urls

list (dict.fromkeys (desktop serps urls))

['https://papayaglobal.com/blog/how-to-avoid-permanent-establishment-risk/"',
'https://www.omnipresent.com/resources/permanent-establishment-risk-a-

remote-workforce',
'https://www.airswift.com/blog/permanent-establishment-risks',
'https://www.letsdeel.com/blog/permanent-establishment-risk',
'https://shieldgeo.com/ultimate-guide-permanent-establishment/"',
'https://remote.com/blog/what-is-permanent-establishment’,
'https://remote.com/1lp/global-payroll’,
'https://remote.com/services/global-payroll?nextInternallLocale=en-us',

]

With the list, we query the AP], starting by setting the parameters for the APl itself, the device, and the
API key (obtained by getting a Google Cloud Platform account which is free):

base url 'https://www.googleapis.com/pagespeedonline/v5/runPagespeed?url="
strategy = '&strategy=desktop'

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

api key = '&key=[Your PageSpeed API key]'

Initialize an empty dictionary and set i to zero which will be used as a counter to help us keep track of
how many API calls have been made and how many to go:

desktop cwv = {}
i=1

for url in desktop serps urls:
request url = base url + url + strategy + api key

response = json.loads (requests.get (request url) .text)
i+=1

print(i, " ", request url)

desktop cwv[url] = response

The result is a dictionary containing the API response. To get this output into a usable format, we iterate
through the dictionary to pull out the actual CWV scores as the APl has a lot of other micro measurement
data which doesn’t serve our immediate objectives.

Initialize an empty list which will store the APl response data:

desktop psi 1lst = []

Loop through the API output which is a JSON dictionary, so we need to pull out the relevant “keys” and
add them to the list initialized earlier:

for key, data in desktop cwv.items() :
if 'lighthouseResult' in data:
FCP = data['lighthouseResult']['audits']['first-contentful-paint']
['"numericValue']

LCP = datal['lighthouseResult']['audits']['largest-contentful-paint']
['numericValue']
CLS = data['lighthouseResult'] ['audits'] ['cumulative-layout-shift']

['"numericValue']

FID = data['lighthouseResult'] ['audits'] ['max-potential-fid"']
['"numericValue']

SIS = data['lighthouseResult']['audits']['speed-index'] ['score'] *
100

desktop psi lst.append([key, FCP, LCP, CLS, FID, SIS])
Convert the list into a dataframe:
desktop psi df = pd.DataFrame (desktop psi 1st, columns = ['url', 'FCP',
'"LCP', 'CLS', 'FID', 'SIS'])
desktop psi df

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url FCP LCP CLS FID sIS

0 https://papayaglobal.com/blog/how-to-avoid-permanent-establishment-risk/ 890.00000 5241.5 0.140066 103 17.0

-

https://www.omnipresent.com/resources/permanent-establishment-risk-a-remote-workforce 1010.00000 1720.0 0.144360 138 92.0

2 https://www.airswift.com/blog/permanent-establishment-risks ~ 662.13298 2734.0 0.118718 99 28.0
3 https://www.letsdeel.com/blog/permanent-establishment-risk 1093.00000 1736.5 0.000000 81 67.0
4 https://shieldgeo.com/ultimate-guide-permanent-establishment/ 1030.00000 1254.5 0.121591 81 96.0
72 https://www.letsdeel.com/blog/remote-interview-guide 942.00000 1320.0 0.000000 122 68.0
73 https://www.omnipresent.com/resources/how-to-recruit-and-hire-remote-employees 1070.00000 1640.0 0.138055 94 72.0
74 https://papayaglobal.com/blog/differences-between-icps-why-it-matters/ 930.00000 3432.0 0.089238 129 33.0
75 https://boundlesshq.com/guides/croatia/ 730.00000 2050.0 0.051751 78 99.0
76 https://www.letsdeel.com/blog/international-employee-experience 972.00000 1411.0 0.000000 129 67.0

77 rows x 6 columns

The PageSpeed data on all of the ranking URLs is in a dataframe with all of the CWV metrics:

e FCP: First Contentful Paint

e LCP: Largest Contentful Paint
e (CLS: Cumulative Layout Shift
e SIS: Speed Index Score

To show the relevance of the ranking (and hopefully the benefit to ranking by improving CWV), we want
to merge this with the rank data:

dtp psi _serps = desktop serps select.merge (desktop psi df, on = 'url', how =
'left'")

dtp psi serps bu = dtp psi serps.merge (target keywords df, on = 'keyword',
how = 'left'")

dtp psi serps bu.to csv('data/'+ target bu +' dtp psi serps bu.csv')
dtp _psi_serps bu

This results in the following:

keyword rank_absolute url device FCP LCP CcLs FID SIS bu
permanent hitps://papayagic i1l ft to-avoid-permanent-
D ST 1 oo deskiop 890.00000 52415 0140088 1030 17.0 boundiess
1 mgf”“““:;: 5 hitps:/fwww.omnipresent.comVresources/permanent- . o0 1010,00000 17200 0.144360 138.0 92.0 boundless

2 permanent

sstablish risk B https:/Awww.alrswift. com/blog/permanent-establishment-risks desktop 662.13298 27340 0.118718 890 28.0 boundiess

parmanent

3 astablishment risk B8 hittps:/fwaw letsdesl.comvblog/ lishment-risk desktop 1093.00000 1736.5 0.000000 B1.0 67.0 boundiess
permanent 4o L4 " i d 1 1 1

R sl 15 hitp g guide-perma 1t/ p 103000000 12545 0121581 B81.0 960 boundiess
https:/ global.com/blog/dif ' icps-why-it

112 eor country 32 il deskiop 930.00000 3432.0 0.089238 129.0 33.0 boundless
https:/www.omnip ¥ pec-vs-eor-tapping

113 eor country 47 into-global-talent desktop 1070.00000 1740.0 0.132055 128.0 94.0 boundless

114 eor country 51 https://b 1. 'guidh iaf desktop 730.00000 2050.0 0.051751 78.0 99.0 boundless

R R)

115 eor country 53 HE W de o PIOYeE- yockiop 972.00000 1411.0 0.000000 129.0 67.0 boundiess
experence

116 sor country B8O hitps:/ Lalrswift.com/blog/what-) ploy f: rd desktop 662.13288 2986.0 0.120042 940 64.0 boundless

117 rows = 10 columns

The dataframe is complete with the keyword, its rank, URL, device, and CWV metrics.
At this point, rather than repeat near identical code for mobile, you can assume we have the data for
mobile which we have combined into a single dataframe using the pandas concat function (same headings).

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

To add some additional features, we have added another column is_target indicating whether the
ranking URL is the client or not:

overall psi serps bu['is target'] =
np.where (overall psi serps bu['url'].str.contains(target site), '1', '0")

Parse the site name:

overall psi serps bu['site'] = overall psi serps bu['url'].apply(lambda url:
tldextract.extract (url) .domain)

Count the column for easy aggregation:
overall psi serps bu['count'] =1

The resultant dataframe is overall_psi_serps_bu shown as follows:

keyword rank_absolute url device FCP LCP CLS FID SIS bu is_target site
permanent s :
= tips://papayaglobal com/blog/how-to-avaid-

stabishment 1 o moblle 3990.00000 4140.0 0.051357 3490 4.0 boundiess 0 papayaglobal

permanent o X

stablishment g e . iy LE 'a”"“t mobile 4065.00000 45150 0.040469 471.0 30.0 boundless 0 omnipresent
- isk-a-remote

parmanent :]

stablishment 5 "“ijw'ifswmmwbw?@m”'a”?"" mobile 927.00000 2495.0 0.000000 3160 97.0 boundless 0 airswift
risk Keths. amp

permanent iy _

stablishment 8 hitps: ”“""'b‘s"w‘w";‘?;ﬁ‘;::m';‘?_ﬂk mobile 5763.00000 7131.0 0.000000 2860 25.0 boundless 0 letsdeel
risk

permanent o TS s et .

stablishment 16 e emanen . mobile 4623.00000 6695.0 0.000343 2090 70.0 boundiess 0 shisldgeo
risk

sor country 32 P '“'““’“'“Wﬂfps_wm_u_mm; desktop 930.00000 3432.0 0.088238 1200 33.0 boundiess 0 papayaglobal

aor country a7 Wsym'mﬂimm“:;fm]:; desktop 1070.00000 1740.0 0138066 1280 040 boundless 0 omnipresent

ear country 51 https:/; guides/croatia/ desktop 730.00000 2050.0 0.051751 78.0 99.0 boundless 1 boundlesshg

sor country 53 ""pﬁ:ﬂ‘""‘”‘""“M“'wem'”bl'ﬂfr;:';"r:; desktop 972.00000 1411.0 0.000000 1290 67.0 boundless 0 letsdeel

aor country e s ot AL - an MPIOYOr deskiop 662.13208 2986.0 0.120042 940 840 boundiess 0 airswift

The aggregation will be executed at the site level so we can compare how each site scores on average for
their CWV metrics and correlate that with performance:

overall psi serps agg = overall psi serps bu.groupby('site').agg({'LCP': 'mear
'"FCP': 'mear
'CLS': 'mear
'"FID': 'mear
'SIS': 'mear
'rank absolt

'mean’',
'count':
'sum'}) .reset index()
overall psi serps agg = overall psi serps_agg.rename (columns = {'count': 'reac
Here are some operations to make the site names shorter for the graphs later:
overall psi serps aggl['site'] = np.where(overall psi serps_agg['site'] ==

'papayaglobal', 'papaya',

overall psi serps agg['site'])
overall psi serps aggl'site'] = np.where(overall psi serps agg['site'] =
'boundlesshqg', 'boundless',

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

overall psi serps agg['site'])
overall psi serps agg

This results in the following:

site LCP FCP CLS FID SIS rank_absolute reach
0 airswift 2850.282609 952.014339 0.060763 150.347826 72.521739 30.043478 23
1 boundless 4563.175000 2043.200000 0.186265 158.900000 92.450000 35.900000 20

letsdeel 5153.855556 3340.166667 0.000000 229.955556 38.755556 36.044444 45

2
3 omnipresent 3809.153846 2380.897436 0.064785 242.000000 72.820513 34.948718 39
4

papaya 10835.166753 2640.666667 0.057782 312.800000 8.833333 42.562500 32
5 remote 5358.801887 2169.452830 0.074436 845.716981 89.660377 17.641509 53
6 shieldgeo 5756.100000 3017.533333 0.056910 234.833333 71.500000 33.333333 30

That’s the summary which is not so easy to discern trends, and now we’re ready to plot the data, starting
with the overall speed index. The Speed Index Score (SIS) is scaled between 0 and 100, 100 being the fastest
and therefore best.

Note that in all of the charts that will compare Google rank with the individual CWV metrics, the vertical
axis will be inverted such that the higher the position, the higher the ranking. This is to make the charts
more intuitive and easier to understand.

SIS cwv_landscape plt = (
ggplot (overall psi serps agg,

aes(x = 'SIS', y = 'rank absolute', fill = 'site', colour =
'site',
size = 'reach')) +

geom point (alpha = 0.8) +

geom_ text (overall psi serps agg, aes(label = 'site'),
position=position stack(vjust=-0.08)) +

labs(y = 'Google Rank', x = 'Speed Score') +

scale y reverse () +

scale size continuous(range = [7, 17]) +
theme (legend position = 'none', axis text x=element text (rotation=0,

hjust=1l, size = 12))
)

SIS cwv_landscape plt.save(filename = 'images/0 SIS cwv_landscape.png',
height=5, width=8, units = 'in', dpi=1000)
SIS cwv_ landscape plt

Already we can see in SIS_cwv_landscape_plt (Figure 3-18) that the higher your speed score, the higher
you rank in general which is a nice easy sell to the stakeholders, acting as motivation to invest resources
into improving CWV.

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

10-

20- re‘llke
30-
(ift
| shicligeo

Google Rank

40-
Y
|)
-
yapaya

25 50 75
Speed Score

Figure 3-18 Scatterplot comparing speed scores and Google rank of different websites

Boundless in this instance are doing relatively well. Although they don’t rank the highest, this could
indicate that either some aspects of CWV are not being attended to or something non-CWV related or more
likely a combination of both.

LCP_cwv_landscape plt = (
ggplot (overall psi serps_agg,

aes(x = '"LCP', y = 'rank absolute', fill = 'site', colour =
'site',
size = 'reach')) +

geom point(alpha = 0.8) +

geom_ text (overall psi serps_agg, aes(label = 'site'),
position=position stack(vjust=-0.08)) +

labs(y = 'Google Rank', x = 'Largest Contentful Paint') +

scale y reverse() +

scale size continuous(range = [7, 17]) +
theme (legend position = 'none', axis text x=element text (rotation=0,

hjust=1, size = 12))
)

LCP_cwv_landscape plt.save(filename = 'images/0 LCP cwv_landscape.png',
height=5, width=8, units = 'in', dpi=1000)
LCP _cwv_landscape plt

The LCP_cwv_landscape_plt plot (Figure 3-19) shows that Papaya and Remote look like outliers; in any
case, the trend does indicate that the less time it takes to load the largest content element, the higher the
rank.

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

10-
20- ré‘l'ke

30-

Google Rank

a.-!v;i'?t Q
I S sljielligeo
- omn ot ool

papays:
4000 6000 8000 10000
Largest Contentful Paint

Figure 3-19 Scatterplot comparing Largest Contentful Paint (LCP) and Google rank by website
FID cwv_landscape plt = (

ggplot (overall psi serps agg,

aes(x = 'FID', y = 'rank absolute', fill = 'site', colour =
'site’',
size = 'reach')) +

geom point (alpha = 0.8) +

geom_text (overall psi serps_agg, aes(label = 'site'),
position=position_ stack(vjust=-0.08)) +

labs(y = 'Google Rank', x = 'First Input Delay') +

scale y reverse() +

scale x 1loglO() +

scale size continuous(range = [7, 17]) +

theme (legend position = 'none', axis text x=element text (rotation=0,
hjust=1, size = 12))
)
FID cwv_landscape plt.save(filename = 'images/0 FID cwv_landscape.png',

height=5, width=8, units = 'in', dpi=1000)

FID cwv_landscape plt

Remote looks like an outlier in FID_cwv_landscape_plt (Figure 3-20). Should the outlier be removed? Not
in this case, because we don’t remove outliers just because it doesn’t show us what we wanted it to show.

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

10-
.

30-

Google Rank

a:?uii"t
_chqlggo__i

40-

papaya

23

200 300 500
First Input Delay

Figure 3-20 Scatterplot comparing First Input Delay (FID) and Google rank by website

The trend indicates that the less time it takes to make the page interactive for users, the higher the rank.
Boundless are doing well in this respect.

CLS cwv_landscape plt = (
ggplot (overall psi serps_agg,

aes(x = 'CLS', y = 'rank absolute', fill = 'site', colour =
'site',
size = 'reach')) +

geom point (alpha = 0.8) +

geom_ text (overall psi serps agg, aes(label = 'site'),
position=position stack(vjust=-0.08)) +

labs(y = 'Google Rank', x = 'Cumulative Layout Shift') +

scale y reverse() +

scale size continuous(range = [7, 17]) +
theme (legend position = 'none', axis text x=element text (rotation=0,

hjust=1l, size = 12))
)

CLS cwv_landscape plt.save(filename = 'images/0 CLS cwv_landscape.png',
height=5, width=8, units = 'in', dpi=1000)
CLS cwv_landscape plt

Okay, CLS where Boundless don’t perform as well is shown in CLS_cwv_landscape_plt (Figure 3-21). The
impact on improving rank is quite unclear too.

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

10-

20- ré'l'ke
30-
it
shieldggo

40_. SrTIEE

papaya

Google Rank

0 0.05 0.10 0.15
Cumulative Layout Shift

Figure 3-21 Scatterplot comparing Cumulative Layout Shift (CLS) and Google rank by website

FCP_cwv_landscape plt = (
ggplot (overall psi serps_agg,

aes(x = '"FCP', y = 'rank absolute', fill = 'site', colour =
'site',
size = 'reach')) +

geom point(alpha = 0.8) +

geom_text (overall psi serps_agg, aes(label = 'site'),
position=position_ stack(vjust=-0.08)) +

labs(y = 'Google Rank', x = 'First Contentful Paint') +

scale y reverse() +

scale size continuous(range = [7, 17]) +
theme (legend position = 'none', axis text x=element text (rotation=0,

hjust=1, size = 12))
)

FCP_cwv_landscape plt.save(filename = 'images/0 FCP cwv_landscape.png',
height=5, width=8, units = 'in', dpi=1000)
FCP_cwv_landscape plt

Papaya and Remote looklike outliers in FCP_cwv_landscape_plt (Figure 3-22); in any case, the trend
does indicate that the less time it takes to load the largest content element, the higher the rank.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

10-
20- ré'l'ke

30-

Google Rank

u'@"i @
_ : o shieltigeo

=
papaya

40 -

1000 1500 2000 2500 3000
First Cantentful Paint

Figure 3-22 Scatterplot comparing First Contentful Paint (FCP) and Google rank by website

That’s the deep dive into the overall scores. The preceding example can be repeated for both desktop
and mobile scores to drill down into, showing which specific CWV metrics should be prioritized. Overall, for
boundless, CLS appears to be its weakest point.

In the following, we’ll summarize the analysis on a single chart by pivoting the data in a format that can
be used to power the single chart:

overall psi serps long = overall psi serps_agg.copy ()
We select the columns we want:

overall psi serps long = overall psi serps long[['site', 'LCP', 'FCP',
'CLS', 'FID', 'SIS']]

and use the melt function to pivot the table:

overall psi serps long = overall psi serps long.melt (id vars=['site'],
value vars=['LCP',
'¥CP', 'CLS', 'FID', 'SIS'],
var name='Metric',
value name='Index')
overall psi serps long['x axis'] = overall psi serps long['Metric']
overall psi serps long['site'] = np.where(overall psi serps long['site'] ==
'papayaglobal', 'papavya',
overall psi serps long['site'])
overall psi serps long['site'] = np.where(overall psi serps long['site'] ==
'boundlesshqg', 'boundless',
overall psi serps long['site'])

overall psi serps long

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

site Metric Index x_axis

0 airswift LCP 2807.090909 LCP
1 airswift LCP 2889.875000 LCP
2 boundless LCP 1935.050000 LCP
3 boundless LCP 7191.300000 LCP
4

letsdeel LCP 1926.391304 LCP

65 papaya SIS 2.333333 SIS
66 remote SIS 96.227273 SIS
67 remote SIS 85.000000 SIS
68 shieldgeo SIS 88.785714 SIS

69 shieldgeo SIS 56.375000 SIS

70 rows x 4 columns

That'’s the long format in place, ready to plot.

speed _ex plt = (
ggplot (overall psi serps long,

aes(x = 'site', y = 'Index', fill = 'site')) +
geom bar (stat = 'identity', alpha = 0.8) +
labs(y ="', x="'") +
theme (legend position = 'right',
axis text x =element text(rotation=90, hjust=1l, size = 12),
legend title = element blank()
)+
facet grid('Metric ~ .', scales = 'free')
)
speed ex plt.save(filename = 'images/0 CWV Metrics plt.png',
height=5, width=8, units = 'in', dpi=1000)

speed ex plt

The speed_ex_plt chart (Figure 3-23) shows the competitors being compared for each metric. Remote
seem to perform the worst on average, so their prominent rankings are probably due to non-CWYV factors.

>>>4f {ijackgoogleseo.com# M & 3 2. $ hif<<<

0.3-
0.2- o
°: I] §]
6000 -
4000 - = o
% e I ¢
0- _ boundless
1500 - .Ietsdeel
1000 - g . omnipresent
500-

o E— e o) s B
20000~ B remote
10000- - 5 [shieldgeo

S000- P N === B @
150-
100- »

4 - e - - i

0= — - .

airswift
boundless _
letsdeel _
omnipresent _
papaya
remote
shieldgeo

Figure 3-23 Faceted column chart of different sites by CWV metric

Onsite CWV

The purpose of the landscape was to use data to motivate the client, colleagues, and stakeholders of the SEO
benefits that would follow CWV improvement. In this section, we’re going to drill into the site itself to see
where the improvements could be made.

We'll start by importing the data and cleaning up the columns as usual:

target crawl raw =
pd.read csv('data/boundlesshg com all urls excluding uncrawled filtered 202:

target crawl raw.columns = [col.lower() for col in target crawl raw.columns]
target crawl raw.columns [col.replace(' (', '') for col in target crawl raw.
target crawl raw.columns = [col.replace(')', '') for col in target crawl raw.

()

"'y)

target crawl raw.columns [col.replace('@', '"') for col in target crawl raw.
"/)
(Al

~ N~ A A

target crawl raw.columns = [col.replace('/', '') for col in target crawl raw.
target crawl raw.columns = [col.replace(' ', ' ') for col in target crawl raw.
print (target crawl raw.columns)

We're using Sitebulb crawl data, and we want to only include onsite indexable URLs since those are the
ones that rank, which we will filter as follows:

target crawl raw = target crawl raw.loc[target crawl raw['host'] ==
target host]
target crawl raw
== 'Indexable']
target crawl raw = target crawl raw.loc[target crawl raw['content type'] ==
'"HTML']

target crawl raw.loc[target crawl raw['indexable status']

target crawl raw

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url crawl_depth crawl_status host Is_subdomain scheme crawl_source first_parent_url |
(1] https://boundlesshg.com/ o Success boundlesshg.com No hitps Crawler Nane
13 https: 1. fpricing/ 1 Success boundlesshg.com Mo https Crawler https:/boundiesshg.com/
17 hitps://boundlesshg Mhow-it- ' i 1 Success boundlesshg.com Mo https. Crawler https://boundlesshg.com/
23 hittps://b com/t i 1 Success boundlesshg.com Mo https Crawler https://boundiesshg.com/
g MMips S o) D hat 1 Success boundlesshg.com Mo hitps Crawler https:/fboundiesshg.com/
is-an-employer-of-record/ 3 P i
; 5 Google
4404 e convg: d-armb- Not Set Success boundlesshg.com Mo hitps Search None
emirates/ Anabyti
alytics
Goagle
4407 hittps: | comdg ! Mot Set Success boundlesshg.com Mo hitps Search None
Analytics
Goaogle
4477 hitps://boundlesshg.com/hr-tech-ireland/ Mot Set Success boundlesshg.com MNo hitps Search None
Analytics
Google
4486 https] fgui aruguay/ Not Set Success boundlesshg.com No hitps Search None
Analytics
Google
4498 https:/boundlesshg.com/guides/siovenia/ Not Set Success boundlessho.com No hittps Search None
Analytics

279 rows x 71 columns

With 279 rows, it’s a small website. The next step is to select the desired columns which will comprise the
CWYV measures and anything that could possibly explain it:

target speedDist df = target crawl raw[['url', 'cumulative layout shift',
'"first contentful paint',

'largest contentful paint’,
'performance score', 'time to interactive',

'total blocking time',
'images without dimensions', 'perf budget fonts',

'font transfer size kib',
'"fonts files', 'images files',

'images not efficiently encoded’,
'images size kib',

'images transfer size kib',
'images without dimensions', 'media files',

'media size kib',
'media transfer size kib',

'next-gen format savings kib',
'offscreen images not deferred',

'other files', 'other size kib',
'other transfer size kib',

'passed font-face display urls',
'render blocking savings',

'resources_not http2',
'scaled images', 'perf budget total']]

target speedDist df

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url cumulative_layout_shift first_contentful_paint largest i_paint | _score time_to_interactive

0 hitps://boundlesshe.com/ 0.330 1757 3518 83 2111
13 https://boundlesshg.com/pricing/ 0.0%6 2459 2835 84 3273
17 https://ooundlesshg.comihow-it-works/countries/ 0.104 2395 2616 75 3825
23 https:/fboundlesshq.com/borderless-benefits/ 0139 1952 2578 90 2629

hitpsy/boundlessha.com/blog/emplayment/what-

36 Is-an-employer-of-record/ 0.236 2052 5380 59 3648
4404 thsu’fbaundleaahz.wmfguidssa’uni:a:li-;!: 0103 2108 9684 64 2711
4407 https://boundlessha.com/guides/vietnam/ 0104 1868 9427 Fal 2529
477 hitps: g.com/hr-tech-ireland/ 0214 2190 26818 83 3297
4486 hitps:/boundlesshg.com/guides/uruguay/ 0.104 2057 8480 66 2551
4498 https://bound: q. fguid la/ 0104 2113 8651 64 2760

279 rows x 29 columns

The dataframe columns have reduced from 71 to 29, and the CWV scores are more apparent.
Attempting to analyze the sites at the URL will not be terribly useful, so to make pattern identification
easier, we will classify the content by folder location:

section conds = [
target speedDist df['url'] == 'https://boundlesshg.com/',
target speedDist df['url'].str.contains('/guides/'),
target speedDist df['url'].str.contains('/how-it-works/")

section vals = ['home', 'guides', 'commercial']
target speedDist df['content'] = np.select (section conds, section vals,
default = 'blog')

We'll also convert the main metrics to a number:
cols = ['cumulative layout shift', 'first contentful paint’,
'largest contentful paint', 'performance score'’,

'time to interactive', 'total blocking time']

target speedDist df[cols] = pd.to numeric(target speedDist df[cols].stack(),
errors="'coerce') .unstack ()

target speedDist df

This results in the following:

= ; " font- " " -
I other files other size_kib other_transfer_size_kib facapsiuadl - :’:s render_blocking_savings resources not http2 scaled images perf _budget total content
0 o Q o 10550 o 20 Yes heme
o o a V] 8348 o o Yes blog
o o 1] 1] 8805 0 9 Yes commercial
o 0 a 0 aa72 0 o Yes blog
(V] o a o BBIS 0 li] Yos blog
. 0] 1] o B415 o (1] Yes guides
! 0 o a] 8327 o 1] Yes quides
o o 1] o B501 o 1 Yas blog
5 o o 1] o B501 o 1] Yes guides
] o 0 o 0 ;s 0 o Yes guides

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

A new column has been created in which each indexable URL is labeled by their content category.
Time for some aggregation using groupby on “content”:

speed dist agg = target speedDist df.groupby('content').agg({'url': 'count',
'performance score'}) .reset index()
speed dist agg

This results in the following:

content url performance_score

0 blog 66 68.636364
1 commercial 3 66.333333
2 guides 209 76.631579
3 home 1 83.000000

Most of the content are guides followed by blog posts with three offer pages. To visualize, we're going to use
a histogram showing the distribution of the overall performance score and color code the URLs in the score
columns by their segment.

The home page and the guides are by far the fastest.

target speedDist plt = (
ggplot (target speedDist df,

aes (x = 'performance score', fill = 'content')) +
geom_histogram(alpha = 0.8, bins = 20) +
labs(y = 'Page Count', x = '\nSpeed Score') +
#scale_x_continuous(breaks:range(o, 100, 20)) +
theme (legend position = 'right',
axis text x = element text(rotation=90, hjust=1l, size = 7))
)
target speedDist plt.save(filename = 'images/3 target speedDist plt.png',
height=5, width=8, units = 'in', dpi=1000)

target speedDist plt

The target_speedDist_plt plot (Figure 3-24) shows the home page (in purple) performs reasonably well
with a speed score of 84. The guides vary, but most of these have a speed above 80, and the majority of blog
posts are in the 70s.

>>>4f #ijackgoogleseo.com# B & 3 2. fih<<<

50-
40-
A content
B | I
> 0g
Q .
(&) . commercial
(1)
o
8 20- - guides
- home
10-
0-
25 50 75 100
Speed Score

Figure 3-24 Distribution of speed score by content type
Let’s drill down by CWV score category, starting with CLS:

target CLS plt = (
ggplot (target speedDist df,

aes (x = 'cumulative layout shift', fill = 'content')) +
geom_histogram(alpha = 0.8, bins = 20) +
labs(y = 'Page Count', x = '\ncumulative layout shift') +
#scale x continuous (breaks=range (0, 100, 20)) +
theme (legend position = 'right',

axis text x = element text(rotation=90, hjust=1l, size = 7))

)

target CLS plt.save(filename = 'images/3 target CLS plt.png',
height=5, width=8, units = 'in', dpi=1000)
target CLS plt

As shown in target_CLS_plt (Figure 3-25), guides have the least amount of shifting during browser
rendering, whereas the blogs and the home page shift the most.

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

200- N

150 -
» content
§ . blog
ﬁ 100- commercial
o guides
&

. home
50-
o -JE - .

0.3 0.6 c.9

cumulative_layout_shift
Figure 3-25 Distribution of CLS by content type

So we now know which content templates to focus our CLS development efforts.

target FCP plt = (
ggplot (target speedDist df,

aes(x = 'first contentful paint', fill = 'content')) +

geom_histogram(alpha = 0.8, bins = 30) +

labs(y = 'Page Count', x = '\nContentful paint') +

theme (legend position = 'right',

axis text x = element text(rotation=90, hjust=1l, size = 7))
)
target FCP plt.save(filename = 'images/3 target FCP plt.png',
height=5, width=8, units = 'in', dpi=1000)

target FCP plt

In this area, target_FCP_plt (Figure 3-26) shows no discernible trends here which indicates it’s an overall

site problem. So digging into the Chrome Developer Tools and looking into the network logs would be the
obvious next step.

>>>4f #ijackgoogleseo.com# B & 3 2. fih<<<

30-
- content
c
g 204 . blog
o . commercial
2 :
8 . guides
. home
10-
o- = .
1600 2000 2400 2800
Contentful paint
Figure 3-26 Distribution of FCP by content type
target LCP plt = (
ggplot (target speedDist df,
aes (x = 'largest contentful paint', fill = 'content')) +
geom_histogram(alpha = 0.8, bins = 20) +
labs(y = 'Page Count', x = '\nlargest contentful paint') +
theme (legend position = 'right',

axis text x = element text(rotation=90, hjust=1l, size = 7))

)

target LCP plt.save(filename = 'images/3 target LCP plt.png',
height=5, width=8, units = 'in', dpi=1000)
target LCP plt

target_LCP_plt (Figure 3-27) shows most guides and some blogs have the fastest LCP scores; in any case,
the blog template and the rogue guides would be the areas of focus.

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

125 -
100 -
o 75- content
E . blog
&} commercial
8 ;
ﬂ‘? 50- guides
] . home
25 ¥ —
5 +-— —_— i
ESEIDI 500{; ?SDD. 1EIEPEIDI
largest_contentful_paint
Figure 3-27 Distribution of LCP by content type
target FID plt = (
ggplot (target speedDist df,
aes(x = 'time to interactive', fill = 'content')) +
geom_histogram(alpha = 0.8, bins = 20) +
labs(y = 'Page Count', x = '\ntime to interactive') +
theme (legend position = 'right',
axis text x = element text(rotation=90, hjust=1l, size = 7))
)
target FID plt.save(filename = 'images/3 target FID plt.png',
height=5, width=8, units = 'in', dpi=1000)

target FID plt

The majority of the site appears in target_FID_plt (Figure 3-28) to enjoy fast FID times, so this would be
the least priority for CWV improvement.

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

200-

150 -
- content
g . blog
(o]
() commercial
g‘ 100 - id

guides
&
. home
50-

[+} 10600 20000 30000

time_to_interactive
Figure 3-28 Distribution of FID by content type

Summary
In this chapter, we covered how data-driven approach could be taken toward technical SEO by way of

e Modeling page authority to estimate the benefit of technical SEO recommendations to colleagues and
clients

Internal link optimization analyzed in different ways to improve content discoverability and labeling via
anchor text

Core Web Vitals to see which metrics require improvement and by content type

The next chapter will focus on using data to improve content and UX.

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A.Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_4

4. Content and UX

Andreas Voniatis?!

(1) Surrey, UK

Content and UX for SEO is about the quality of the experience you're delivering to your website users,
especially when they are referred from search engines. This means a number of things including but not
limited to

e Having the content your target audiences are searching for
e Content that best satisfies the user query

e Content creation: Planning landing page content

e Content consolidation: (I) Splitting content (in instances where “too much” content might be impacting
user satisfaction or hindering search engines from understanding the search intent the content is
targeting) and (II) merging content (in instances where multiple pages are competing for the same
intent)

e Fastto load - ensuring you're delivering a good user experience (UX)
e Renders well on different device types

By no means do we claim that this is the final word on data-driven SEO from a content and UX
perspective. What we will do is expose data-driven ways of solving the most important SEO challenge using
data science techniques, as not all require data science.

For example, getting scientific evidence that fast page speeds are indicative of higher ranked pages uses
similar code from Chapter 6. Our focus will be on the various flavors of content that best satisfies the user
query: keyword mapping, content gap analysis, and content creation.

Content That Best Satisfies the User Query

An obvious challenge of SEO is deciding which content should go on which pages. Arguably, getting this right
means you're optimizing for Google’s RankBrain (a component of Google’s core algorithm which uses
machine learning to help understand and process user search queries).

While many crawling tools provide visuals of the distributions of pages by site depth or by segment, for
example, data science enables you to benefit from a richer level of detail. To help you work out the content
that best satisfies the user query, you need to

e Map keywords to content
¢ Plan content sections for those landing pages
e Decide what content to create for target keywords that will satisfy users searching for them

Data Sources
Your most likely data sources will be a combination of

e Site auditor URL exports
e SERPs tracking tools

Keyword Mapping
While there is so much to be gained from creating value-adding content, there is also much to be gained
from retiring or consolidating content. This is achieved by merging it with another on the basis that they

https://doi.org/10.1007/978-1-4842-9175-7_4

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

share the same search intent. Assuming the keywords have been grouped together by search intent, the
next stage is to map them.

Keyword mapping is the process of mapping target keywords to pages and then optimizing the page
toward these - as a result, maximizing a site’s rank position potential in the search result. There are a
number of approaches to achieve this:

e TF-IDF

e String matching

e Third-party neural network models (BERT, GPT-3)
¢ Build your own Al

We recommend string matching as it’s fast, reasonably accurate, and the easiest to deploy.

String Matching

String matching works to see how many strings overlap and is used in DNA sequencing. String matching can
work in two ways, which are to either treat strings as one object or strings made up of tokens (i.e., words
within a string). We’re opting for the latter because words mean something to humans and are not serial
numbers. For that reason, we'll be using Sorensen-Dice which is fast and accurate compared to others we've
tested.

The following code extract shows how we use string distance to map keywords to content by seeking
the most similar URL titles to the target keyword. Let’s go, importing libraries:

import requests

from requests.exceptions import ReadTimeout
from json.decoder import JSONDecodeError
import re

import time

import random

import pandas as pd

import numpy as np

import datetime

from client import RestClient

import Jjson

import py stringmatching as sm

from textdistance import sorensen dice
from plotnine import *

import matplotlib.pyplot as plt

target = 'wella'

We'll start by importing the crawl data, which is a CSV export of website auditing software, in this case
from “Sitebulb”:

crawl raw =
pd.read csv('data/www_wella com internal html urls by indexable status filtere

Clean up the column heading title texts using a list comprehension:

crawl raw.columns =
[col.lower () .replace('(','") .replace(')"',"'") .replace('s',"'") .replace("' ',
| |

)

~for col in crawl raw.columns]
crawl df = crawl raw.copy ()
We’re only interested in indexable pages as those are the URLs available for mapping:

crawl df = crawl df.loc[crawl df['indexable'] == 'Yes']
crawl df

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

This results in the following:

url ur crawl_depth scheme crawl_source first_parent_url url_source hitp_status http_status code indexable

° hitps:/fwww.wella.com/intermational/wella- XML

M 7 Not Set https XML Sitemap Mone Sit OK 200 Yas

))))) XML
1 https:/fwww.wella.com/international/hair-style.... 1 Not Set hitps XML Sitemap Mone Sitemap OK 200 Yes
2 https:/www.wella.com/international/hairstyle... 4 NotSet https XML Sitemap None o XML oK 200 Yes

The crawl import is complete. However, we're only interested in the URL and title as that’s all we need for
mapping keywords to URLs. Still it’s good to import the whole file to visually inspect it, to be more familiar
with the data.

urls titles = crawl df[['url', 'title']].copy()
urls titles

This results in the following:

url title

0 https://www.wella.com/international/wella-tuto... How to Style a Faux Hawk Like a Headline Act |...
1 https://www.wella.com/international/hair-style... Silvikrin Classic Voluminous Hold Hairspray 75...
2 https://www.wella.com/international/hair-style... Wellaflex 2nd Day Volume Strong Hold Mousse, H...
3 https://www.wella.com/international/hair-color... Wella Koleston Permanent Hair Color Cream Fore...
4 https://www.wella.com/international/hair-color... Wella Koleston Permanent Hair Color Cream With...
5 https://www.wella.com/international/hair-style... Wellaflex Mega Strong Hold Hairspray, Hold: 5+...
6 https://www.wella.com/international/hair-style... ~Wella Deluxe 24 Hour Wonder Volume Mousse 75 m...
7 https://www.wella.com/international/hair-color... Wella Koleston Permanent Hair Color Cream With...
8 https://www.wella.com/international/hair-style... Weliaflex Hydro Style Extra Strong Hold Hairsp...
9 https://www.wella.com/international/hair-style... Wella Shockwaves Ultra Strong Power Hold Gel S...
10 https://www.wella.com/international/hair-color... Wella Koleston Permanent Hair Color Cream With...

The dataframe is showing the URLs and titles. Let’s load the keywords we want to map that have been
clustered using techniques in Chapter 2:

keyword discovery = pd.read csv('data/keyword discovery.csv)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

topic keyword se_results_count topic_results topic_group

7 black hair black hair 7340000000 7340000000 1
14 brown hair brown hair 5170000000 5170000000 2
8 blonde hair blonde hair 2730000000 2730000000 3
20 color perfect color perfect 2270000000 2270000000 4
104 virtual try on virtual try on 1670000000 2270000000 4
103 virtual try on virtual try on tool 600000000 2270000000 4
61 how hair coloring works how hair coloring works 2140000000 2140000000 5
26 cover roots quick hair root touch ups 816000000 1941000000 6
27 cover roots the best root touch 169000000 1941000000 6
28 cover roots cover roots at home fast 197000000 1941000000 6
29 cover roots cover roots 390000000 1941000000 6

The dataframe shows the topics, keywords, number of search engine results for the keywords, topic web
search results, and the topic group. Note these were clustered using the methods disclosed in Chapter 2.

We’ll map the topic as this is the central keyword that would also rank for their topic group keywords.
This means we only require the topic column.

total mapping simi = keyword discovery[['topic']].copy () .drop duplicates|()

We want all the combinations of topics and URL titles before we can test each combination for string
similarity. We achieve this using the cross-product merge:

total mapping simi = total mapping simi.merge (urls titles, how = 'cross')

A new column “test” is created which will be formatted to remove boilerplate brand strings and force
lowercase. This will make the string matching values more accurate.

total mapping simi['test'] = total mapping simi['title']

total mapping simi['test'] total mapping simi['test'].str.lower ()
total mapping simi['test'] = total mapping simi['test'].str.replace(' \|
wella', '"'")

total mapping simi

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

wrl

title

test

‘topic

o black hair

1 black hair

2 black hair

3 black hair

4 black hair
e ornts
aoete MaTuRlon
N s s
g Mfunton
30819 Jex W

https:/fwww.wella.com/finternational/wella-tuto...

https://www.wella.com/international/hair-style...

How to Style a Faux Hawk Like a Headline Act |...

Silvikrin Classic Voluminous Hold Hairspray 75...

ww.wella ational/hair-style...
hitps://www.wella.com/international/hair-color...

hitps://www.wella.com/international/hair-color...

https:/fwww.wella.com/international/curty-and-...

hitps://www.wella.com/international/wella-
maga...

https:/fwww.wella com/international/styling

hittps:fwww.wella.com/international/about-well...

https:/fwww.wella. ional/wella-x

you

30820 rows x 4 columns

Now we're ready to compare strings by creating a new column “simi,” meaning string similarity. The scores

2nd Day Volume Strong Hold Mousse,

H...
Weila Koleston Permanent Hair Color Cream
Faore...

Wella Koleston Permanent Hair Color Cream
With...

Style Wavy & Curly Hair | Curly Hair Products ...
Coloring at home for the first time? | Wella

Wella - Halr passion and expertise, shared wit...,
Wella Color by You | Mix, match and wear the h..,

Wella X You LP | Wella

how to style a faux hawk like a headline act
silvikrin classic voluminous hold hairspray 75m|

wellaflex 2nd day volume strong hold mousse,
...

wella koleston pemrmanent hair color cream fore...

wella koleston permanent hair color cream with...

style wavy & curly hair | curly hair products
coloring at home for the first tima?

wella - hair passion and expertise, shared wit...
weilla color by you | mix, match and wear the h...

wella x you Ip

will take the topic and test columns as inputs and feed the sorensen_dice function imported earlier:

total mapping simi['simi']

total mapping simi

= total mapping simi.loc[:,
'test']].apply(lambda x: sorensen dice (*x),

["topic',

axis=1)

topic url title test simi

0 bisck halr htfReiwaw walla.conirtemationaliwellactiubo,., oW to.Style @ Faux Hawk Likea "’::"';” how to style a faux hawk like a headline act 0.206296

1 black hair https:/fwww.wella.com/internationalfhair-styla... Silvikrin Classic Violuminous Hold Ha]rﬁ;;):' sitvikrin classic voluminous hold ha]m?p;x 0.310345

2 black hair https:/www.wella. ational/hair-styla... e iatar S Hay, "'““m’:"’wm;?;*gf [Eatafind ey, ""'m::u":if':f 0.166667

3 black hair hitps:/ i i o i Wella Koleston Permanant Hair Color gr::n waella keleston permanent hair color t;:a:m 0.257573

4 black hair https://www.wella, o fioralhaireolom: Wella Koleston Permanent Hair Color &rﬁ:ﬂ wella koleston permanent hair color m:m 0.202020
otz M U 1P hitps:/Awww wella.com/international/cury-and-... Shyla:Vavy & Claly Balr | Sty Hair p"’d“':ff style wavy & curly hair | curly hair products 0.360656
aogte sl Pttps ‘r“"""““""w"w""m"’""?;;:f‘_ Coloring at home for the first time? | Wella coloring at home for the first time? 0.461538
30817 half up';‘oo;: o e iirg Wella - Hair passion and expertise, sh:r':? wella - hair passion and expertise, sh:":f 0.382353
30818 half upk:‘oa;: https:/Awww.wella.com/interational/about-well.. ‘Wella Color by You | Mix, match and wear :‘hs wella color by you | mix, match and wear ;ho 0.296296
aoge M "'pk:“’;: hittps:/www.wella wella-x-you Wella X You LP | Walla wellaxyoulp 0533333

30820 rows = 5 columns

The simi column has been added complete with scores. A score of 1 is identical, and 0 is completely
dissimilar. The next stage is to select the closest matching URLs to topic keywords:

keyword mapping grp

total mapping simi.copy ()

The dataframe is first sorted by similarity score and topic in descending order so that the first row by
topic is the closest matching:

keyword mapping grp
False)

ascending

keyword mapping grp.sort values(['simi',

'"topic'],

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

After sorting, we use the first() function to select the top matching URL for each topic using the
groupby() function:

keyword mapping grp =
keyword mapping grp.groupby ('topic') .first () .reset index()

keyword mapping grp

This results in the following:

topic url title test simi

1] 80s rock'n'roll hairstyle hitps://www.wella. lia-tuto... Get the 80's rock'n’roll hairstyle. get the 80's rock'n'roll hairstyle. 0.833333
accessorize braided . . A your braided hairstyle fora accessorize your braided hairstyle for

1 i hitps:/fwww. wella.comy/ir al/welia-tuto... i iy 0,725000
2 back comb safely https:www.wella.com/international/wella-tuto... Back comb safely for stylish results! back comb safely for stylish results! 0.603774
3 bardot look hitps://www.wella.com/international/wella-tuto.., BARDOT LOOK | Wella bardot look 1,000000
4 beachy waves hairstyle R LR AR R ’i’;;f Hair color safety tests | Wella hair color safsty tests 0.666667
5 best hair color results ““‘”"W‘""'“"'a'mw'""’m’m"aﬂ:;!f' Hair color safety tests | Wella hair color safety tests 0.826087
(-] big hair volume httpsy/fwaww.walla ional/blonde-hai Blonde Hair | Weila bionde hair 0.692308
T black hair https://www.wella, com/international/black-hair Black Hair | Wella black hair 1.000000
8 blonde hair https:Ywww.wella.cominternational/blonde-hair Blonde Hair | Wella blonde hair 1.000000

Each topic now has its closest matching URL. The next stage is to decide whether these matches are good
enough or not:

keyword mapping =
"simi']].copy ()

keyword mapping grp[['topic', 'url', 'title',

At this point, we eyeball the data to see what threshold number is good enough. I've gone with 0.7 or
70% as it seems to do the job mostly correctly, which is to act as the natural threshold for matching test
content to URLs.

Using np.where(), which is equivalent to Excel’s IF formula, we'll make any rows exceeding 0.7 as
“mapped” and the rest as “unmatched”:

keyword mapping['url'] < 0.7,

'unmatched’',

= np.where (keyword mapping['simi']
keyword mapping['url'])

keyword mapping['mapped'] = np.where (keyword mapping['simi'] =< 0.7, 'No',

'Yes') B
keyword mapping
This results in the following:

topic url title simi mapped

0 80s rock'n'roll hairstyle hitps://www.wella.com/international/wella-tuto... Get the 80's rock'n'roll hairstyle. 0.833333 Yes

1 braided hairstyk https://www.wella.com/finternational/wella-tuto... Accessorize your braided hairstyle for a chic .. 0.725000 Yes

2 back comb safely unmatched Back comb safely for stylish results! 0.603774 Mo

3 bardot look hitpsi/fwww.wella.com/finternational/wella-tuto... BARDOT LOOK | Wella 1.000000 Yes

4 beachy waves hairstyle unmatched Hair color safety tests | Wella 0.666667 No

5 best hair color results httpsyfwww.wella.com/international/wella-maga... Hair color safety tests | Wella 0.826087 Yes

6 big hair volume unmatched Blonde Hair | Wella 0.692308 No

7 black hair https://www.wella,com/international/black-hair Black Hair | Wella 1.000000 Yes

8 blonde hair https:/fwww.wella.com/international/blonde-hair Blonde Hair | Wella 1.000000 Yes

9 blunt cut bob unmatched Fun and functional braids. 0.512821 No

10 boost fine & thinning hair httpsy/www.wella i -and-t... Boost Fine & Thinning Hair | Styling Essential... 0.712329 Yes

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

Finally, we have keywords mapped to URLs and some stats on the overall exercise.

keyword mapping aggs
keyword mapping aggs =
keyword mapping aggs.groupby ('mapped') .count () .reset index()

keyword mapping.copy ()

Keyword mapping aggs
This results in the following:

mapped topic wurl title simi

0 No 32 32 32 32

1 Yes 60 60 60 60

String Distance to Map Keyword Evaluation

So 65% of the 92 URLs got mapped - not bad and for the minimum code too. Those unmapped will have to
be done manually, probably because

e Existing unmapped URL titles are not optimized.
¢ New content needs to be created.

Content Gap Analysis

Search engines require content to rank as a response to a keyword search by their users. Content gap
analysis helps your site extend its reach to your target audiences by identifying keywords (and topics)
where your direct competitors are visible, and your site is not.

The analysis is achieved by using search analytics data sources such as SEMRush overlaying your site
data with your competitors to find

¢ (Core content set: Of which keywords are common to multiple competitors
e Content gaps: The extent to which the brand is not visible for keywords that form the content set

Without this analysis, your site risks being left behind in terms of audience reach and also appearing
less authoritative because your site appears less knowledgeable about the topics covered by your existing
content. This is particularly important when considering the buying cycle. Let’s imagine you’re booking a
holiday, and now imagine the variety of search queries that you might use as you carry out that search,
perhaps searching by destination (“beach holidays to Spain”), perhaps refining by a specific requirement
(“family beach holidays in Spain”), and then more specific including a destination (Majorca), and perhaps
(“family holidays with pool in Majorca”). Savvy SEOs think deeply about mapping customer demand (right
across the search journey) to compelling landing page (and website) experiences that can satisfy this
demand. Data science enables you to manage this opportunity at a significant scale.

Warnings and motivations over; let’s roll starting with the usual package loading:

import re

import time

import random
import pandas as pd
import numpy as np

0S and Glob allow the environment to read the SEMRush files from a folder:

import os
import glob

from pandas.api.types import is string dtype
from pandas.api.types import is numeric dtype

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

import uritools

Combinations is particularly useful for generating combinations of list elements which will be used to
work out which datasets to intersect and in a given order:

from itertools import combinations
To see all columns of a dataframe and without truncation:
pd.set option('display.max colwidth', None)

These variables are set in advance so that when copying this script over for another site, the script can
be run with minimal changes to the code:

root domain = 'wella.com'

hostdomain = 'www.wella.com'

hostname = 'wella'

full domain = 'https://www.wella.com'
target name = 'Wella'

With the variables set, we're now ready to start importing data.

Getting the Data
We set the directory path where all of the SEMRush files are stored:

data dir = os.path.join('data/semrush/")
Glob reads all of the files in the folder, and we store the output in a variable “semrush_csvs”:

semrush csvs = glob.glob(data dir + "/*.csv")
Semrush csvs

Print out the files in the folder:

['data/hair.com-organic.Positions-uk-20220704-2022-07-05T14 04 59Z.csv',
'data/johnfrieda.com-organic.Positions-uk-20220704-2022-07-
05T13 29 57Z.csv’,
'data/madison-reed.com-organic.Positions-uk-20220704-2022-07-
05T13 38 32Z.csv',
'data/sebastianprofessional.com-organic.Positions-uk-20220704-2022-07-
05T13 39 13Z.csv',
'data/matrix.com-organic.Positions-uk-20220704-2022-07-05T14 04 12Z.csv',
'data/wella.com-organic.Positions-uk-20220704-2022-07-05T13 30 29Z.csv',
'data/redken.com-organic.Positions-uk-20220704-2022-07-05T13 37 31Z.csv',
'data/schwarzkopf.com-organic.Positions-uk-20220704-2022-07-
05T13 29 03Z.csv',
'data/garnier.co.uk-organic.Positions-uk-20220704-2022-07-
05T14 07 16Z.csv']

Initialize the final dataframe where we'll be storing the imported SEMRush data:
semrush raw df = pd.DataFrame ()

Initialize a list where we’ll be storing the imported SEMRush data:
semrush 1i = []

The for loop uses the pandas read_csv() function to read the SEMRush CSV file and extract the filename
which is put into a new column “filename.” A bit superfluous to requirements but it will help us know where

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

the data came from.
Once the data is read, it is added to the semrush_li list we initialized earlier:

for cf in semrush csvs:
df = pd.read csv(cf, index col=None, header=0)

df['filename'] = os.path.basename (cf)
df['filename'] = df['filename'].str.replace('.csv', ''")
df['filename'] = df['filename'].str.replace(' ', '.")

semrush 1i.append (df)
semrush raw df = pd.concat (semrush 1i, axis=0, ignore_ index=True)

Clean up the columns to make these lowercase and data-friendly. A list comprehension can also be used,
but we used a different approach to show an alternative.

semrush raw df.columns =
semrush raw df.columns.str.strip().str.lower().str.replace(' ',

' ').str.replace('(', '').str.replace(')', '')

A site column is created so we know which content the site belongs to. Here, we used regex on the
filename column, but we could have easily derived this from the URL also:

semrush raw df['site'] = semrush raw df['filename'].str.extract (' (.*?)\-")
semrush raw df.head()

This results in the following:

keyword position previous_position search_volume keyword difficulty cpc url ftraffic traffic_% traffic_cost competition number
1 & 8 14800 a7 g55 IHEEfwwwhaklomibioned: g, 224 1838.0 051
balayage balayage-ideas. html
ginger https:www. hair.com/ginger-
i kioF 2 2 2400 47 211 hoir-calon i 316 1.36 668.0 0.99 2
hair
colors hittps:www.hair.com/hair-
v Bide 1 1 1000 51 084 dolorlorpaesakin il 248 1.07 233.0 0.83
skin
3 bd“ 9 12 9900 g g2 Meswhancomidede g, 1.02 883.0 0.66 2
"31‘;.': brown-hair-ideas. htrnl : . . :
pest hitps:/fwww.hair.com/best-
4 puple 5 5 4400 66 040 i “‘I""‘S:"‘C" e 18 0.83 7.0 1.00
oo purple-shampoo. htm!

That’s the dataframe, although we’re more interested in the keywords and the site it belongs to.
semrush raw presect = semrush raw sited.copy/()
semrush raw presect = semrush raw presect[['keyword',6 'site']]

semrush raw presect

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword site
0 blonde balayage hair.com
1 ginger hair color hair.com
2 hair colors for pale skin hair.com
3 dark brown hair hair.com
4 best purple shampoo hair.com

wmn

118676 honey blonde hair dye for dark hair garnier.co.uk

118677 dye hair blonde garnier.co.uk
118678 colour touch shade chart garnier.co.uk
118679 red and blue hair dye garnier.co.uk
118680 garnier 3-1 garnier.co.uk

118681 rows x 2 columns

The aim of the exercise is to find keywords to two or more competitors which will define the core content
set.

To achieve this, we will use a list comprehension to split the semrush_raw_presect dataframe by site
into unnamed dataframes:

dfl, df2, df3, df4, df5, dfe, df7, df8, df9 = [x for , x in
semrush raw presect.groupby (semrush raw presect['site'])]

Now that each dataframe has the site and keywords, we can dispense with the site column as we're only
interested in the keywords and not where they come from.
We start by defining a list of dataframes, df list:

df list = [dfl, df2, df3, df4, df5, dfe, df7, df8, df9]
Here’s an example; df1 is Garnier:
dfl

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword site
100596 garnier garnier.co.uk
100597 hair colour garnier.co.uk
100598 garnier.co.uk garnier.co.uk
100599 garnier hair color garnier.co.uk
100600 garnier hair colour garnier.co.uk

118676 honey blonde hair dye for dark hair garnier.co.uk

118677 dye hair blonde garnier.co.uk
118678 colour touch shade chart garnier.co.uk
118679 red and blue hair dye garnier.co.uk
118680 garnier 3-1 garnier.co.uk

18085 rows x 2 columns

Define the function drop_col, which as the name suggests

1.
Drops the column (col) of the dataframe (df)

2.
Takes the desired column (list_col)

Converts the desired column to a list

Adds the column to a big list (master_list)
def drop col(df, col, listcol, master list):
df.drop(col, axis = 1, inplace = True)

df tolist = df[listcol].tolist()
master list.append(df tolist)

Our master list is initiated as follows:
keywords lists = []

List comprehension which will go through all of the keyword sets in df list, and these as lists to get a list
of keyword lists.

= [drop col(x, 'site', 'keyword', keywords lists) for x in df list]

The lists within the list of lists are too long to print here; however, the double bracket at the beginning
should show this is indeed a list of lists.

keywords lists

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

This results in the following:

[['garnier',
'hair colour',
'garnier.co.uk',
'garnier hair color',
'garnier hair colour',
'garnier micellar water',
'garnier hair food',
'garnier bb cream',
'garnier face mask',
'bb cream from garnier',
'garnier hair mask',
'garnier shampoo',
'hair dye',

The list of keyword lists is exported into separated lists:

Ist 1, 1st 2, 1st 3, 1lst 4, 1st 5, 1st 6, 1lst 7, 1st 8, 1lst 9 =
keywords lists

List 1 is shown as follows:
Ist 1
This results in the following:

['garnier',

'hair colour',
'garnier.co.uk',

'garnier hair color',
'garnier hair colour',
'garnier micellar water',
'garnier hair food',
'garnier bb cream',
'garnier face mask',

'bb cream from garnier',
'garnier hair mask',
'garnier shampoo',

'hair dye',

'garnier hair dye',
'garnier shampoo bar',
'garnier vitamin c¢ serum',

Now we want to generate combinations of lists so we can control how each of the site’s keywords get
intersected:

values list = [1lst 1, 1st 2, 1lst 3, 1st 4, 1st 5, 1lst 6, 1lst 7, 1lst 8,
Ist 9]

The dictionary comprehension will append each list into a dictionary we create called keywords_dict,
where the key (index) is the number of the list:

keywords dict = {listo: values list[listo] for listo in
range (len(values list))}

When we print the keywords_dict keys

keywords dict.keys()

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

we get the list numbers. The reason it goes from 0 to 8 and not 1 to 9 is because Python uses zero
indexing which means it starts from zero:

dict keys([O, 1, 2, 3, 4, 5, 6, 7, 8])
Now we'll convert the keys to a list for ease of manipulation shortly:

keys list = list(keywords dict.keys())
keys list

This results in the following:
(o, 1, 2, 3, 4, 5, 6, 7, 8]

With the list, we can construct combinations of the site's keywords to intersect. The intersection of the
website keyword lists will be the words that are common to the websites.

Creating the Combinations
Initialize list_combos which will be a list of the combinations generated:

list combos = []

List comprehension using the combinations function picking four site keywords at random and storing
itinlist combos using the append() function:

= [list combos.append(comb) for comb in combinations (keys list, 4)]
This line converts the combination into a list so that list_ combos will be a list of lists:

list combos = [list (combo) for combo in list combos]

list combos
This results in the following:

[eo,
(o,
(o,
(o,
(o,
o,
(o,
(o,
(o,

~
~
~

~
~
~

~
~
~

~ N N~ 0~
~ N N~ 0~
~ N 0~ 0~

~
~
~

PR R R R R R PR

~

W wwhhhdNDNDNND

~

o) Ul 00 1 O U1 i W

~

With the list of lists, we're ready to start intersecting the keyword lists to build the core content
(keyword) set.

Finding the Content Intersection
Initialize an empty list keywords_intersected:

keywords intersected = []

Define the multi_intersect function which takes a list of dictionaries and their keys, then finds the
common keywords (i.e., intersection), and adds it to the keywords_intersected list.

The function can be adapted to just compare two sites, three sites, and so on. Just ensure you rerun the
combinations function with the number of lists desired and edit the function as follows:

def multi intersect(list dict, combo):

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

list dict[combo[0]]

list dict[combo[1]]

= list dict[combo[2]]

= list dict[combo[3]]

intersection = list(set(a) & set(b) & set(c) & set(d))
keywords intersected.append (intersection)

0.0 0w

Using the list comprehension, we loop through the list of combinations list_ combos to run the
multi_intersect function which takes the dictionary containing all the site keywords (keywords_dict), pulls
the appropriate keywords, and finds the common ones, before adding to keywords_intersected:

= [multi intersect (keywords dict, combo) for combo in list combos]
And we get a list of lists, because each list is an iteration of the function for each combination:
keywords intersected
This results in the following:

[['best way to cover grey hair',
'rich red hair colour',
'hair dye colors chart',
'different shades of blonde hair',
'adding colour to grey hair',
'cool hair colors',
'dark red hair',
'light brown toner',
'medium light brown hair',
'hair color on brown skin',
'highlights to cover grey in dark brown hair',
'auburn color swatch',

Let's turn the list of lists into a single list:

flat keywords intersected = [elem for sublist in keywords intersected for
elem in sublist]

Then deduplicate it. list(set(the_list_you_want_to_de-duplicate)) is a really helpful technique to
deduplicate lists.

unique keywords intersected = list(set(flat keywords intersected))
print (len(flat keywords intersected), len(unique keywords intersected))

This results in the following:

87031 8380

There were 87K keywords originally and 8380 keywords post deduplication.

unique keywords intersected

This results in the following:

['hairspray for holding curls',
'burgundy colour hair',

'cool hair colors',

'dark red hair',

'color stripes hair',

'for frizzy hair products',

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

'blue purple hair',

'autumn balayage 2021',

'ash brown hair color',

'blonde highlights in black hair',
'what hair colour will suit me',
'hair gloss treatment at home',
'dark roots with red hair',
'silver shoulder length hair',
'mens curly hair',

'ash brunette hair',

'toners for grey hair',

That'’s the list, but it’s not over yet as we need to establish the gap, which we all want to know.

Establishing Gap

The question is which keywords are “Wella” not targeting and how many are there?
We'll start by filtering the SEMRush site for the target site Wella.com:

target semrush = semrush raw sited.loc[semrush raw sited['site'] ==
root domain]

And then we include only the keywords in the core content set:
target on =
target semrush.loc[target semrush['keyword'].isin(unique keywords intersected)

target on

This results in the following:

yword positi |previous_f i search_volume keyword_difficulty cpc url traffic traffic_% traffic_cost comp

60526 balayage g 11 60500 72 ase ttpabogwela.comyghfitiabes.. 4 ps 1.04 48200
balayage
brown to hitps://blog.wella.com/gb/foclproot-

60837 blonde hair L 1 2400 A way-go-brown-blonde-hair B use 8360

60542 copper hair 4 6 8100 40 278 hipsiiblogwella.cor “g"‘fmﬁa"‘if_'::l‘; 526 047 1463.0

60545 auburn hair 10 9 22200 54 204 Mipsiiblogwellacom/ghiaubumchair- 0, 034 1094,0
color-ideas-and-formulas

80548 yellow hair 1 1 1200 00 TR O on il com/ghihons katope: oy 043 0.0

yellow-hair

Let’s get some stats starting with the number of keywords in the preceding dataframe and the number of
keywords in the core content set:

print (target on[['keyword'].drop duplicates() .shape[0],
len (unique keywords intersected))

This results in the following:
6936 8380

So just under 70% of Wella’s keyword content is in the core content set, which is about 1.4K keywords
short.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

To find the 6.9K intersect keywords, we can use the list and set functions:

target on list = list(set(target semrush['keyword'].tolist()) &
set (unique keywords intersected))
target on list[:10]

This results in the following:

['hairspray for holding curls',
'burgundy colour hair',

'cool hair colors',

'dark red hair',

'blue purple hair',

'autumn balayage 2021°',

'ash brown hair color',

'blonde highlights in black hair',
'what hair colour will suit me',
'hair gloss treatment at home']

To find the keywords that are not in the core content set, that is, the content gap, we’ll remove the target
SEMRush keywords from the core content set:

target gap = list (set(unique keywords intersected) -
set (target semrush['keyword'].tolist()))

print (len(target gap), len(unique keywords intersected))
target gap[:10]

This results in the following:

['"bleaching hair with toner',

'color stripes hair',

'for frizzy hair products',

'air dry beach waves short hair',

'does semi permanent black dye wash out',
'balayage for dark skin',

'matte hairspray',

'mens curly hair',

'how to change hair color',

'ginger and pink hair']

Now that we know what these gap keywords are, we can filter the dataframe by listing keywords:

cga_semrush =
semrush raw sited.loc[semrush raw sited['keyword'].isin(target gap)]

cga_semrush

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

keyword position previous position search_volume keyword difficulty cpc url traffic traffic_% traffic_cost competition 1
hair dye https:/fwww.halr.com/dark-
42 Tokecies 8 T 2800 64 0.94 i bk e Fa 69 0.29 65.0 0.56
best hair
hittps://www.hair.com/halr-
78 color Tol 3 3 590 53 0.52 color-for-pale-skin htmi 48 0.20 250 0.64
pale skin
best hair
color for .
5 hitps://www.hair.com/best-
92 pale skin 1 1 170 51 052 S il i i 42 0.18 21.0 0.51
and blue ’
eyes
color
s hittps://www.halr.com/skunk-
109 s{ngﬁ 11 11 1900 38 0.26 stripe-hairhtml 36 0.15 8.0 1.00
best hair
color for ’) —
112 biue eyes 1 1 140 49 0.87 i el a4 014 30.0 0.95

and fair hair-colors-blue-eyes.html

skin

We only want the highest ranked target URLs per keyword, which we’ll achieve with a combination of
sort_values(), groupby(), and first():

cga_unique =
cga_semrush.sort values ('position') .groupby ('keyword').first () .reset index()
cga_unique(['project'] = target name
To make the dataframe more user-friendly, we'll prioritize keywords by
cga_unique = cga unique.sort values('search volume', ascending = False)

Ready to export:

cga_unique.to csv('exports/cga unique.csv')
cga_unique

Now it’s time to decide what content should be on these pages.

Content Creation: Planning Landing Page Content

Of course, now that you know which keywords belong together and which ones don’t, and which keywords
to pursue thanks to the content gap analysis, the question becomes what content should be on these pages?
One strategy we're pursuing is to

Look at the top 10 ranking URLs for each keyword

Extract the headings (<h1>, <h2>) from each ranking URL

Check the search results for each heading as writers can phrase the intent differently
Cluster the headings and label them

Count the frequency of the clustered headings for a given keyword, to see which ones are most popular
and are being rewarded by Google (in terms of rankings)

Export the results for each search phrase

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

This strategy won't work for all verticals as there’s a lot of noise in some market sectors compared to
others. For example, with hair styling articles, a lot of the headings (and their sections) are celebrity names
which will not have the same detectable search intent as another celebrity.

In contrast, in other verticals this method works really well because there aren’t endless lists with the
same HTML heading tags shared with related article titles (e.g., “Drew Barrymore” and “54 ways to wear the
modern Marilyn”).

Instead, the headings are fewer in number and have a meaning in common, for example, “What is
account-based marketing?” and “Defining ABM,” which is something Google is likely to understand.

With those caveats in mind, let’s go.

import requests

from requests.exceptions import ReadTimeout
from json.decoder import JSONDecodeError
import re

import time

import random

import pandas as pd

import numpy as np

import datetime

import requests

import json

from datetime import timedelta

from glob import glob

import os

from client import RestClient

from textdistance import sorensen dice

from plotnine import *

import matplotlib.pyplot as plt

from mizani.transforms import trans

from pandas.api.types import is string dtype
from pandas.api.types import is numeric dtype
import uritools

This is the website we're creating content for:

target = 'on24'

These are the keywords the target website wants to rank for. There’s only eight keywords, but as you'll
see, this process generates a lot of noisy data, which will need cleaning up:

queries = ['webinar best practices',
'webinar marketing guide',
'webinar guide',
'funnel marketing guide',
'scrappy marketing guide',
'b2b marketing guide',
'how to run virtual events',
'webinar benchmarks']

Getting SERP Data

Import the SERP data which will form the basis of finding out what content is Google rewarding for the sites
to rank in the top 10:

serps _input = pd.read csv('data/serps input ' + target + '.csv')
serps_input

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

keyword rank url se_results_count domain title is_video
funnel What Is A Marketing Funnel?
0 marketing 1 hitpsJ/www.mageplaza fhlog ing-funnel.htmi 14800000 www,mageplaza.com A Step-By-Step Guide - None
quide Mageplaza
1 wi“:t‘."e' 2 bilbicio s .comfiog-pos L 14800000 i i MHa:kwe:? c?aw: ;0 o Fal
™ g marketing/how-to-create-marketing-funnel/ Vet ainghagrain.com ing Furmel Stop by i
guide Step
funnel
2 marketing 3 Mone 14800000 None None MNone
guide
funnel Marketing Funnals for
3 marketing 4 https://ahrefs.com/blog/marketing-funnels/ 14800000 ahrefs.com Beginners: A Comprehansive False
guide Guide
funnel The Marketing Funnel:
4 marketing 5 https://www.hotjar.com/blog/marketing-funnel/ 14900000 www.hotjarcom Stages, Strategies, & How to False
guide Optimize

The extract function from the TLD extract package is useful for extracting the hostname and domain name
from URLs:

from tldextract import extract

serps_input clean = serps input.copy()
Set the URL column as a string:

serps_input clean['url'] = serps input clean['url'].astype(str)
Use lambda to apply the extract function to the URL column:

serps_input clean['host'] = serps input clean['url'].apply(lambda x:
extract (x))

Convert the function output (which is a tuple) to a list:
serps_input clean['host'] = [list(lst) for 1lst in serps input clean['host']]
Extract the hostname by taking the penultimate list element from the list using the string get method:
serps_input clean['host'] = serps input clean['host'].str.get(-2)
The site uses a similar logic as before:
serps_input clean['site'] = serps input clean['url'].apply(lambda x:

extract (x))
serps_input clean['site']

[list(lst) for 1lst in serps input clean['site']]

Only this time, we want both the hostname and the top-level domain (TLD) which we will join to form
the site or domain name:

serps_input clean['site'] = serps input clean['site'].str.get(-2) + '.'
+serps_input clean['site'].str.get (-1)

serps_input clean

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

eyword rank url se_results_count domain title is_video host site
What Is A
funnel hittps:ffwv ! foh ruf:glt'l?ng
A Fwrw g/marketing-
arkar!ng 1 Sanral il 14800000 www.mageplaza.com Step-By-Step Nah mageplaza mageplaza.com
guide %
Guide -
Mageplaza
How to Create
funnel hittps:/fwww singlegrain.com/blog- a Powarful
arketing 2 posts/content-marketing/how-to-create- 14800000 www.singlegrain.com Marketing False inglegrai ingl com
quide marketing-funnel’ Funnel Step-
by-Step
funnel
arketing 3 nan 14900000 HNaN MaN NaN nan nan,
guide
Marketing
funnel Funnels for
arketing 4 https://ahref: f g-funnals/ 14800000 ahrafs.com Beginners: & False ahrefs ahrefs.com
guide Comprehensive
Guide
The Marketing
funnel : . i o Funnel: Stages,
arketing 5 Itipe] G Dg'fmar:,(::":i 14200000 www.hotjar.com Strategies, & False hatjar hotjar.com
guide How to
Optimize

The augmented dataframe shows the host and site columns added.
This line allows the column values to be read by setting the column widths to their maximum value:

pd.set option('display.max colwidth', None)

Crawling the Content
The next step is to get a list of top ranking URLs that we'll crawl for their content sections:

serps_to crawl df = serps input clean.copy ()

There are some sites not worth crawling because they won't let you, which are defined in the following
list:

dont crawl = ['wikipedia', 'google', 'youtube', 'linkedin', 'foursquare'’,
'amazon',
'twitter', 'facebook', 'pinterest', 'tiktok', 'quora', 'reddit', 'None']

The dataframe is filtered to exclude sites in the don’t crawl list:

serps to crawl df =
serps_to crawl df.loc[~serps to crawl df['host'].isin(dont crawl)]

We’ll also remove nulls and sites outside the top 10:
serps to crawl df =
serps_to crawl df.loc[~serps_to crawl df['domain'].isnull()]
serps to crawl df = serps to crawl df.loc[serps to crawl df['rank'] < 10]

serps_to crawl df.head(10)

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

url se_results_count domain fitle is_video host site

What Iz A

Marketing

hitps:/fwww.mageplaza.com/blog/marketing- Funnei? A
furmel it 14800000 www.mageplaza com Step-By-Step

Guide -

Mageplaza

MaN laza.com

How to Create
a Powerful
14900000 WWWLSI in.com i False singlegrain singlegrain.com
Funnel Stap-
by-Step

Marketing
Funnels for
https://ahrefs_com/blog/marketing-funnals/ 14800000 ahrafs_com Beginnars: A Falze ahrefs ahrefs.com
Comprehensive
Guide

hittps://www.singl comiblog-posts/content-
marketing/how-to-create-marketing-funnel/

The Markeling
Funnel; Stages,
https://www.hotjar.com/bleg/marketing-funnel/ 14800000 www.hotjar.com Strategies, & False hotjar hotjarcom
How to
Optimize

How to Build a
https://sproutsocial comyinsights/social-media- So:.:llal ,J'Ieldia

marketing-funnel/ 1400900 i am

Falze

g
Funnel That
Converts

With the dataframe filtered, we just want the URLs to export to our desktop crawler.
Some URLs may rank for multiple search phrases. To avoid crawling the same URL multiple times, we'll
use drop_duplicates() to make the URL list unique:

serps_to crawl upload = serps to crawl df[['url']].drop duplicates()
serps _to crawl upload.to csv('data/serps_to crawl upload.csv', index=False)

serps to crawl upload

This results in the following:

url

0 https://www.mageplaza.com/blog/marketing-funnel.html

1 https://www.singlegrain.com/blog-posts/content-marketing/how-to-create-marketing-funnel/

3 https://ahrefs.com/blog/marketing-funnels/

4 https://www.hotjar.com/blog/marketing-funnel/

5 https://sproutsocial.com/insights/social-media-marketing-funnel/
719 https://www.netline.com/netline003h/?d=0on24scrappymarketer&k=190815nlw24sm
721 https://blog.marketo.com/2016/08/get-scrappy-7-tips-for-smarter-digital-marketing.html
722 https://www.scootermediaco.com/2021/05/scrappy-marketing-strategies/
723 https://www.slideshare.net/kflanagan/the-scrappy-guide-to-marketing

724 https://www.bookdepository.com/Scrappy-Marketing-Handbook-Ann-Handley/9781118929636

62 rows x 1 columns

Now we have a list of 62 URLs to crawl, which cover the eight target keywords.
Let’s import the results of the crawl:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

crawl raw = pd.read csv('data/all inlinks.csv')
pd.set option('display.max columns', None)

Using a list comprehension, we’ll clean up the column names to make it easier to work with:

crawl raw.columns = [col.lower().replace(' ', ' ') for col in
crawl raw.columns]

Print out the column names to see how many extractor fields were extracted:

print (crawl raw.columns)

This results in the following:

Index (['type', 'source', 'destination', 'form action link', 'indexability',
'indexability status', 'hreflang', 'size (bytes)', 'alt text',
'length’',
'anchor', 'status code', 'status', 'follow', 'target',6 'rel',
'path _type', 'unlinked', 'link path', 'link position', 'link origin’,
'extractor 1 1', 'extractor 1 2', 'extractor 1 3', 'extractor 1 4',
'extractor 1 5', 'extractor 1 6', 'extractor 1 7', 'extractor 2 1',
'extractor 2 2', 'extractor 2 3', 'extractor 2 4', 'extractor 2 5',
'extractor 2 6', 'extractor 2 7', 'extractor 2 8', 'extractor 2 9',
'extractor 2 10', 'extractor 2 11', 'extractor 2 12°',
'extractor 2 13",
'extractor 2 14', 'extractor 2 15', 'extractor 2 16',
'extractor 2 17",
'extractor 2 18', 'extractor 2 19', 'extractor 2 20',
'extractor 2 21",
'extractor 2 22', 'extractor 2 23', 'extractor 2 24",
'extractor 2 257,
'extractor 2 26', 'extractor 2 27', 'extractor 2 28",
'extractor 2 29',
'extractor 2 30', 'extractor 2 31', 'extractor 2 32",
'extractor 2 33',
'extractor 2 34', 'extractor 2 35', 'extractor 2 36',
'extractor 2 37",
'extractor 2 38', 'extractor 2 39', 'extractor 2 40',
'extractor 2 41",
'extractor 2 42', 'extractor 2 43', 'extractor 2 44",
'extractor 2 45",
'extractor 2 46', 'extractor 2 47', 'extractor 2 48',
'extractor 2 49",
'extractor 2 50', 'extractor 2 51', 'extractor 2 52",
'extractor 2 537,
'extractor 2 54', 'extractor 2 55', 'extractor 2 56',
'extractor 2 57",
'extractor 2 58', 'extractor 2 59', 'extractor 2 60',
'extractor 2 o6l1',
'extractor 2 62', 'extractor 2 63', 'extractor 2 64",
'extractor 2 65'],
dtype='object')

There are 6 primary headings (H1 in HTML) and 65 H2 headings altogether. These will form the basis of
our content sections which tell us what content should be on those pages.

crawl raw

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

link_position link_origin extractor 1.1 extractor_1.2 1.3 extractor 1 4 extractor 1.5 extractor 1.6 1.7 extractor 2.1 22 ext

The ultimate
Header HTML ?:e!g:l:u NaN NaN NaN NaN NaN Napy Webinar guide Presentations i
'ng contents vs Webinars
wehinars.

The ultimate
guide to
Header HTML creating MaM Mah MaM MNaM MaM MaM
engaging
webinars.

Webinar guide Presentations 1
contents vs Webinars

The ultimate
guide to
Header HTML creating Mah Mah MahM MNaM MahM Nam
engaging
wabinars.

Webinar guide Presentations '
contents vs Webinars

The ultimate
guide to
Content HTML creating MaN MaN MaN MaN MaN NaN
engaging
webinars,

Webinar guide Presentations |
contents vs Webinars

The ultimate
gulde to
Contant HTML craating Mah MaN MNah MNaN MNaN NaN
engaging
webinars.

Webinar guide Presentations i
contents vs Webinars

Extracting the Headings
Since we're only interested in the content, we'll filter for it:

crawl headings = crawl raw.loc[crawl raw['link position'] ==
'Content'].copy()

The dataframe also contains columns that are superfluous to our requirements such as link_position
and link origin. We can remove these by listing the columns by position (saves space and typing out the
names of which there are many!).

drop cols = [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20]

Using the .drop() method, we can drop multiple columns in place (i.e., without having to copy the result
onto itself):

crawl headings.drop(crawl headings.columns[drop cols], axis = 1, inplace =
True)

Rename the columns from source to URL, which will be useful for joining later:
crawl headings = crawl headings.rename (columns = {'source': 'url'})
crawl headings

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

url extractor_1_1 extractor 1.2 exiractor 1.3 extractor_1 4 1.5 16 1.7 extri

The ultimate
guide to
3 hitps://buffalo? co.uk/blog/webinar-guide’ creating NahN NaN MNaN NaM MaN NaN
engaging
webinars.

The ultimate
guide to
4 https://buffalo?.co.uk/blog/webinar-guide creating NaN MNaN NaN MaN NaM MNaN
engaging
webinars.

The ultimate
guide to
5 hitps://buffalo? co.uk/blog/webinar-guide/ creating MNal MNaN NaN NaiN NaN MaN
engaging
webinars.
The ultimate
Quide to
1] hitps://buffala? .co.uk/blog/webinar-guide/ creating MNaN MaN MaM Mal MNaM MNaM
engaging
webinars.
The ultimate
qguide to
7 hittps://buffalo? co.uk/blog/webinar-guide/ creating MaM MNan MaN Mah MaN Mah
engaging
webinars.

With the desired columns of URL and their content section columns, these need to be converted to long
format, where all of the sections will be in a single column called “heading”:

crawl headings long = crawl headings.copy ()

We’ll want a list of the extractor column names (again to save typing) by subsetting the dataframe from
the second column onward using .iloc and extracting the column names (.columns.values):

heading cols = crawl headings long.iloc[:, 1l:].columns.values.tolist()

Using the .melt() function, we’ll pivot the dataframe to reshape the content sections into a single column
“heading” using the preceding list:

crawl headings long = pd.melt (crawl headings long, id vars='url', value name
= 'heading', var_name = 'position',
value vars= heading cols)

Remove the null values:

crawl headings_ long =
crawl headings_long.loc[~crawl headings_ long['heading'].isnull()]

Remove the duplicates:
crawl headings long = crawl headings long.drop duplicates ()
crawl headings long

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url position heading

] https://buttalo?.co.uk/blog/webinar-guide/ extractor 1_1 The ultimate guide to creating engaging webinars.

[hitps:/iblog.hubspot.com/marketing/what-is-a-webinar extractor_1_1 ThaUitimats. Culde to-Gremting Ca,m'”ﬁ:‘",:fg

16 hitps://blog.hubspot.corm o i dead-how-to-make-a-webinar extractor_1_1 ALt xilre th Goating Compsling
Webinars

18 https://blog. hubspot.com/blog/tabld/E307/bid/2391/1 0-best-practi fi binars-or extractor 11 The Ultimate Guide to Creating Compelling
webcasts.aspx - Webinars

20 hittps:/fww tiveblog, /advice/virtual t-tips. ctractor_1_1 How to host a virtual event: 10 expert tips
16179 hitps://surveysparrow.com/blog/how-to-conduct-a-webinar-guide/ extractor_2_61 Company
16420 hitps:/surveysparow.com/blog/how-to-conduct-a-webinar-guide/ extractor_2_62 Resources
16661 https:i/surveysparow.com/blog/how-to-conduct-a-webinar-guide/ extractor 2 63 Frea Tools
16802 hitps://surveysparow.com/blog/how-to-conduct-a-webinar-guide/ extractor_2_64 Sales
17143 httpsy/surveysparow.com/blog/how-to-conduct-a-webinar-guide/ extractor_2 65 Connect

647 rows x 3 columns

The resulting dataframe shows the URL, the heading, and the position where the first number denotes
whether it was an h1 or h2 and the second number indicates the order of the heading on the page. The

heading is the text value.

You may observe that the heading contains some values that are not strictly content but boilerplate
content that is sitewide, such as Company, Resources, etc. These will require removal at some point.

serps _headings =

serps to crawl df.copy ()

Let’s join the headings to the SERPs data:

serps_headings =
'left!')

Replace null headings with so that these can be aggregated:

serps headings(['heading'] =

serps_headings['heading'])

serps_headings|['project'] =

serps_headings

'target'

This results in the following:

serps_headings.merge (crawl headings long,

on = 'url', how

np.where (serps_headings|['heading'].isnull(), '

4

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url se_results_count domain title is_video host site position heading project
What Is A
Marketing What Is A
. Funnel? A Marketing
’p'mcam":g‘"u’:'n :I :';EI 14900000 www.mageplaza.com Step-By- NaN magepiaza mageplaza.com extractor_1_1 Funnel? A target
' Step Step-By-Step
Guide - Guide!
Mageplaza
What ls A
Marketing
" Funnel? A What is
wpiama.comblog ng:- 14900000 www.mageplaza.com Step-By- NaMN r com 2.1 Marketing target
funnel.html Step furinal?
Guide -
Mageplaza
What Is A
iilicrind) Understanding
splaza.comyblog/marketing- 14900000 S F;::'EI;"Q_‘ NaM Fon 52 the stages of taret
funnel html beteuciiion i ioaienniitt PSt:p L RIS o~ a marketing
Guide - funnel
Mageplaza
What Is A
g‘m}#ﬂg Marketing and
splaza.com/blog/marketing- B sales funnel:
funnal htm 14900000 www.mageplaza.com Srep—s?glp MNaN r com 2.3 What's the tanget
Guide - difference?
Mageplaza
What Is A
Marketing
: Funnel? A Do you need a
;plaza.comiblcg.’rhr:mm:l 1 WWw. ! com Step-By- NaN magey com 2.4 Marketing target
2 Step funnal?
Guide -
Mageplaza

With the data joined, we’ll take the domain, heading, and the position:
headings_tosum = serps headings[['domain', 'heading', 'position']].copy()

Split position by underscore and extract the last number in the list (using -1) to get the order the
heading appears on the page:

headings_tosum['pos n'] = headings tosum['position'].str.split (' ').str[-1]
Convert the data type into a number:

headings_tosum['pos n'] = headings tosum['pos n'].astype(float)
Add a count column for easy aggregation:

headings_tosum['count'] =1
headings_tosum

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

domain heading position pos_n count

0 www.mageplaza.com What Is A Marketing Funnel? A Step-By-Step Guide! extractor_1_1 1.0 1

1 www.mageplaza.com What is Marketing funnel? extractor_2_1 1.0 1

2 www.mageplaza.com Understanding the stages of a marketing funnel extractor_2_2 2.0 1

3 www.mageplaza.com Marketing and sales funnel: What's the difference? extractor_2_3 3.0 1

4 www.mageplaza.com Do you need a Marketing funnel? extractor_2_4 4.0 1
674 www.bookdepository.com Books By Language extractor 2 9 9.0 1
675 www.bookdepository.com Description extractor_2_10 10.0 1
676 www.bookdepository.com \n Product details extractor_2_11 11.0 1
677 www.bookdepository.com People who viewed this also viewed extractor_2_12 12.0 1
678 www.bookdepository.com Bestsellers in Sales & Marketing Management extractor_2_13 13.0 1

679 rows x 5 columns

Cleaning and Selecting Headings

We're ready to aggregate and start removing nonsense headings.

We'll start by removing boilerplate headings that are particular to each site. This is achieved by
summing the number of times a heading appears by domain and removing any that appear more than once
as that will theoretically mean the heading is not unique.

domsheadings_ tosum agg = headings_tosum.groupby (['domain',
'heading']) .agg ({'count': sum,
'pos n': 'mean'
}) .reset _index() .sort values(['domain', 'count'],
ascending = False)
domsheadings_tosum_agg['heading'] =
domsheadings_ tosum_agg['heading'].str.lower ()
domsheadings tosum_ agg.head(50)

Stop headings is a list containing headings that we want to remove.
Include those that appear more than once:

stop_headings = domsheadings tosum agg.loc[domsheadings tosum agg['count'] >
1]

and contain line break characters like “\n”:
stop headings =
stop headings.loc[stop headings['heading'].str.contains ('\n")]
stop_headings = stop headings['heading'].tolist()

stop headings

This results in the following:

['\n \n the scrappy guide to marketing\n \n',

"\n \n danny goodwin \n

"\n \n how to forecast seo with better precision & transg
"\n \n should you switch to ga4 now? what you need to knc

"\n the ultimate guide to webinars: 41 tips for successful webinai

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

"\n \n \n \n \n \n
timely updates and fresh ideas delivered to your inbox.
\n \n \n \n \n

'4 best webinar practices for marketing and promotion in 2020\n’',

"\n company\n ',

"\n customers\n ',

'"\n free tools\n ',

'"\n partners\n ',

"\n popular features\n ']

The list of boilerplate has been reasonably successful on a domain level, but there is more work to do.
We’ll now analyze the headings per se, starting by counting the number of headings:

headings tosum agg = headings_tosum.groupby (['heading']) .agg({'count': sum,
'pos n': 'mean'

}) .reset _index() .sort values('count',

ascending = False)
headings_tosum_agg['heading'] = headings_tosum agg['heading'].str.lower ()

Remove the headings containing the boilerplate items:

headings_ tosum agg =
headings tosum_agg.loc[~headings tosum agg['heading'].isin(stop headings)]

Subset away from headings containing nothing (“):

headings_tosum_agg = headings_tosum_ agg.loc[headings_ tosum agg['heading'] !=
ll]

headings_tosum_agg.head(10)

This results in the following:

heading count pos_n
195 company 4 25.000000
467 webinar marketing strategy 3 2.000000
281 how to record a webinar 3 5.000000
161 b2b marketing examples 3 5.666667
507 what is a webinar? 3 1.000000
163 b2b marketing strategies 3 5.333333
494 what is b2b marketing? 3 1.000000
476 webinar statistics 3 5.000000
263 how does a webinar work? 3 4.000000
273 how to create a webinar 3 1.000000

The dataframe looks to contain more sensible content headings with the exception of “company,” which
also is much further down the order of the page at 25.
Let’s filter further:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

headings_ tosum filtered = headings tosum agg.copy ()

Remove headings with a position of 10 or above as these are unlikely to contain actual content sections.
Note 10 is an arbitrary number and could be more or less depending on the nature of content.

headings tosum filtered =
headings tosum filtered.locl[headings tosum filtered['count'] < 10]

Measure the number of words in the heading:

headings tosum filtered['tokens'] =
headings tosum filtered['heading'].str.count(' ") + 1

Clean up the headings by removing spaces on either side of the text:

headings tosum filtered['heading'] =
headings tosum filtered['heading'].str.strip()

Split heading using colons as a punctuation mark and extract the right-hand side of the colon:

headings tosum filtered['heading']
= headings tosum filtered['heading'].str.split(':"').str[-1]

Apply the same principle to the full stop:

headings tosum filtered['heading']
= headings tosum filtered['heading'].str.split('."').str[-1]

Remove headings containing pagination, for example, 1 of 9:

headings tosum filtered =
headings_tosum filtered.loc[~headings tosum filtered['heading'].str.contains('
9] of [0-9]', regex = True)]

Remove headings that are less than 5 words long or more than 12:

headings tosum filtered =

headings_tosum filtered.loc[headings tosum filtered['tokens'].between (5,
12)]
headings tosum filtered
ascending = False)

headings tosum filtered.sort values('count',
headings_ tosum filtered =

headings_ tosum filtered.loc[headings tosum filtered['heading'] != "']
headings tosum filtered.head(10)

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

heading count pos_n tokens

281 how to record a webinar 3 5.0 5
273 how to create a webinar 3 1.0 5
274 how to create an amazing webinar in 2022 3 1.0

276 how to host a webinar for free 3 7.0 7
409 the ultimate guide to creating compelling webinars 3 1.0 7
356 reach your target audience with webinars 3 8.0 6
263 how does a webinar work? 3 4.0 5
166 b2b marketing trends to watch in 2022 [new data] 2 4.0 9
509 what is scrappy marketing — and is it an answer? 2 1.0 10
499 what is scrappy marketing and why is it beneficial? 2 1.0 9

Now we have headings that look more like actual content sections. These are now ready for clustering.

Cluster Headings

The reason for clustering is that writers will describe the same section heading using different words and
deliberately so as to avoid copyright infringement and plagiarism. However, Google is smart enough to
know that “webinar best practices” and “best practices for webinars” are the same.

To make use of Google’s knowledge, we’ll make use of the SERPs to see if the search results of each
heading are similar enough to know if they mean the same thing or not (i.e., whether the underlying
meaning or intent is the same).

We’ll create a list and use the search intent clustering code (see Chapter 2) to categorize the headings
into topics:

headings to cluster = headings tosum filtered[['heading']].drop duplicates ()
headings_to cluster =

headings_to cluster.loc[~headings to cluster['heading'].isnull ()]
headings_to cluster = headings to cluster.rename(columns = {'heading':
'keyword'})

headings_to cluster

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword

281
273
274
276

409

how to record a webinar

how to create a webinar

how to create an amazing webinar in 2022
how to host a webinar for free

the ultimate guide to creating compelling webinars

402
401

429
280

206 rows x 1 columns

the difference between sales and marketing
the complete guide to virtual events in 2022
how to host a virtual event
understanding the difference between b2b and b2c marketing

how to protect your virtual events from cyberattacks

With the headings clustered by search intent, we’ll import the results:

topic keyw map =

pd.read csv('data/topic keyw map.csv')

Let’s rename the keyword column to heading, which we can use to join to the SERP dataframe later:

topic keyw map =

topic_keyw map

This results in the following:

topic

topic keyw map.rename (columns =

{'keyword"':

heading

'heading'})

topic_results

O O N &6 OO A O N

what is a virtual event

what is a virtual event
how to create your own effective webinar
how to create your own effective webinar
how to create your own effective webinar
how to create your own effective webinar
how to create your own effective webinar
how to create your own effective webinar
how to create your own effective webinar

the complete guide to virtual events in 2022

what is a virtual event?

what is a virtual event

how to create your own effective webinar
how to design a webinar

how to create an amazing webinar in 2022
is creating a webinar right for you?

how to create a webinar

what's the best time to host a webinar?

how to create your webinar content

in-person or virtual - the fundamentals matter

6130000000
6130000000
2384900000
2384900000
2384900000
2384900000
2384900000
2384900000
2384900000
1863000000

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

The dataframe shows the heading and the meaning of the heading as “topic.” The next stage is to get some
statistics and see how many headings constitute a topic. As the topics are the central meaning of the
headings, this will form the core content sections per target keyword.

topic _keyw map agg = topic keyw map.copy ()
topic_keyw map agg['count'] =1
topic_keyw map agg = topic keyw map agg.groupby('topic').agg({'count':
'sum'}) .reset index()

topic keyw map agg =
False)

topic keyw map agg.sort values('count', ascending =

topic_keyw map agg
This results in the following:

topic count

7 how to create your own effective webinar 7
17 what is scrappy marketing and why is it beneficial? 4
14 webinar attendance facts and statistic 4

3 building your webinar using virtual event software 4

8 how to optimize your marketing funnel for the customer journey 3

0 5 best webinar presentation design practices for 2020 3

5 how to conduct a webinar — the ultimate guide 3

2 b2b marketing the ultimate guide to b2b marketing 3

6 how to create a powerful marketing funnel? 2

4 how does this apply to webinars? 2

1 8 tactics for your b2b marketing strategy 2
10 the essential guide to webinar marketing for 2022 [with best practices] 2
11 understanding the stages of a marketing funnel 2
12 use webinar best practices to host a great webinar 2
13 webinar / webcast best practices 2
15 what is a social media marketing funnel? 2
16 what is a virtual event 2

9 the complete guide to virtual events in 2022 2

“Creating effective webinars” was the most popular content section.
These will now be merged with the SERPs so we can map suggested content to target keywords:

serps_topics merge = serps headings.copy ()

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

For a successful merge, we'll require the heading to be in lowercase:

serps_topics merge['heading'] = serps topics merge['heading'].str.lower ()
serps_topics merge = serps topics merge.merge (topic keyw map, on =
'heading', how = 'left')

serps_topics merge

This results in the following:

_count dorain title is_video host site position heading project topic topic_results count
What Is A
Marketing what is a
Funnel? A marketing
900000 www.mageplaza.com Step-By- Mah mageplaza mageplaza.com extractor_1_1 funnel?a target Mah NaM 1
Step step-by-step
Guide - guidal
Mageplaza
What Is &
Marketing
Funnel? A what is
900000 www.mageplaza.com Step-By- Mah gef laza.com tor_2_1 ing target Mah MNaMN 1
Step funnel?
Guide -
Mageplaza
What Is &
Merkating understanding understanding
Rixomlz A the stages of the stages of
300000 www.mageplaza.com Slsn-sz'; MahM com 22 a marketing target a marketing 33890000.0 1
Guide - funnel funnal
Mageplaza
What Is A
Marketing marketing and
Funnal? A funnet:
800000 www.mageplaza.com Step-By- NaN mageplaza mageplazacom extractor 2 3 E:Sh atu'grtlhé target NaN NaN 1
Step i
Guide - difference?
Mageplaza
What Is A
Marketing
Funnel? A do youneed a
200000 www.mageplaza.com Step-By- Nah 0ef com 2.4 i target MNah NaM 1
Step funnel?
Guide -
Mageplaza

keyword topics summary = serps_topics merge.groupby (['keyword',
"topic']) .agg({'count': 'sum'}).reset index().sort values(['keyword',
'count'], ascending = False)

The count will be reset to 1, so we can count the number of suggested content sections per target
keyword:

keyword topics summary['count'] =1
keyword topics summary

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

keyword

topic count

R

8 B

17
13
15
19
14
16
18
12
11

-k
o O A N W N O O © O

-

The preceding dataframe shows the content sections (topic) that should be written for each target

webinar marketing guide
webinar marketing guide
webinar guide

webinar guide

webinar guide

webinar guide

webinar best practices
webinar best practices
webinar best practices
webinar best practices
webinar best practices
webinar best practices
webinar best practices
webinar benchmarks
webinar benchmarks
scrappy marketing guide
scrappy marketing guide
how to run virtual events
how to run virtual events
how to run virtual events
funnel marketing guide
funnel marketing guide
funnel marketing guide
funnel marketing guide
b2b marketing guide
b2b marketing guide

how to create your own effective webinar

the essential guide to webinar marketing for 2022 [with best practices]

how to conduct a webinar - the ultimate guide
how to create your own effective webinar

building your webinar using virtual event software
how does this apply to webinars?

how to create your own effective webinar

5 best webinar presentation design practices for 2020
how does this apply to webinars?

webinar / webcast best practices

b2b marketing the ultimate guide to b2b marketing
how to conduct a webinar — the ultimate guide

use webinar best practices to host a great webinar
webinar attendance facts and statistic

use webinar best practices to host a great webinar
what is scrappy marketing and why is it beneficial?
how does this apply to webinars?

building your webinar using virtual event software
what is a virtual event

the complete guide to virtual events in 2022

how to optimize your marketing funnel for the customer journey

how to create a powerful marketing funnel?
understanding the stages of a marketing funnel
what is a social media marketing funnel?

8B tactics for your b2b marketing strategy

b2b marketing the ultimate guide to b2b marketing

keyword.
keyword topics summary.groupby (['keyword']) .agg({'count':
'sum'}) .reset index()

This results in the following:

1

1

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

keyword count

0 b2b marketing guide 2
1 funnel marketing guide B
2 how to run virtual events 3
3 scrappy marketing guide 2
4 webinar benchmarks 2
5 webinar best practices 7
6 webinar guide 4
7 webinar marketing guide 2

Webinar best practices will have the most content, while other target keywords will have around two core
content sections on average.

Reflections

For B2B marketing, it works really well as it’s a good way of automating a manual process most SEOs go
through (i.e., seeing what content the top 10 ranking pages cover) especially when you have a lot of
keywords to create content for.
We used the H1 and H2 because using even more copy from the body (such as H3 or <p> paragraphs
even after filtering out stop words) would introduce more noise into the string distance calculations.
Sometimes, you get some reliable suggestions that are actually quite good; however, the output should
be reviewed first before raising content requests from your creative team or agency.

Summary

There are many aspects of SEO that go into delivering content and UX better than your competitors. This
chapter focused on

e Keyword mapping: Assigning keywords to existing content and identifying opportunities for new content
creation

e Content gap analysis: Identifying critical content and the gaps in your website

e Content creation: Finding the core content common to top ranking articles for your target search phrases

The next chapter deals with the third major pillar of SEO: authority.

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A.Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_5

5. Authority

Andreas Voniatis?!

(1) Surrey, UK

Authority is arguably 50% of the Google algorithm. You could optimize your site to your heart’s content by
creating the perfect content and deliver it with the perfect UX that’s hosted on a site with the most perfect
information architecture, only to find it's nowhere in Google’s search results when searching by the title of
the page - assuming it’s not a unique search phrase, so what gives?

You'll find out about this and the following in this chapter:

e What site authority is and how it impacts SEO
e How brand searches could impact search visibility
e Review single and multiple site analysis

Some SEO History

To answer the question, one must appreciate the evolution of search engines and just how wild things were
before Google came along in 1998. And even when Google did come along, things were still wild and
evolving quickly.

Before Google, most of the search engines like AltaVista, Yahoo!, and Ask (Jeeves) were primarily
focused on the keywords embedded within the content on the page. This made search engines relatively
easy to game using all kinds of tricks including hiding keywords in white text on white backgrounds or
substantial repetition of keywords.

When Google arrived, they did a couple of things differently, which essentially turned competing search
engines on their heads.

The first thing is that their algorithm ranked pages based on their authority, in other words, how
trustworthy the document (or website) was, as opposed to only matching a document on keyword
relevance. Authority in those days was measured by Google as the amount of links from other sites linking
to your site. This was much in the same way as citations in a doctoral dissertation. The more links (or
citations), the higher the probability a random surfer on the Web would find your content. This made SEO
harder to game and the results (temporarily yet significantly) more reliable relative to the competition.

The second thing they did was partner with Yahoo! which openly credited Google for powering their
search results. So what happened next? Instead of using Yahoo!, people went straight to Google, bypassing
the intermediary Yahoo! Search engine, and the rest is history - or not quite.

A Little More History

Although Google got the lion’s share of searches, the SEO industry worked out the gist of Google’s algorithm
and started engineering link popularity schemes such as swapping links (known as reciprocal linking) and
creating/renting links from private networks (still alive and well today, unfortunately). Google responded
with antispam algorithms, such as Panda and Penguin, which more or less decimated these schemes to the
point that most businesses in the brand space resorted to advertising and digital PR. And it works.

Authority, Links, and Other

While there is a widespread confusion in that back links are authority. We’ve seen plenty of evidence to
show that authority is the effect of links and advertising, that is, authority is not only measured in links.
Refer to Figure 5-1.

https://doi.org/10.1007/978-1-4842-9175-7_5

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Avg Google Rank

18]
AD 000

Non Search Spend £ pw

Figure 5-1 Positive relationship between rankings and authority

Figure 5-1 is just one example of many showing a positive relationship between rankings and authority.
In this case, the authority is the product of nonsearch advertising. And why is that? It's because good links
and effective advertising drive brand impressions, which are also positively linked.

What we will set out to do is show how data science can help you:

e Examine your own links

¢ Analyze your competitor’s links

¢ Find power networks

e Determine the key ingredients for a good link

Examining Your Own Links

If you've ever wanted to analyze your site’s backlinks, the chances are you’'d use one of the more popular
tools like AHREFs and SEMRush. These services trawl the Web to get a list of sites linking to your website
with a domain rating and other info describing the quality of your backlinks, which they store in vast
indexes which can be queried.

It’s no secret that backlinks play a big part in Google’s algorithm so it makes sense as a minimum to
understand your own site before comparing it with the competition, of which the former is what we will do
today.

While most of the analysis can be done on a spreadsheet, Python has certain advantages. Other than the
sheer number of rows it can handle, it can also look at the statistical side more readily such as distributions.

Importing and Cleaning the Target Link Data

We’re going to pick a small website from the UK furniture sector (for no particular reason) and walk
through some basic analysis using Python.
So what is the value of a site’s backlinks for SEO? At its simplest, I'd say quality and quantity. Quality is
subjective to the expert yet definitive to Google by way of metrics such as authority and content relevance.
We'll start by evaluating the link quality with the available data before evaluating the quantity. Time to
code.

import re

import time

import random

import pandas as pd

import numpy as np

import datetime

from datetime import timedelta

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

from plotnine import *

import matplotlib.pyplot as plt

from pandas.api.types import is string dtype
from pandas.api.types import is numeric dtype
import uritools

pd.set option('display.max colwidth', None)
Smatplotlib inline

root domain = 'johnsankey.co.uk'

hostdomain = 'www.Jjohnsankey.co.uk'

hostname = 'johnsankey'

full domain = 'https://www.johnsankey.co.uk'
target name = 'John Sankey'

We start by importing the data and cleaning up the column names to make it easier to handle and
quicker to type, for the later stages

target ahrefs raw = pd.read csv(
'data/johnsankey.co.uk-refdomains-subdomains 2022-03-18 15-15-47.csv"')

List comprehensions are a powerful and less intensive way to clean up the column names.

target ahrefs raw.columns = [col.lower () for col in
target ahrefs raw.columns]

The list comprehension instructs Python to convert the column name to lowercase for each column
“col”) in the dataframe columns.

target ahrefs raw.columns = [col.replace(' ',' ') for col in
target ahrefs raw.columns]

target ahrefs raw.columns = [col.replace('.',' ') for col in
target ahrefs raw.columns]

target ahrefs raw.columns = [col.replace(' ',' ') for col in
target ahrefs raw.columns]

target ahrefs raw.columns = [col.replace('(','"') for col in
target ahrefs raw.columns]

target ahrefs raw.columns = [col.replace(')','') for col in
target ahrefs raw.columns]

target ahrefs raw.columns = [col.replace('%','') for col in

target ahrefs raw.columns]

An alternative to repeating the preceding lines of code would be to chain the function calls to process
the columns in a single line:

target ahrefs raw.columns = [col.lower().replace('
',' ") .replace('.',"' ").replace(' ',' ").replace('(','").replace(')',"') . .rep:
for col in target ahrefs raw.columns]

Though not strictly necessary, I like having a count column as standard for aggregations and a single
value column “project” should I need to group the entire table:

target ahrefs raw['rd count'] =1
target ahrefs raw['project'] = target name

Target ahrefs raw

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

d i dr _ref_di i dofollow_linked_d i traffic_ links_to_target new_links lost links dofollow_links

0 dribbble.com 93.0 598872 14388 3460486 1 0 0 [}

1 msn.com 92.0 748243 285009 111799543 9 o o a

2 thetimes.co.uk 91.0 448410 28803 4977287 1 o o 1

3 owly 90.0 118313 2 42910 2 2 0 2

4 10times.com 78.0 19109 19345 522290 2 i} 0 1]
102 ikhatotherescue. blogspotcom 0.0 73 2314 (v} 1 0 o 1
103 peakedgehotel blogspot.com 0.0 a a o B 4] o 8
104 thelibertyscale blogspotcom 0.0 (1] 0 1 1 4] o 1
105 plums-rhombus-irgd pace.com 0.0 1] a o 1 1 1 1
106 upholsterycleaningdozaowa.blogspot.com 0.0 o a o 1 o o 1

107 rows x 13 columns

Now we have a dataframe with clean column names. The next step is to clean the actual table values and
make them more useful for analysis.
Make a copy of the previous dataframe and give it a new name:

target ahrefs clean dtypes = target ahrefs raw.copy()

Clean the dofollow_ref domains column which tells us how many ref domains the sitelinking has. In this
case, we'll convert the dashes to zeros and then cast the whole column as a whole number.
Start with referring domains:

target ahrefs clean dtypes['dofollow ref domains'] =

np.where (target ahrefs clean dtypes['dofollow ref domains'] == '-',
0,

target ahrefs clean dtypes['dofollow ref domains'])

target ahrefs clean dtypes['dofollow ref domains'] =

target ahrefs clean dtypes['dofollow ref domains'].astype (int)

then linked domains:

target ahrefs clean dtypes['dofollow linked domains'] =

np.where (target ahrefs clean dtypes['dofollow linked domains'] == '-',
0,

target ahrefs clean dtypes['dofollow linked domains'])

target ahrefs clean dtypes['dofollow linked domains'] =

target ahrefs clean dtypes['dofollow linked domains'].astype (int)

“First seen” tells us the date when the link was first found (i.e., discovered and then added to the index of
ahrefs). We’ll convert the string to a date format that Python can process and then use this to derive the age
of the links later on:

target ahrefs clean dtypes['first seen'] =
pd.to datetime (target ahrefs clean dtypes['first seen'], format='%d/sm/%Y
SH:S$M'")

Converting first_seen to a date also means we can perform time aggregations by month year, as it’s not
always the case that links for a site will get acquired on a daily basis:

target ahrefs clean dtypes['month year'] =
target ahrefs clean dtypes['first seen'].dt.to period('M'")

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

The link age is calculated by taking today’s date and subtracting the first seen date. Then it’s converted
to a number format and divided by a huge number to get the number of days:

target ahrefs clean dtypes['link age'] dt.datetime.now() -
target ahrefs clean dtypes['first seen'
target ahrefs clean dtypes['link age']
target ahrefs clean dtypes['link age'
target ahrefs clean dtypes['link age'] =
target ahrefs clean dtypes['link age'].a

target ahrefs clean dtypes['link age'] =
(target_ahrefs_clean_dtypes['link_age']/(3600 * 24 * 1000000000)) .round(0)

=

stype (int)

target ahrefs clean dtypes

This results in the following:

dofoliow_linked_di i traffic_ links_to_target new_links lost links dofcllow _links first_seen lost rd count project month_year link age
2021-04- i
588872 14388 3460486 1 0 Q] 16 MaM 1 Sarke 2021-04 403.0
03:06:00 ¥
2021-09- okin
748243 265009 111799543) 0 0 0 28 NaM (s 202109 2380
.99 ey
11:39:00
2017-09- i
448410 28603 4977287 1 0 0 1 17 NaN 1 San" n 201709 17100
o7:13:00 key
2022-02- o
118813 2 42810 2 2 0 2 16 NaN ot 2022-02 97.0
21:31:00 Y
2018-10- e
19109 19346 522290 2 0 0 0 08 NaN 1 g n: i 201810 1326.0
01:03:00 X
2021-11- B
73 2314 0 1 0 0 1 18 NaN 1 San?c # 202111 187.0
05:37:00 ey
2020-06-
John
0 0 0 8 0 0 8 17 NaM 1 - 2020-06 705.0
23:30:00 Ak
2021-04-
John
0 0 1 1 0 0 1 1 NaN v g 202104 4080
08:21:00 =y
2022-03-
[0 0 1 1 1 1 14 ‘Nﬁa%?;f 1 Sa‘:l:‘c:” 2022408 710
11:18:00 ¥
2019-04- o
0 0 0 1 0 0 1 04 NaN e 2019-04 11460
13:29:00 Y

With the data types cleaned, and some new data features created (note columns added earlier), the fun can
begin.

Targeting Domain Authority

The first part of our analysis evaluates the link quality, which starts by summarizing the whole dataframe
using the describe function to get descriptive statistics of all the columns:

target ahrefs analysis = target ahrefs clean dtypes
target ahrefs analysis.describe()

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

dr _ref_t _linked_ traffic_ links_to_target new_links lost_links dofollow_links rd_count link_age

count 107.000000 107.000000 1.070000e+02 1.070000e+02 107.000000 107.000000 107000000 107.000000 107.0 107.000000
mean 26.583458 22557794303 3.661365e+05 1.334358e+06 3383178 0.644860 0.093458 2411215 1.0 482121405
std 2B.092862 10365047280 1.477562e+06 1.088568e+07 6180683 3.629679 0.445792 5606521 0.0 555.336286
min 0.000000 0.000000 0.000000e+00 0.000000e+00 1.000000 0.000000 0.000000 0.000000 1.0 6.000000
25% 0.100000 29.000000 2.700000e+01 0.000000e+00 1.000000 0.000000 0.000000 1.000000 1.0 123.500000
50% 16.000000 184.000000 1.373000e+03 1.380000e+02 2.000000 0.000000 0.000000 1.000000 1.0 234.000000
75% 47.500000 1873.000000 7.0071000e+03 7.328500e+03 2.500000 0.000000 0.000000 2.000000 1.0 B45.500000
max 53.000000 748243.000000 7.823115e+08 1.117995a+08 42.000000 34.000000 4.000000 42.000000 1.0 2504.000000

So from the preceding table, we can see the average (mean), the number of referring domains (107), and the
variation (the 25th percentiles and so on).

The average domain rating (equivalent to Moz’s Domain Authority) of referring domains is 27. Is thata
good thing? In the absence of competitor data to compare in this market sector, it’s hard to know, which is
where your experience as an SEO practitioner comes in. However, I'm certain we could all agree that it could
be much higher - given that it falls on a scale between 0 and 100. How much higher to make a shift is
another question.

The preceding table can be a bit dry and hard to visualize, so we'll plot a histogram to get more of an
intuitive understanding of the referring domain authority:

dr dist plt = (
ggplot (target ahrefs analysis,

aes(x = 'dr')) +
geom_histogram(alpha = 0.6, fill = 'blue', bins = 100) +
scale y continuous () +
theme (legend position = 'right'))

dr dist plt

The distribution is heavily skewed, showing that most of the referring domains have an authority rating
of zero (Figure 5-2). Beyond zero, the distribution looks fairly uniform with an equal amount of domains
across different levels of authority.

30-

20-

count

10-

iLI--I---!J-I-J. - ek B -

0 25 50 /5
dr

Figure 5-2 Distribution of domain rating in the backlink profile

Domain Authority Over Time

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

We’ll now look at the domain authority as a proxy for the link quality as a time series. If we were to plot the
number of links by date, the time series would look rather messy and less useful as follows:

dr firstseen plt = (

ggplot (target ahrefs analysis, aes(x = 'first seen', y = 'dr', group =
1)) +

geom line(alpha = 0.6, colour = 'blue', size = 2) +

labs(y = 'Domain Rating', x = 'Month Year') +

scale y continuous() +

scale x date() +

theme (legend position = 'right',

axis text x=element text (rotation=90, hjust=1)
)
)

dr firstseen plt.save(filename = 'images/l dr firstseen plt.png',
height=5, width=10, units = 'in', dpi=1000)

dr firstseen plt

The plot looks very noisy as you'd expect and only really shows you what the DR (domain rating) of a
referring domain was at a point in time (Figure 5-3). The utility of this chart is that if you have a team
tasked with acquiring links, you can monitor the link quality over time in general.

75-

w
[=]
]

Domain Rating

[t
w
i

3 5 3 S 3 3 3
2 5 5 5 5 : 5
a0 ™~ o m o — ™~
— — — — ™~ ™ ™~
o o L] o o o o
~ ~ ~ ™~ ~ ~ ™~
Month Year
Figure 5-3 Backlink domain rating acquired over time
For a more smoother view:
dr firstseen smooth plt = (
ggplot (target ahrefs analysis, aes(x = 'first seen', y = 'dr', group =
1)) +
geom_smooth (alpha = 0.6, colour = 'blue', size = 3, se = False) +
labs(y = 'Domain Rating', x = 'Month Year') +
scale y continuous() +

scale x date() +

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

theme (legend position = 'right',
axis text x=element text (rotation=90, hjust=1)

))

dr firstseen smooth plt.save(filename =
'"images/1l dr firstseen smooth plt.png',
height=5, width=10, units = 'in', dpi=1000)

dr firstseen smooth plt

The use of geom_smooth() gives a somewhat less noisy view and shows the variability of the domain
rating over time to show how consistent the quality is (Figure 5-4). Again, this correlates to the quality of
the links being acquired.

120-

90 -

Domain Rating
(=1
[=)

30-

— — — — — — —
° E S 2 2 ? °
= = = =t - (=) =
o @ S o 2 S 2
f=] ™~ [=2] o (=] - ~N
™) — — ™~ ™~ ™
o o o o (=] (o] o
™~ ™~ o~ ™~ ~ ~ ™~
Month Year

Figure 5-4 Backlink domain rating acquired smoothed over time

What this doesn’t quite describe is the overall site authority over time, because the value of links
acquired is retained over time; therefore, a different math approach is required.

To see the site’s authority over time, we will calculate a running average of the domain rating by month
of the year. Note the use of the expanding() function which instructs Pandas to include all previous rows
with each new row:

target rd cummean df = target ahrefs analysis

target rd mean df = target rd cummean df.groupby (['month year'])
['dr'].sum() .reset index()

target rd mean df['dr runavg'] = target rd mean df['dr'].expanding() .mean ()

target rd mean df.head(10)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

month_year dr dr_runavg

0 2015-06 70.0 70.000000

1 2016-12 45.0 57.500000
2 2017-02 15.0 43.333333
3 2017-03 66.0 49.000000
4 2017-06 132.0 65.600000
S 2017-08 1.3 54.883333
6 2017-09 91.0 60.042857
7 2018-02 15.0 54.412500
8 2018-06 50.0 53.922222

9 2018-06 32.9 51.820000
We now have a table which we can use to feed the graph and visualize.

dr cummean_smooth plt = (

ggplot (target rd mean df, aes(x = 'month year', y = 'dr runavg', group =
1)) +

geom line(alpha = 0.6, colour = 'blue', size = 2) +

#labs(y = 'GA Sessions', x = 'Date') +

scale y continuous() +

scale x date() +

theme (legend position = 'right',

axis text x=element text (rotation=90, hjust=1)

))

dr_ cummean_smooth plt

So the target site started with high authority links (which may have been a PR campaign announcing the
business brand), which faded soon after for four years and then rebooted with new acquisition of high
authority links again (Figure 5-5).

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

(=3})
o (=]
[i

Cumulative Average of Domain Rating

40-

2016-01-01
2017-01-01
2018-01-01

018-01-01
2020-01-01
2021-01-01
2022-01-01

Month Year

Figure 5-5 Cumulative average domain rating of backlinks over time

Most importantly, we can see the site’s general authority over time, which is how a search engine like
Google may see it too.

Areally good extension to this analysis would be to regenerate the dataframe so that we would plot the
distribution over time on a cumulative basis. Then we could not only see the median quality but also the
variation over time too.

That’s the link quality, what about quantity?

Targeting Link Volumes

Quality is one thing; the volume of quality links is quite another, which is what we’ll analyze next.
We'll use the expanding function like the previous operation to calculate a cumulative sum of the links
acquired to date:

target count cumsum df = target ahrefs analysis

print (target count cumsum df.columns)

target count cumsum df = target count cumsum df.groupby(['month year'])
['rd count'].sum() .reset index()

target count cumsum df['count runsum'] =
target count cumsum df['rd count'].expanding() .sum()
target count cumsum df['link velocity'] =
target count cumsum df['rd count'].diff ()

target count cumsum df

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

month_year rd_count count_runsum link_velocity

0 2015-05 1 1.0 NaN
1 2016-12 1 2.0 0.0
2 2017-02 1 3.0 0.0
3 2017-03 1 4.0 0.0
4 2017-06 3 7.0 2.0
5 2017-08 1 8.0 -2.0
6 2017-09 1 9.0 0.0
7 2018-02 1 10.0 0.0
8 2018-05 1 11.0 0.0
9 2018-06 2 13.0 1.0

That’s the data, now the graphs.

target count plt = (

ggplot (target count cumsum df, aes(x = 'month year', y = 'rd count',
group = 1)) +

geom line(alpha = 0.6, colour = 'blue', size = 2) +

labs(y = 'Count of Referring Domains', x = 'Month Year') +

scale_y continuous() +

scale x date() +

theme (legend position = 'right',

axis text x=element text (rotation=90, hjust=1)

))

target count plt.save(filename = 'images/3 target count plt.png',
height=5, width=10, units = 'in', dpi=1000)

target count plt

This is a noncumulative view of the amount of referring domains. Again, this is useful for evaluating how
effective a team is at acquiring links (Figure 5-6).

>>>if fijackgoogleseo.com# M & 3 2. hik<<<

k=]
1

o
1

Count of Referring Domains

w
i

2016-01-01
2017-01-01
2018-01-01
019-01-01
2020-01-01
2021-01-01
2022-01-01

Month Year

Figure 5-6 Count of referring domains over time

But perhaps it is not as useful for how a search engine would view the overall number of referring
domains a site has.

target count cumsum plt = (

ggplot (target count cumsum df, aes(x = 'month year', y = 'count runsum',
group = 1)) +

geom_ line(alpha = 0.6, colour = 'blue', size = 2) +
scale y continuous () +
scale x date() +
theme (legend position = 'right',
axis text x=element text (rotation=90, hjust=1)

))
target count cumsum plt

The cumulative view shows us the total number of referring domains (Figure 5-7). Naturally, this isn’t
the entirely accurate picture as some referring domains may have been lost, but it’s good enough to get the
gist of where the site is at.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

90 -

60 -

30-

Running Sum of Referring Domains

018-01-01

2016-01-01
2017-01-01
2018-01-01
2020-01-01
2021-01-01
2022-01-01

Month Year

Figure 5-7 Cumulative sum of referring domains over time

We see that links were steadily added from 2017 for the next four years before accelerating again
around March 2021. This is consistent with what we have seen with domain rating over time.
Auseful extension to correlate that with performance may be to layer in

¢ Referring domain site traffic
» Average ranking over time

Analyzing Your Competitor’s Links

Like last time, we defined the value of a site’s backlinks for SEO as a product of quality and quantity - quality
being the domain authority (or AHREF’s equivalent domain rating) and quantity as the number of referring
domains.

Again, we'll start by evaluating the link quality with the available data before evaluating the quantity.
Time to code.

import re

import time

import random

import pandas as pd

import numpy as np

import datetime

from datetime import timedelta

from plotnine import *

import matplotlib.pyplot as plt

from pandas.api.types import is string dtype
from pandas.api.types import is numeric_dtype
import uritools

pd.set option('display.max colwidth', None)
gmatplotlib inline

root domain = 'johnsankey.co.uk'
hostdomain = 'www.Jjohnsankey.co.uk'

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

hostname = 'johnsankey'
full domain = 'https://www.johnsankey.co.uk'
target name = 'John Sankey'

Data Importing and Cleaning

We set up the file directories so we can read multiple AHREF exported data files in one folder, which is much
faster, less boring, and more efficient than reading each file individually, especially when you have over ten
of them:

ahrefs path = 'data/'

The listdir() function from the OS module allows us to list all of the files in a subdirectory:
ahrefs filenames = os.listdir (ahrefs path)
ahrefs filenames

This results in the following:

['www.davidsonlondon.com--refdomains-subdomain 2022-03-13 23-37-29.csv’',
'www.stephenclasper.co.uk--refdomains-subdoma 2022-03-13 23-47-28.csv',
'www.touchedinteriors.co.uk--refdomains-subdo 2022-03-13 23-42-05.csv',

www.lushinteriors.co--refdomains-subdomains 2022-03-13 23-44-34.csv',

'www.kassavello.com--refdomains-subdomains 2022-03-13 23-43-19.csv’,

'www.tulipinterior.co.uk--refdomains-subdomai 2022-03-13 23-41-04.csv',

'www.tgosling.com--refdomains-subdomains 2022-03-13 23-38-44.csv’',

'www.onlybespoke.com--refdomains-subdomains 2022-03-13 23-45-28.csv’',

'www.williamgarvey.co.uk--refdomains-subdomai 2022-03-13 23-43-45.csv',

'www.hadleyrose.co.uk--refdomains-subdomains 2022-03-13 23-39-31.csv’,

'www.davidlinley.com--refdomains-subdomains 2022-03-13 23-40-25.csv’',

'johnsankey.co.uk-refdomains-subdomains 2022-03-18 15-15-47.csv']

With the files listed, we’'ll now read each one individually using a for loop and add these to a dataframe.
While reading in the file, we'll use some string manipulation to create a new column with the site name of
the data we’re importing:

ahrefs df 1st = list()
ahrefs colnames = list()

for filename in ahrefs filenames:
df = pd.read csv(ahrefs path + filename)

df ['site'] = filename

df['site'] = df['site'].str.replace('www.', '', regex = False)
df['site'] = df['site'].str.replace('.csv', '', regex = False)
df['site'] = df['site'].str.replace('-.+', '', regex = True)

ahrefs colnames.append(df.columns)
ahrefs df lst.append(df)

comp_ ahrefs df raw = pd.concat (ahrefs df 1st)
comp ahrefs df raw

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

Domain DR Dm“:: Do:‘::l?a: Tratfic Lh:: I':nz l'l'::; °“'°I::|°k': First seen Lost site
domains domains

o pinterestcouk 920 189919 46703 14142143 2 0 0 5(16N NaN davidsonlondon.cam
1 standard.couk 89.0 403937 7582 0031956 2 0 0 2 1R NaN davidsoniondon.com
2 myminifactory.com 78.0 40448 18726 293812 12 1] 0 12 29{03.:25[];; NaN davidsonlendon.com
3 idealhome.couk 77.0 18278 3133 2008577 2 0 0 0 15!02;253; NaN davidsonlondon.com
4 thomsonlocalcom 77.0 4895 24160 383648 2 0 6 0 wua?é:g? NaN davidsonlondon.com
102 ikhatotherescue.blogspot.com 0.0 73 2314 0 1 0o 0 1 W”?s‘::g; MaN johnsankey.co.uk
103 peakedgehotel blogspot.com 0.0 0 0 0 g o0 0 8 17’“?;23 MaN johnsankey.co.uk
104 thelibertyscale blogspoteom 0.0 0 0 1 1 o 0 1 11"““‘36”::1 MaN johnsankey.ce.uk

14/03/2022 18/03/2022

105 plums-rhombus-Irg3.squarespace.com 0.0 a [i] li] 1 1 1 1 11-18 1651 johnsankey.couk
108 upholsterycleaningdozacwa bl com 0.0 o 0 0 1 0 0 1 04“"“"123‘?;3 NaN johnsankey.co.uk

5409 rows x 12 columns

Now we have the raw data from each site in a single dataframe, the next step is to tidy up the column names
and make them a bit more friendlier to work with. A custom function could be used, but we'll just chain the
function calls with a list comprehension:

competitor ahrefs cleancols = comp ahrefs df raw.copy()
competitor ahrefs cleancols.columns = [col.lower () .replace ('
',' '").replace('.',"'" ").replace(' ',' ').replace('(','")

.rgplace(')',").reglace('%',")
for col in competitor ahrefs cleancols.columns]

Having a count column and a single value column (“project”) is useful for groupby and aggregation

operations:
competitor ahrefs cleancols['rd count'] =1
competitor ahrefs cleancols['project'] = target name

competitor ahrefs cleancols

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

d i dr _ref_di i dofollow_linked _d: i traffic_ links_to_target new_links lost links dofollow_links

0 pinterest.co.uk 92.0 189919 46703 14142143 2 0 0 2
1 standard.co.uk 89.0 403937 7582 9931955 2 o 1] 2

2 myminifactory.com 78.0 40446 18726 293812 12 o V] 12
3 idealhome.co.uk 77.0 18278 3133 2008577 2 V] 0 o
4 thomsonlocal.com 77.0 4895 24180 383648 22 0 6 0
102 ikhatotherescue.blogspot.com 0.0 73 2314 o 1 V] 0 1
103 peakedgehotelblogspot.com 0.0 a a o 8 D 0]
104 thelibertyscale.blogspot.com 0.0 (1] (4] 1 1 V] 1] 1
105 plums-rhombus-irg3 squarespace.com 0.0 1] a o 1 1 1 1
106 upholsterycleaningdozaowa.blogspot.com 0.0 (1] 1] o 1 0 0 1

5409 rows x 14 columns
The columns are now cleaned up, so we’ll now clean up the row data:
competitor ahrefs clean dtypes = competitor ahrefs cleancols

For referring domains, we're replacing hyphens with zero and setting the data type as an integer (i.e.,
whole number). This will be repeated for linked domains, also:

competitor ahrefs clean dtypes['dofollow ref domains'] =

np.where (competitor ahrefs clean dtypes['dofollow ref domains'] == '-',
0,

competitor ahrefs clean dtypes['dofollow ref domains'])

competitor ahrefs clean dtypes['dofollow ref domains'] =

competitor ahrefs clean dtypes['dofollow ref domains'].astype (int)

linked domains

competitor ahrefs clean dtypes['dofollow linked domains'] =

np.where (competitor ahrefs clean dtypes['dofollow linked domains'] == '-',
0,

competitor ahrefs clean dtypes['dofollow linked domains'])

competitor ahrefs clean dtypes['dofollow linked domains'] =

competitor ahrefs clean dtypes['dofollow linked domains'].astype (int)

First seen gives us a date point at which links were found, which we can use for time series plotting and
deriving the link age. We'll convert to date format using the to_datetime function:

competitor ahrefs clean dtypes['first seen'] =
pd.to _datetime (competitor ahrefs clean dtypes['first seen'],
format="'%d/%m/%Y SH:%M')
competitor ahrefs clean dtypes['first seen']
competitor ahrefs clean dtypes['first seen'].dt.normalize ()
]
1.

competitor ahrefs clean dtypes['month year'
competitor ahrefs clean dtypes['first seen'].dt.to period('M')

To calculate the link age, we’'ll simply deduct the first seen date from today’s date and convert the
difference into a number:

competitor ahrefs clean dtypes['link age'] = dt.datetime.now() -
competitor ahrefs clean dtypes['first seen']

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

competitor ahrefs clean dtypes['link age']
competitor ahrefs clean dtypes['link age']
competitor ahrefs clean dtypes['link age'] =
competitor ahrefs clean dtypes['link age'].astype(int)
competitor ahrefs clean dtypes['link age']
(competitor ahrefs clean dtypes['link age'

1000000000)) .round (0)

.a
1/(3600 * 24 *

The target column helps us distinguish the “client” site vs. competitors, which is useful for visualization
later:

competitor ahrefs clean dtypes['target'] =

np.where (competitor ahrefs clean dtypes['site'].str.contains('johns'),
1, 0)

competitor ahrefs clean dtypes['target'] =

competitor ahrefs clean dtypes['target'].astype('category')

competitor ahrefs clean dtypes

This results in the following:

imains traffic_ links_to_target new_links lost_links dofollow_links first_seen lost site rd_count project month_year link_age target

46703 14142143 2 0 0 2 e NaN davidsonlondon.cam 1 .09 o008 6300 0
18 Sankey

7582 9931955 2 0 0 g “eneNe: NaN davidsoniondon.com 1 .09 oopr.0s 4ze0 0
102 Sankey

18726 290812 12 0 0 1g R NaN davidsoniondon.com 1 .09 ogi70a 1ses0 o
29 Sankey

3133 2005577 2 0 o [H] nat-g2- NaN davidsonlondon.com 1 dtn 2020-02 815.0 Q
15 Sankey
2020-06- " John

24160 383648 22 0 (] 0 18 NaN davidsonlondon.com 1 Sankey 2020-06 691.0 0
2021-11- i John

2314 o 1 o (] 1 18 NaM johnsankey.co.uk 1 Sankey 2021-11 173.0 1
2020-06- ; John

o o B o o 8 17 MahN johnsankey.co.uk 1 Sankey 2020-06 692.0 1
2021-04- . John

1 .CO.| - 8 1

0 1 o] 1 1 MaN johnsankey.co.uk 1 Sankey 2021-04 394.0

2022-03- 16/03/2022 . John

o o 1 1 1 1 14 16:51 johnsankey.co.uk 1 Sankey 2022-03 57.0 1
2019-04- John

o o 1 o v] 1 04 MNaN johnsankey.co.uk 1 Sanksy 201%-04 11320 1

Now that the data is cleaned up both in terms of column titles and row values, we’re ready to set forth and
start analyzing.

Anatomy of a Good Link

When we analyzed the one target website earlier (“John Sankey”), we assumed (like the rest of the SEO

industry the world over) that domain rating (DR) was the best and most reliable measure of the link quality.
But should we? Let’s do a quick and dirty analysis to see if that is indeed the case or whether we can find

something better. We’ll start by aggregating the link features at the site level:

competitor ahrefs aggs =
competitor ahrefs analysis.groupby('site').agg({'link age': 'mean',

'dofollow links': 'mean', 'domain': 'count', 'dr': 'mean',
'dofollow ref domains': 'mean', ‘'traffic ': 'mean’,
'dofollow linked domains': 'mean', 'links to target':

'mean’', 'new links': 'mean', 'lost links': 'mean'}) .reset index()

competitor ahrefs aggs

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

site link_age dofollow_links domain dr dofollow_rel_domains traffic_ dofollow_linked_domains links_to_target new_links

L] davidlinley.com 784675000 3.002000 1000 32.882200 22648.514000 B.456371e+06 B3373.708000 4.031000 0.188000

1 davidsonlondon.com 328.118568 2.020650 371 11003774 3515.447439 1.351502e+05 116873.943396 3.048518 0.328841

2 hadieyrose.co.uk 226.657316 1.326763 1318 1.944882 1297 871180 1.022266e+05 S9388.066717 1.563306 0.146323

3 johnsankey.co.uk 540.121485 2411215 107 26.593458 22557.794383 1.334358e+06 366136.514018 3.383178 0.644860

4 kassavelio.com 301.018913 1.621748 423 8.077778 1279.536643 B.6B3198e+04 117990.945626 1.820787 0.108747

5 lushinteriors.co 227137255 1.039218 306 4.708883 1202.562082 B.210043e+04 31187.584771 1.26B170 0.156883

8 onlybespoke.com 267407407 0944444 108 16.330556 2934.128630 1.887193e+05 144268.425926 1.833333 0.296296

7 stephenclasperco.uk 581.516129 1.516129 31 30.548387 B565.006774 7.907171e+04 302009.161290 3.612803 0.225808

a8 tgosling.com 480.582474 1.783505 194 17.840722 14784.638175 1.181992e+06 197045.087629 2221849 0.190722

9 touchedinteriors.co.uk 741.674627 5.549254 335 18.5011894 8577.185075 4.250500e+05 222064.211940 7.188060 0.388060

10 tulipinterior.co.uk 273664198 1.562963 810 7.66B86T 1884 628630 4.224160e+04 97458.551852 1.920123 0.149383
11 willamgarvey.co.uk 529.738272 4.024681 405 17.768889 B033.827160 1.909090e+05 325999.076543 5728385 0.395062

The resulting table shows us aggregated statistics for each of the link features. Next, read in the list of
SEMRush domain level data (which by way of manual data entry was literally typed in since it’s only 11
sites):

semrush viz = [10100, 2300, 931, 2400, 911, 2100, 1800, 136, 838, 428, 1100,
1700]

competitor ahrefs aggs['semrush viz'] = semrush viz
competitor ahrefs aggs

This results in the following:

' link_age dofollow_links domain dr dofollow_ref_domains traffic_ dofollow_linked_domains links_to_target new_links lost_links semrush_viz
| TB4.675000 3.002000 1000 32.662200 22648.514000 6.456371a+06 83373.709000 4.031000 0.128000 0.193000 10100
| 329118598 2.029650 371 11.003774 3515447439 1.351592e+05 116973.943396 3.048518 0.328841 0121294 2300
. 226657316 1.326763 1319 1.944882 1297.971180 1.022266e+05 59388.066717 1.563306 0.146323 0.152388 931
¢ 540121495 2411215 107 26.593458 22557.794393 1.334358e+06 366136.514019 3383178 0.644860 0.093458 2400
| 301.018813 1.621748 423 6.077778 1279.536643 B.683198a+04 117990.845626 1.829787 0.10B747 0.120567 211
v 227137255 1.038216 306 4.T06863 1202.562082 B.210043e+04 31187.584771 1258170 0156863 0.101307 2100
| 267.407407 0.944444 108 16.330556 2934.129630 1.887193e+05 144268.4255826 1.833333 0.206296 (.185185 1800
. 5B1.516120 1516129 31 30.548387 B8565.096774 7.907171a+04 302009.161280 3512003 02258068 0.161290 138
| 4B0.6B2474 1.783505 184 17.840722 147846389175 1.181992e+06 197045.087629 2221649 0180722 0.164948 B38
o T41.674627 5.545254 335 18.501194 B5T7.185075 4.250500e+05 222064.211540 7.188060 0.388060 0.092537 428
. 273.664198 1.562863 B10 T.66G667 1884629630 4.224160e+04 97459.551852 1.880123 0.149383 0138506 1100
. 528.738272 4.024691 405 17.768889 8033.827160 1.909030a+05 3250%8.076543 5728395 0.385062 0.708842 1700

The SEMRush visibility data has now been appended, so we're ready to find some r-squared, known as the
coefficient of determination, which will tell which link feature can best explain the variation in SEMRush

visibility:

competitor ahrefs r2 = competitor ahrefs aggs.corr() ** 2

competitor ahrefs r2 = competitor ahrefs r2[['semrush viz']].reset index()
competitor ahrefs r2 = competitor ahrefs r2.sort values('semrush viz',

ascending = False)
competitor ahrefs r2

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

index semrush_viz

10 semrush_viz 1.000000
5 traffic_ 0.890900
4 dofollow_ref_domains 0.336989
3 dr 0.214275
0 link_age 0.204189
2 domain 0.148347
6 dofollow_linked_domains 0.064904
1 dofollow_links 0.014366
7 links_to_target 0.007580
9 lost_links 0.001712
8 new_links 0.001055

Naturally, we’d expect the semrush_viz to correlate perfectly with itself. DR (domain rating) surprisingly
doesn’t explain the difference in SEMRush very well with an r_squared of 21%.

On the other hand, “traffic_” which is the referring domain’s traffic value correlates better. From this
alone, we're prepared to disregard “dr” Let’s inspect this visually:

comp correl trafficviz plt = (
ggplot (competitor ahrefs aggs,

aes(x = 'traffic ', y = 'semrush viz')) +
geom point (alpha = 0.4, colour = 'blue', size = 2) +
geom_smooth (method = 'Im', se = False, colour = 'red', size = 3, alpha =

0.4)
)

comp correl trafficviz plt.save(filename =
'images/2 comp correl trafficviz plt.png',
height=5, width=10, units = 'in', dpi=1000)

comp correl trafficviz plt

This is not terribly convincing (Figure 5-8), due to the lack of referring domains beyond 2,000,000. Does
this mean we should disregard traffic_as a measure?

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

10000~

7500+

5000-

semrush_viz

2500~

0 2000000 4000000 6000000
traffic_

Figure 5-8 Scatterplot of the SEMRush visibility (semrush_viz) vs. the total AHREFs backlink traffic (traffic_) of the site’s backlinks

Not necessarily. The outlier data point with 10,000 visibility isn’t necessarily incorrect. The site does
have superior visibility and more referring traffic in the real world, so it doesn’t mean the site’s data should
be removed.

If anything, more data should be gathered with more domains in the same sector. Alternatively, pursuing
a more thorough treatment would involve obtaining SEMRush visibility data at the page level and
correlating this with page-level link feature metrics.

Going forward, we will use traffic_as our measure of quality.

Link Quality
We start with link quality, which we've very recently discovered should be measured by “traffic_” as
opposed to the industry accepted.

Let’s start by inspecting the distributive properties of each link feature using the describe() function:

competitor ahrefs analysis = competitor ahrefs clean dtypes
competitor ahrefs analysis[['traffic ']].describe()

The resulting table shows some basic statistics including the mean, standard deviation (std), and
interquartile metrics (25th, 50th, and 75th percentiles), which give you a good idea of where most referring
domains fall in terms of referring domain traffic.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

traffic_

count 5.409000e+03
mean 1.359225e+06
std 4.572404e+07
min 0.000000e+00
25% 0.000000e+00
50% 0.000000e+00
75% 8.400000e+01

max 3.191808e+09

So unsurprisingly, if we look at the median, then most of the competitors’ referring domains have zero
(estimated) traffic. Only domains in the 75th percentile or above have traffic.

We can also plot (and confirm visually) their distribution using the geom_boxplot function to compare
sites side by side:

comp dr dist box plt = (

ggplot (competitor ahrefs analysis,
#.loc[competitor ahrefs analysis(['dr'] > 0],

aes (x = 'reorder(site, traffic)', y = 'traffic ', colour =

'target')) +

geom boxplot (alpha = 0.6) +

scale y loglO() +

theme (legend position = 'none',

axis text x=element text (rotation=90, hjust=1)

))
comp dr dist box plt.save(filename =
'images/4 comp traffic dist box plt.png',
height=5, width=10, units = 'in', dpi=1000)
comp dr dist box plt

comp_dr_dist_box_plt compares a site’s distribution of referring domain traffic side by side (Figure 5-9)
and most notably the interquartile range (IQR). The competitors are in red, and the client is in blue.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

leg- .
L] L]
L -
g :
®
| L]
9] ®
& les- .
E === |
5 |] ==
| ‘ ‘ ‘
le2- B —
' ! . ' ' ! . ' ' \ ' '
& a2 o . - S = o { = KT
£ =] E g 3 5 5 & e 3 § E
4 g g 2 g g g g 2 ? g g
c ; o [=} - . - (=)} a : > =
— [= = I —
S Y 5 i~ 5 T 4 & = v = g
= o > 2 = z] 7] <R x = =
= fa = o = c =] in L= 5]
=) = n = =1 T @ o w B 2 o
S g s . £ & £ £ 3 i : g
2 = = 2 = E & = = & g
= 2 - =1 L b 3 2 =]
< E e} = = o - [=8
m = o a
o 2 a
a

reorder(site, traffic_)

Figure 5-9 Box plot of each website’s backlink traffic (traffic_)

The interquartile range is the range of data between its 25th percentile and 75th percentile. The
purpose is to tell us

¢ Where most of the data is
¢ How much of the data is away from the median (the center)

In this case, the IQR is quantifying how much traffic each site’s referring domains get and its variability.

We also see that “John Sankey” has the third highest median referring domain traffic which compares
well in terms of link quality against their competitors. The size of the box (its IQR) is not the longest (quite
consistent around its median) but not as short as Stephen Clasper (more consistent, with a higher median
and more backlinks from referring domain sites higher than the median).

“Touched Interiors” has the most diverse range of DR compared with other domains, which could
indicate an ever so slightly more relaxed criteria for link acquisition. Or is it the case that as your brand
becomes more well known and visible online, this brand has naturally attracted more links from zero traffic
referring domains? Maybe both.

Let’s plot the domain quality over time for each competitor:

comp_ traf timeseries plt = (
ggplot (competitor ahrefs analysis,
aes(x = 'first seen', y = 'traffic ',
group = 'site', colour = 'site')) +
geom_smooth (alpha = 0.4, size = 2, se = False,
method='loess'
)+
scale x date() +
theme (legend position = 'right',
axis text x=element text (rotation=90, hjust=l)

)

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

comp traf timeseries plt.save(filename =
'"images/4 comp traffic timeseries plt.png',
height=5, width=10, units = 'in', dpi=1000)

comp traf timeseries plt

We deliberately avoided using scale_y_log10() which would have transformed the vertical axis using
logarithmic scales. Why? Because it would look very noisy and difficult to see any standout competitors.

Figure 5-10 shows the quality of links acquired over time of which the standout sites are David Linley, T
Gosling, and John Sankey:.

15000000 - "
site
wen davidlinley.com
we davidsonlondon.com
hadleyrose co.uk
10000000 - Jjohnsankey.co.uk

e kassavello.com

lushinteriars.ca

traffic

= onlybespoke.com
5000000 - == stephenclasper.co.uk
m— tgosling.com
e touchedinteriors.co.uk
e tulipinterionco.uk

== williamgarvey.co.uk

2017-01-01
2018-01-01
2019-01-01
2020-01-01
2021-01-01
2022-01-01

2014-01-01
2015-01-01
2016-01-01 _

first_seen

Figure 5-10 Time series plot showing the amount of traffic each referring domain has over time for each website

The remaining sites are more or less flat in terms of their link acquisition performance. David Linley
started big, then dive-bombed in terms of link quality before improving again in 2020 and 2021.

Now that we have some concept of how the different sites perform, what we really want is a cumulative
link quality by month_year as this is likely to be additive in the way search engines evaluate the authority of
websites.

We'll use our trusted groupby() and expanding().mean() functions to compute the cumulative stats we
want:

competitor traffic cummean df competitor ahrefs analysis.copy /()

competitor traffic cummean df =
competitor traffic cummean df.groupby(['site', 'month year'])

['traffic '].sum() .reset index()

competitor traffic cummean df['traffic runavg'] =
competitor traffic cummean df['traffic '].expanding() .mean ()

competitor traffic cummean df

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

site month_year traffic_ traffic_runavg

0 davidlinley.com 2013-08 5770 5.770000e+03
1 davidlinley.com 2013-09 92 2.931000e+03
2 davidlinley.com 2013-10 32 1.964667e+03
3 davidlinley.com 2013-12 2 1.474000e+03
4 davidlinley.com 2014-02 0 1.179200e+03

502 williamgarvey.co.uk 2021-11 1940163 1.458292e+07
503 williamgarvey.co.uk 2021-12 14357281 1.458247e+07
504 williamgarvey.co.uk 2022-01 846774 1.455527e+07
505 williamgarvey.co.uk 2022-02 1628704 1.452973e+07

506 williamgarvey.co.uk 2022-03 3234 1.450108e+07

507 rows x 4 columns

Scientific formatted numbers aren’t terribly helpful, nor is a table for that matter, but at least the dataframe
is in a ready format to power the following chart:

competitor traffic cummean plt = (

ggplot (competitor traffic cummean df, aes(x = 'month year',6 y =
'traffic runavg', group = 'site', colour = 'site')) +

geom line(alpha = 0.6, size = 2) +

labs(y = 'Cumu Avg of traffic ', x = 'Month Year') +

scale y continuous () +

scale x date() +

theme (legend position = 'right',

axis text x=element text (rotation=90, hjust=1)

))

competitor traffic cummean plt.save(filename =
'images/4 competitor traffic cummean plt.png',
height=5, width=10, units = 'in', dpi=1000)

competitor traffic cummean plt

The code is color coding the sites to make it easier to see which site is which.
So as we might expect, David Linley’s link acquisition team has done well as their authority has made
leaps and bounds over all of the competitors over time (Figure 5-11).

>>>4f {ijackgoogleseo.com# M & 3 2. $ hif<<<

U\
site
s davidlinley.cam
60000000 - davidsanlondon.com
| hadieyrose co.uk
[}
% Jjohnsankey.co.uk
= e kassavello.com
g‘ 40000000~ - lushinteriors.ca
3’. - onlybespoke.cam
=]
E === stephenclasper.co.uk
3
3 we tgosling.com
20000000 - g
we touchedinteriors.co.uk
s tulipinterior.co.uk
e williamgarvey.co.uk
i) ——————ad
. | ! ' ' ' ' ' f
— — — — — - — — —
= = =] =] =] @ < =3 =)
= - ~ - - - i - r
o o (=] (=] (=] (=] o o (=]
= I @ ~ o0 & =1 o o
— - — - - - &~ ™~ -
o o =] o o =3 = =3 =]
™~ ™~ o~ ™~ ™~ ~ ~ ~ ™~
Month Year

Figure 5-11 Time series plot of the cumulative average backlink traffic for each website

All of the other competitors have pretty much flatlined. This is reflected in David Linley’s superior
SEMRush visibility (Figure 5-12).

10000 -

7500 -

5000 -

SEMRush Visibility

2500-

L} L} L} 1 1 I 1 ' 1 1 Ll L}

stephenclasper.co.uk
touchedinteriors.co.uk
tgosling.com
kassavello.com
hadleyrose.co.uk
tulipinterior.co.uk
williamgarvey.co.uk
onlybespoke.com
lushinteriors.co
davidsonlondon.com
johnsankey.co.uk
davidlinley.com

Figure 5-12 Column chart showing the SEMRush visibility for each website

What can we learn? So far in our limited data research, we can see that slow and steady does not win the
day. By contrast, sites need to be going after links from high traffic sites in a big way.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Link Volumes

That’s quality analyzed; what about the volume of links from referring domains?
Our approach will be to compute a cumulative sum of referring domains using the groupby() function:

competitor count cumsum df = competitor ahrefs analysis

competitor count cumsum df = competitor count cumsum df.groupby(['site',
'month year']) ['rd count'].sum().reset index()

The expanding function allows the calculation window to grow with the number of rows, which is how
we achieve our cumulative sum:

competitor count cumsum df['count runsum'] =
competitor count cumsum df['rd count'].expanding() .sum()

competitor count cumsum df
This results in the following:

site month_year rd_count count_runsum link_velocity

0 davidlinley.com 2013-08 11 11.0 NaN
1 davidlinley.com 2013-09 1 12.0 -10.0
2 davidlinley.com 2013-10 1 13.0 0.0
3 davidlinley.com 2013-12 1 14.0 0.0
4 davidlinley.com 2014-02 1 15.0 0.0
502 williamgarvey.co.uk 2021-11 24 5324.0 -15.0
503 williamgarvey.co.uk 2021-12 36 5360.0 12.0
504 williamgarvey.co.uk 2022-01 22 5382.0 -14.0
505 williamgarvey.co.uk 2022-02 19 5401.0 -3.0
506 williamgarvey.co.uk 2022-03 8 5409.0 -11.0

507 rows x 5 columns

The result is a dataframe with the site, month_year, and count_runsum (the running sum), which is in the
perfect format to feed the graph — which we will now run as follows:

competitor count cumsum plt = (

ggplot (competitor count cumsum df, aes(x = 'month year', y =
'count runsum',

group = 'site', colour = 'site')) +

geom line(alpha = 0.6, size = 2) +

labs (y = 'Running Sum of Referring Domains', x = 'Month Year') +

scale y continuous () +

scale x date() +

theme (legend position = 'right',

axis text x=element text (rotation=90, hjust=1)

))

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

competitor count cumsum plt.save (filename =
'images/5 count cumsum_ smooth plt.png',
height=5, width=10, units = 'in', dpi=1000)

competitor count cumsum plt

The competitor_count_cumsum_plt plot (Figure 5-13) shows the number of referring domains for each
site since 2014. What is quite interesting are the different starting positions for each site when they start
acquiring links.

site
davidlinley.com
davidsonlondon.com

4000 - = =3 hadleyrose co.uk

] 1 T — johnsankey.co.uk
kassavello,com
lushinteriors.co
onlybespoke.com

2000- stephenclasper.co.uk
== tQOSling.com
touchedinteriors.co.uk

tulipinterior.co.uk

Running Sum of Referring Domains

williamgarvey.co.uk

o, & o - et - - et oy
(= [=] o (=] o =] o =] o
=1 =] (=] (=] < < ‘.2 t:l (=1
- al o ~ Lo+] ch = - ~
— —t - —_ —_ — o~ ™~ ~
=2 (=] [~ (=] = (= =3 =

~ ~ o~ (2] ™~ ™~ o~ ~ ~

Month Year

Figure 5-13 Time series plot of the running sum of referring domains for each website

For example, William Garvey started with over 5000 domains. I'd love to know who their digital PR team
is.

We can also see the rate of growth, for example, although Hadley Rose started link acquisition in 2018,
things really took off around mid-2021.

Link Velocity
Let’s take a look at link velocity:
competitor velocity cumsum plt = (
ggplot (competitor count cumsum df, aes(x = 'month year', y =
'link velocity',
group = 'site', colour = 'site')) +
geom line(alpha = 0.6, size = 2) +
labs(y = 'Running Sum of Referring Domains', x = 'Month Year') +
scale y loglO() +
scale x date() +
theme (legend position = 'right',

axis text x=element text (rotation=90, hjust=1)

))
competitor velocity cumsum plt.save(filename =
'images/5 competitor velocity cumsum plt.png',
height=5, width=10, units = 'in', dpi=1000)

competitor velocity cumsum plt

The view shows the relative speed at which the sites are acquiring links (Figure 5-14). This is an
unusual but useful view as for any given month you can see which site is acquiring the most links by virtue

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

of the height of their lines.

S site

davidlinley.com
davidsonlondan.com
hadleyrose.co.uk
johnsankey.co.uk
kassavello.com
lushinteriors.co

onlybespoke.com

Link Velocity
S

stephenclasper.co.uk
we tgosling.com

=== touchedinteriors.co.uk

tulipinterior.co.uk

wiliamgarvey.co.uk

e
=

—
—

i
< .
—
"'ﬁh,_‘_ =
e

——

— - — — — — — — —
L) = L=} K.IJ = o (=] (=] (=]
- — — — — — — — —
Q =] (=] = =] Q o (=) (=
o) vy w ~ o =3 f=] i o~
A = = 2t = = = ~ a
Q < Q (=] =] (=] Q (=] b=
~ ™~ ~ o~ ™~ o~ ~ ™~ ~
Month Year

Figure 5-14 Time series plot showing the link velocity of each website

David Linley was winning the contest throughout the years until Hadley Rose came along.

Link Capital
Like most things that are measured in life, the ultimate value is determined by the product of their rate and
volume. So we will apply the same principle to determine the overall value of a site’s authority and call it
“link capital”

We’ll start by merging the running average stats for both link volume and average traffic (as our
measure of authority):

competitor capital cumu df =
competitor count cumsum df.merge (competitor traffic cummean df,

on = ['site', 'month_yearT], how = 'left'

)

competitor capital cumu df['auth cap'] =
(competitor capital cumu df['count runsum']
competitor capital cumu df['traffic runavg']).round(1l)*0.001

*

competitor capital cumu df['auth velocity'] =
competitor capital cumu df['auth cap'].diff()

competitor capital cumu df

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

site month_year rd_count count_runsum link_velocity traffic_ traffic_runavg auth_cap auth_velocity

0 davidlinley.com 2013-08 11 11.0 NaN 5770 5.770000e+03 6.347000e+01 NaN

1 davidlinley.com 2013-09 1 12.0 -10.0 92 2.931000e+03 3.517200e+01 -28.2980

2 davidlinley.com 2013-10 1 13.0 0.0 32 1.964667e+03 2.554070e+01 -9.6313

3 davidlinley.com 2013-12 1 14.0 0.0 2 1.474000e+03 2.063600e+01 -4.9047
4 davidlinley.com 2014-02 1 15.0 0.0 0 1.179200e+03 1.768800e+01 -2.9480
502 williamgarvey.co.uk 2021-11 24 5324.0 -15.0 1940163 1.458292e+07 7.763947e+07 216510.7948
503 williamgarvey.co.uk 2021-12 36 5360.0 12.0 14357281 1.458247e+07 7.816206e+07 522585.5084
504 williamgarvey.co.uk 2022-01 22 5382.0 -14.0 846774 1.455527e+07 7.8336489e+07 174427.2243
505 williamgarvey.co.uk 2022-02 19 5401.0 -3.0 1628704 1.452973e+07 7.847506e+07 138573.1262
506 williamgarvey.co.uk 2022-03 8 5409.0 -11.0 3234 1.450108e+07 7.843632e+07 -38740.0970

507 rows = 9 columns

The merged table is produced with new columns auth_cap (measuring overall authority) and auth_velocity
(the rate at which authority is being added).
Let’s see how the competitors compare in terms of total authority over time in Figure 5-15.

site
davidlinley.com

- 00000 - i
80000000 — davidsonlondon.com

e
——— = ‘-”"=‘="'=-‘-——-=-=..=..=.,__.__5{= hadleyrose.co.uk
- = = - johnsankey.co.uk
kassavello.com
GO0O0000 - . "
lushinteriars.ca

onlybespoke.com

Authority Capital

stephenclasper.co.uk
30000000 - == tgosling:com
== touchedinteriors.co.uk

tulipinterior.co.uk

williamgarvey.co.uk

2022-01-01 _

2020-01-01 _
2021-01-01

2017-01-01 _
2018-01-01
2019-01-01 _

2014-01-01 _
2015-01-01 _
201R-01-01

Month Year

Figure 5-15 Time series plot of authority capital over time by website

The plot shows the link capital of several sites over time. What'’s quite interesting is how Hadley Rose
emerged as the most authoritative with the third most consistently highest trafficked backlinking sites with
aramp-up in volume in less than a year. This has allowed them to overtake all of their competitors in the
same time period (based on volume while maintaining quality).

What about the velocity in which authority has been added? In the following, we'll plot the authority
velocity over time for each website:

competitor capital veloc plt = (

ggplot (competitor capital cumu df, aes(x = 'month year', y =
'auth velocity',

group = 'site', colour = 'site')) +

geom line(alpha = 0.6, size = 2) +

labs(y = 'Authority Capital', x = 'Month Year') +

scale y continuous() +
scale x date() +
theme (legend position = 'right',

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

axis text x=element text (rotation=90, hjust=1)

))

competitor capital veloc plt.save(filename =
'images/6_auth veloc smooth plt.png',
height=5, width=10, units = 'in', dpi=1000)

competitor capital veloc plt

The only standouts are David Linley and Hadley Rose (Figure 5-16). Should David Linley maintain the
quality and the velocity of its link acquisition program?

30000000 -
site
davidlinley.com

davidsonlondon.com

hadleyrose co.uk

0000000 - johnsankey.co.uk
kassavello.com
lushinteriars.co

onlybespoke.com

Authaority Capital

stephenclasper.co.uk
LOOOCO00 - P w
=== tgosling.com
touchedinteriors.co.uk
tulipinterior.co.uk

willlamgarvey.co.uk

i

2020-01-01 _
2021-01-01 _
2022-01-01 _

F018-01-01
2019-01-0

2014-01-01
2015-01-01
2016-01-01 _
2017-01-01

Month Year

Figure 5-16 Link capital velocity over time by website

We’re in no doubt that it will catch up and even surpass Hadley Rose, all other things being equal.

Finding Power Networks

A power network in SEO parlance is a group of websites that link to the top ranking sites for your desired
keyword(s). So, getting a backlink from these websites to your website will improve your authority and
thereby improve your site’s ranking potential.

Does it work? From our experience, yes.

Before we go into the code, let’s discuss the theory. In 1996, the quality of web search was in its infancy
and highly dependent on the keyword(s) used on the page.

In response, Jon Kleinberg, a computer scientist, invented the Hyperlink-Induced Topic Search (HITS)
algorithm which later formed the core algorithm for the Ask search engine.

The idea, as described in his paper “Authoritative sources in a hyperlinked environment” (1999), is a
link analysis algorithm that ranks web pages for their authority and hub values. Authorities estimate the
content value of the page, while hubs estimate the value of its links to other pages.

From a data-driven SEO perspective, we're not only interested in acquiring these links, we're also
interested in finding out (in a data-driven manner) what these hubs are.

To achieve this, we’ll group the referring domains and their traffic levels to calculate the number of sites:

power doms strata = competitor ahrefs analysis.groupby (['domain',
'traffic ']).agg({'rd count': 'count'})
power doms_ strata = power doms strata.reset index().sort values('traffic ',

ascending = False)

Areferring domain can only be considered a hub or power domain if it links to more than two domains,
so we'll filter out those that don’t meet the criteria. Why three or more? Because one is random, two is a

http://www.cs.cornell.edu/home/kleinber/auth.pdf

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

coincidence, and three is directed.
power doms strata = power doms_ strata.loc[power doms stratal['rd count'] > 2]
power doms strata

This results in the following:

domain traffic_ rd_count

3763 sitelike.org 14357011 11
1827 idcrawl.com 23024 10
3766 siteprice.org 1291812 9
1 1-2-3-4-5.com 25 9
1337 firmania.co.uk 2485 8
479 bizify.co.uk 4523 3
3891 storyandtoy.com 0 3
1748 homify.es 113111 3
1518 goldsir.ru 3 3
673 cgmood.com 6167 3

156 rows x 3 columns

The table shows referring domains, their traffic, and the number of (our furniture) sites that these
backlinking domains are linking to.

Being data driven, we're not satisfied with a list, so we’ll use statistics to help understand the
distribution of power before filtering the list further:

pd.set option('display.float format', str)
power doms_stats = power doms strata.describe ()

power doms stats

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

traffic_ rd_count

count 156.0 156.0
mean 1015822.032051282 3.9038461538461537
std 7774169.411800991 1.4669645911413565

min 0.0 3.0
25% 0.75 3.0
50% 405.0 3.0
75% 51098.75 4.0
max 94579570.0 11.0

We see the distribution is heavily positively skewed where most of the highly trafficked referring domains
are in the 75th percentile or higher. Those are the ones we want. Let’s visualize:

power doms stats plt = (

ggplot (power doms strata, aes(x = 'traffic ')) +
geom histogram(alpha = 0.6, binwidth = 10) +
labs (y = 'Power Domains Count', x = 'traffic ') +
scale y continuous () +
theme (legend position = 'right',
axis text x=element text (rotation = 90, hjust=1l)
))
power doms stats plt.save(filename = 'images/7 power doms stats plt.png',
height=5, width=10, units = 'in', dpi=1000)

power doms stats plt

As mentioned, the distribution is massively skewed, which is more apparent from the histogram. Finally,
we'll filter the domain list for the most powerful:

power doms = power doms strata.loc[power doms strata['traffic '] >
power doms stats['traffic ']1[-2]]

Although we're interested in hubs, we're sorting the dataframe by traffic as these have the most
authority:

power doms = power doms.sort values('traffic ', ascending = False)
power_ doms

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

domain traffic_ rd_count

885 dailymail.co.uk 94579570 3
3763 sitelike.org 14357011 11
3135 pinterest.co.uk 14142143 6
3865 standard.co.uk 9931955 4
4614 yel.com 6335301 4
4106 thetimes.co.uk 4977287 3
1829 idealhome.co.uk 2005577 3
1726 homesandgardens.com 1975639 3
3766 siteprice.org 1291812 9
2619 minimalis.co.id 1187798 6
1743 homify.com.mx 867528 3
2389 livingetc.com 554980 3
1740 homify.com.br 485936 3
1781 houseandgarden.co.uk 462721 4
3767 sitesimilar.net 460603 3
2613 milesia.id 440193 4
1321 find-open.co.uk 411864 8
4139 thomsonlocal.com 383648 5
1751 homify.in 341049 3
1747 homify.de 287989 3

817 countryandtownhouse.co.uk 276936 5

By far, the most powerful is the daily mail, so in this case start budgeting for a good digital PR consultant or
full-time employee. There are also other publisher sites like the Evening Standard (standard.co.uk) and The
Times.

Some links are easier and quicker to get such as the yell.com and Thomson local directories.

Then there are more market-specific publishers such as the Ideal Home, Homes and Gardens, Livingetc,
and House and Garden.

This should probably be your first port of call.

This analysis could be improved further in a number of ways, for example:

¢ Going more granular by looking for power pages (single backlink URLs that power your competitors)

¢ Checking the relevance of the backlink page (or home page) to see if it impacts visibility and filtering for
relevance

e Combining relevance with traffic for a combined score for hub filtering

Taking It Further
Of course, the preceding discussion is just the tip of the iceberg, as it’s a simple exploration of one site so
it’s very difficult to infer anything useful for improving rankings in competitive search spaces.

The following are some areas for further data exploration and analysis:

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Adding social media share data to destination URLs, referring domains, and referring pages
Correlating overall site visibility with the running average referring domain traffic over time

Plotting the distribution of referring domain traffic over time

Adding search volume data on the hostnames to see how many brand searches the referring domains
receive as an alternative measure of authority

Joining with crawl data to the destination URLs to test for

¢ Content relevance
¢ Whether the page is indexable by confirming the HTTP response (i.e., 200)

Naturally, the preceding ideas aren’t exhaustive. Some modeling extensions would require an

application of the machine learning techniques outlined in Chapter 6.

Summary

Backlinks, the expression of website authority for search engines, are incredibly influential to search result
positions for any website. In this chapter, you have learned about

What site authority is and how it impacts SEO
How brand searches could impact search visibility
Single site analysis

Competitor authority analysis

e Link anatomy: How R? showed referring domain traffic was more of a predictor than domain rating for
explaining visibility
¢ How analyzing multiple sites adds richness and context to authority insights

In both single and multiple site analyses

¢ Authority - distribution and over time
¢ Link volumes and velocity

In the next chapter, we will use data science to analyze keyword search result competitors.

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A.Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_6

6. Competitors

Andreas Voniatis?!

(1) Surrey, UK

What self-respecting SEO doesn’'t do competitor analysis to find out what they’re missing? Backin 2007,
Andreas recalls using spreadsheets collecting data on SERPs with columns representing aspects of the
competition, such as the number of links to the home page, number of pages, word counts, etc. In hindsight,
the idea was right, but the execution was near hopeless because of the difficulty of Excel to perform a
statistically robust analysis in the short time required - something you will now learn shortly using
machine learning.

And Algorithm Recovery Too!

The applications are not only useful for general competitor SEO analysis but also recovering from Google
updates, especially when you don’'t have copies of SERPs data preceding the update to contrast what worked
before to what works now.

If you did have the SERPs data leading up to the update, then you’'d simply repeat the analysis for the
before SERPs and compare the analysis results to the after SERPs.

Defining the Problem

Before we rush in, let’s think about the challenge. With over 10,000 ranking factors, there isn't enough time
nor budget to learn and optimize for the high-priority SEO items.

We propose to find the ranking factors that will make the decisive difference to your SEO campaign by
cutting through the noise and using machine learning on competitor data to discover

» Which ranking factors can best explain the differences in rankings between sites
¢ What the winning benchmarks are
¢ How much a unit change in the factor is worth in terms of rank

Outcome Metric

Let it be written that the outcome variable should be search engine ranking in Google. This approach can be
adapted for any other search engine (be it Bing, Yandex, Baidu, etc.) as long as you can get the data from a
reliable rank checking tool.

Why Ranking?
Because unlike user sessions, it doesn’t vary according to the weather, the time of year, and so on - Query
Freshness excepted. It's probably the cleanest metric. In any case, the ranking represents the order in which
content of the ranking URL best satisfies the search query - the point of RankBrain, come to think of it. So in
effect, we are working out how to optimize for any Google update informed by RankBrain.

From a data perspective, the ranking position must be a floating numeric data type known as a “float” in
Python (“double” in R).

Features

Now that we have established the outcome metric, we must now determine the independent variables, the
model inputs also known as features. The data types for the feature will vary, for example:

first_paint_ms would be numeric.

https://doi.org/10.1007/978-1-4842-9175-7_6

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

flesch_kincaid_reading_ease would be a character.

Naturally, you want to cover as many meaningful features as possible, including technical, content/UX,
and offsite, for the most comprehensive competitor research.

Data Strategy

Now that we know the outcome and features, what to do? Given that rankings are numeric and that we want
to explain the difference in rank which is a continuous variable (i.e., one flows into two, then into three,
etc.), then competitor analysis in this instance is a regression problem. This means in mathematical terms

rank ~ w_1*feature 1 + w_2*feature 2 + .. + w_n*feature n

~ means explained by.

n is the nth feature.

w is the weighting of the feature.

To be clear; this is not always a linear regression exercise. Linear regression assumes all features will
behave in a linear fashion - data points will all fit along a straight line. While this may be true in most cases
for some features like PageSpeed, this will not be true for other features.

For example, a lot of ranking factors behave nonlinearly for some sectors. For example, the number of
characters for a title tag is usually nonlinear such that there is a sweet spot.

As shown in Figure 6-1, we can see that the line of best fit is n-shaped showing the rank to get higher as
we approach 28% of title characters featuring the site title and lower the further a website deviates from
that winning benchmark for title tag branding proportion.

10-

20~

Google Rank

30-

40 -

1 ' L] '

0 0.25 0.50 0.75 1
title_branded

Figure 6-1 Scatterplot of title tags branded (as a proportion of total characters) and average Google rank position

In terms of what to collect features on, search engines rank URLs, not domains, and therefore we will
focus on the former. This will save you money and time in terms of data collection costs as well as putting
the actual data together. However, the downside is that you won’t be able to include domain-wide features
such as ranking URL distance from the home page.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

To that end, we will be using a decision tree-based algorithm known as “random forest.” There are other
algorithms such as decision tree, better ones like AdaBoost, and XGBoost. A data scientist will typically
experiment with a number of models and then pick the best one in terms of model stability and predictive
accuracy.

However, we're here to get you started; the models are likely to produce similar results, and so we're
saving you time while delivering you, most importantly, the intuition behind the machine learning
technique for analyzing your SERP competitors for SEO.

Data Sources

Although we’re not privy to Google’s internal data (unless you work for Google), we rely heavily on third-
party tools to provide the data. The reason the tools are third party and not first party is that the data for all
websites in the data study must be comparable to each other - unless in the unlikely event you have access
to your competitors’ data. No? Moving on.

Your data sources will depend on the type of features you wish to test for modeling the SERP
competitors.

Rank: This will come from your rank checking tool and not Google Search Console. So that’s getSTAT,
SEO Monitor, Rank Ranger or the DataForSEO SERPs API. There are others, although we have or have no
direct experience of testing their APIs and thus cannot be mentioned. Why those three? Because they all
allow you to export the top 100 URLs for every keyword you're including in your research. This is important
because from the outset we don't want to assume who your SERPs competitors are. We just want to extract
the data and interrogate it.

For the features:

Onsite: To test whether onsite factors can explain the differences in rank for your keyword set, use
features like title tag length, page speed, number of words, reading ease, and anything your rank checking
tool can tell you about a URL. You can also derive your own features such as title relevance by calculating the
string distance between the title tag and the target keyword. Rest assured, we’ll show you how later.

For less competitive industries and small datasets (less than 250,000 URLSs per site), a tool like
Screaming Frog or Sitebulb will do. For large datasets and competitive industries, it's most likely that your
competitors will block desktop site auditors, so you will have to resort to an enterprise-grade tool that
crawls from the cloud and has an API. We have personally found Botify, not only to have both but also to
work well because most enterprise brands use them so they won't get blocked, when it comes to crawling!

Offsite: To test the impact of offsite factors, choose a reliable source with a good APL In our experience,
AHREFs and BuzzSumo work well, yielding metrics such as the domain rating, number of social shares by
platform, and number of internal links on the backlinking URLs. Both have APIs which allow you to automate
the collection of offsite data into your R workspace.

Explore, Clean, and Transform
Now that you have the data, data science practice dictates that you explore the data to

e Understand the distribution: Is it skewed or multimodal (i.e., multiple peaks in the distribution)?
e Examine the quality of data: Are there too many NAs? Single-level factors?
» Discover new features for derivation

The idea is to improve the quality of the data you're going to feed into your model by discarding features
and rows as not all of them will be informative or useful. Exploring the data will also help you understand
the limits of your model for explaining the ranking factors in your search query space.

Before joining onto the SERPs data, let’s explore.

To summarize the overall approach

1.

Import data - both rankings and features
2.

Focus on the competitors
3.

Join the data

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

4. Derive new features

Single-level factors (SLFs)
Rescale your data

Near Zero Variance (NZVs)
Median impute

One hot encoding (OHE)

10.
Eliminate NAs

11.
Model the SERPs

12.
Evaluate the SERPs ML model

13.
The most predictive drivers of rank

14.
How much rank a ranking factor is worth

15.
The winning benchmark for a ranking factor

Naturally, there is a lot to cover, so we will explain each of these briefly and go into more detail over the
more interesting secrets ML can uncover on your competitors.

Import Data - Both SERPs and Features

This can be done by importing CSV downloads from the relevant SEO tools or, for a more automated
experience, using your tool provider’s APl into dataframes (Python’s version of a spreadsheet). Some
starter code is shown as follows for importing CSV data:

For regular expressions (regex), although string methods include regex by default:

import re

import time

import random
import pandas as pd
import numpy as np
import datetime
import re

import time

import requests
import json

from datetime import timedelta

For importing multiple files:

from glob import glob
import os

String methods used to compute the overlap between two text strings:
from textdistance import sorensen dice

To extract parts of a URL:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

import uritools
from tldextract import extract

For visualizing data:

from plotnine import *

import matplotlib.pyplot as plt

pd.set option('display.max colwidth', None)
gmatplotlib inline

Some variables are initiated at the start, so that when you reuse the script on another client or site, you
simply overwrite the following variable values:

root url = 'https://www.johnsankey.co.uk'
target site = 'www.Jjohnsankey.co.uk'

root domain = 'johnsankey.co.uk'

hostname = 'johnsankey'

target name = 'sankey'

geo_market = 'uk'

Alist of social sites used for subsetting or filtering the data:
social sites = ['facebook.com', 'instagram.com',6 'linkedin.com',

'twitter.com', 'pinterest.com', 'tiktok.com', 'foursquare.com',
'reddit.com']

Start with the Keywords

As with virtually all things in SEO, start with the end in mind. That usually means the target keywords you
want your site to rank for and therefore their SERPs which we will load into a Pandas dataframe:

serps _raw = pd.read csv('data/keywords serps.csv')

To make the dataframe easier to handle, we’ll use a list comprehension to turn the column names into
lowercase and replace punctuation marks and spaces with underscores:

serps raw.columns = [x.lower().replace(' ', ' ').replace(',',

' ").replace(' ', ' ") for x in serps_raw.coiumns]

The rank_absolute column is replaced by the more simplified and familiar “rank”:
serps raw = serps raw.rename (columns = {'rank absolute': 'rank'})
serps_raw

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword rank wrl location_code language_code se_results count

0 msofasuk 1 hitps:/fwww.msofas.co.uk/ 2828 en 08

1 msofasuk 2 https://uk trustpilot.com/review/www.msaofas.co.uk 2826 en o8

2 msofasuk 3 https:/fwww.facebook.com/Msofas/ 2826 en a8

3 msofasuk 4 hittps:/fwww.reviews.co. uk/company-reviews’ fas-co-uk 2826 en a8

4 mzofas uk 5 https:/www.safebuy.org.uk/busi { ies/msofas 2826 en 98

25730 f;":g a9 https://www.grahamsandersoninteriors.comitabrics 2826 en 71000000
Iuxury https:/Awww. kitepackaging.co.uk/blog/how-to-pack-luxury-fabri d-h ies-the-

25731 fabrics 190 packaging-doctor/ 2826 en 71000000

25732 by 409 NalN 2826 en 71000000

fabrics
25733 f:;::;: 1 hitps:tfwww.uuryfabricsitd.co.uk/ 2826 en 71000000
25734 Uy 4pp NalN 2826 en 71000000

fabrics
25735 rows x 6 columns
The serps_raw dataframe has over 25,000 rows of SERPs data with 6 columns, covering all of the keywords:
serps_df = serps raw.copy ()
The URL column is set as a string for easier data manipulation:
serps df['url'] = serps df['url'].astype(str)

The first manipulation is to extract the domain for the “site” column. The site column will apply the
uritools API function to strip of the slug and then split the URL into a list of its components using a list
comprehension:

serps _df['site'] = [uritools.urisplit(x).authority if uritools.isuri(x) else
x for x in serps df['url']]

Once split, we will extract everything in the list, taking the last three components:
serps df['site'] = ['.'.join(s.split('.")[-3:]) for s in serps df['site']]

Next, we want to profile the rank into strata, so that we can have rank categories. While this may not be
used in this particular exercise, it’s standard practice when working with SERPs data.

serps df['rank profile'] = np.where(serps df['rank'] < 11, 'page 1°',

'page 2'")

serps_df['rank profile'] = np.where(serps df['rank'] < 3, 'top 3',
serps_df['rank profile'])

Rather than have zero search_volumes, we'll set these to one to avoid divide by zero errors using
np.where():

serps_df['se results count'] = np.where(serps df['se results count'] == 0,
1, serps df['se results count'])

We'll set a “count” column for quicker aggregation:
serps df['count'] =1
We’ll also count the number of keywords in a search string, known in the data science world as tokens:

serps df['token count'] = serps df['keyword'].str.count(' ') + 1

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

These will then be categorized into head, middle, and tail, based on the token length:
before length conds = [
serps df['token count'] == 1
serps_df['token count'] == 2,
serps_df['token count'] > 2]
length vals = ['head', 'middle', 'long']
serps_df['token size'] = np.select (before length conds, length vals)

serps df

This results in the following:

keyword rank url location_code language_code se_results_count site rar

0 mwlﬁsk 1 https:/www.msofas.co.uk/ 2826 en a8 msafas.co.uk
msofas 5 7 2 5

1 ke 2 https://uk. trustpilot. com/raview/www.msofas.co.uk 2826 en a8 uk_trustpilot.com
msofas .

2 uk 3 https:/fwww.facebook.com/Msofas/ 2826 en a8 www.facebook.com
msofas hitps:/fwww.reviews.co.uk/company-

3 uk 4 raviawaISOre S as co-uk 2826 en 98 reviews.co.uk
4 m“""ﬁ 5 hitps safebuy.omg.uk/busi panies/msofa 2826 n 98 safebuy.ong.uk
Iuury] e 2 e

25730 fabrics 98 hitps:/fwaww.g i fabrics 2826 en 71000000 www.qi com

N https:/fwww. kitepackaging.co.uk/blog/how-to-pack-
Lury S R

25T fabrics 100 luxury-fabrics-and-h 2826 &n 71000000 kitepackaging.co.uk
doctor/

25732 f:f;‘:g 101 nan 2826 en 71000000 nan

25733 f:g‘r‘i‘g 1 https:/www.luxuryfabricsitd.co.uk/ 2826 en 71000000 \uxuryfabricsitd.co.uk

25734 f:afrtig 102 nan 2826 en 71000000 nan

25735 rows % 12 columns

Focus on the Competitors

The SERPs data effectively tells us what content is being rewarded by Google where the rank is the outcome
metric. However, much of this data is likely to be noisy, and a few of the columns are likely to have ranking
factors that explain the difference in ranking between content.

The content is noisy because SERPs are likely to contain content from sites (such as reviews and
references) which will prove very difficult for the commercial sites to learn from. Ultimately, when
conducting this exercise, SEO is primarily interested in outranking competitor sites before these other sites
become a consideration.

So, you'll want to select your competitors to make your study more meaningful. For example, if your
client or your brand is in the webinar technology space, it won’t make sense to include Wikipedia.com or
Amazon.com in your dataset as they don’t directly compete with your brand.

What you really want are near-direct to direct competitors, that is, doppelgangers, so that you can
compare what it is they do or don’t do to rank higher or lower than you.

The downside of this approach is that you don't get to appreciate what Google wants from the SERPs by
stripping out noncompetitors. That’s because the SERPs need to be analyzed as a whole, which is covered to
an extent in Chapter 10. However, this chapter is about competitor analysis, so we shall proceed.

To find the competitors, we’ll have to perform some aggregations starting with calculating reach (i.e.,
the number of content with positions in the top 10):

major players reach = serps df.loc[serps df['rank'] < 10]

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

With the SERPs filtered or limited to the top 10, we’ll aggregate the total number of top 10s by site, using
groupby site and summing the count column:

major players reach = major players reach.groupby('site').agg({'count':
sum}) .reset index()

Then we’ll sort the sites in descending order of reach:

major players reach = major players reach.sort values('count', ascending =
False)

The reach metric is most of the story by giving us the volume, but we also want the rank which is
calculated by taking the median. This will help order sites with comparable levels of reach.

major players rank = serps df.groupby('site').agg({'rank':
'median'}) .reset index()
major players rank = major players rank.sort values('rank')

Aggregating by search engine result count helps to give a measure of the competitiveness of the
keyword overall, which is aggregated by the mean value. This data is uniquely provided by DataForSEO’s
SERPs APIL. However,; you could easily substitute this with the more usual search volume metric provided by
other SERPs trackers such as SEO Monitor.

major players searches
'mean'}) .reset index()
major players searches =

major players_ searches.sort values('se results count')

serps_df.groupby('site').agg({'se results count':

The rank and search result aggregations are joined onto the reach data to form one table using the
merge() function. This is equivalent to a vlookup using the site column as the basis of the merge:

major players stats major players reach.merge (major players rank, on =

'site', how = 'left')
major players stats = major players stats.merge(major players searches, on =
'site', how = 'left')

Using all the data, we’ll compute an overall visibility metric which divides the reach squared by the rank.
The reach is squared to avoid sites with a few top 10s and very high rankings appearing at the top of the list.

The rank is the divisor because the higher the rank, the lower the number; therefore, dividing by a lower
number will increase the value of the site’s visibility should it rank higher:

major players stats['visibility'] = ((major players stats['reach'] ** 2) /
major players stats['rank']) .round()

The social media sites are excluded to focus on commercial competitors:

major players stats =
major players stats.loc[~major players stats['site'].str.contains('|'.Jjoin(soc

Rename count to reach:

major players stats = major players stats.rename(columns = {'count':
'reach'})

Remove sites with nan values:

major players stats = major players stats.loc[major players stats['site'] !=
'nan']

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

major players stats.head(10)

This results in the following:

site reach rank se_results_count visibility

1 furniturevillage.co.uk 60 12.0 3.279325e+08 300.0
2 dfs.co.uk 55 17.0 3.266742e+08 178.0
3 thesofaandchair.co.uk 54 20.0 2.708906e+08 146.0
4 wayfair.co.uk 49 12.0 5.283340e+08 200.0
5 darlingsofchelsea.co.uk 49 12.0 2.108414e+08 200.0
6 ebay.co.uk 45 21.0 2.998662e+08 96.0
7 www.sofasandstuff.com 42 27.0 2.922718e+08 65.0
8 sofology.co.uk 4 17.0 3.231102e+08 99.0
9 www.made.com 36 30.0 4.384029e+08 43.0
10 www.sofa.com 30 26.0 2.927668e+08 35.0

The dataframe shows the top 20 feature sites we would expect to see dominating the SERPs. A few of the
top sites are not direct competitors (will probably be uncrawlable!), so these will be removed, as we're
interested in learning from the most direct competitors to see their most effective SEO.

As a result, we will select the most direct competitors and store these in a list “player_sites_Ist”:

player sites 1st = ['sofology.co.uk', 'www.designersofas4u.co.uk',
'www.heals.com', 'darlingsofchelsea.co.uk', 'www.made.com',
'www.sofasandstuff.com', 'www.arloandjacob.com', 'loaf.com', 'www.made.com',
'theenglishsofacompany.co.uk', 'willowandhall.co.uk', root domain]

The list will be used to filter the SERPs to contain only content from these direct competitors:

direct players stats =
major players stats.loc[major players stats['site'].isin(player sites 1st)]

direct players stats

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

site reach rank se_results_count Vvisibility

5 darlingsofchelsea.co.uk 49 12.0 2.108414e+08 200.0
7 www.sofasandstuff.com 42 27.0 2.922718e+08 65.0
8 sofology.co.uk 41 17.0 3.231102e+08 99.0
9 www.made.com 36 30.0 4.384029e+08 43.0
1 willowandhall.co.uk 30 27.0 1.465901e+08 33.0

21 theenglishsofacompany.co.uk 20 22.0 1.492079e+08 18.0

24 www.heals.com 19 30.0 2.629755e+08 12.0
38 www.arloandjacob.com 11 31.0 3.179770e+08 4.0
52 johnsankey.co.uk 7 60.0 2.253633e+08 1.0
53 loaf.com 7 50.0 3.558439e+08 1.0

The dataframe shows that Darlings of Chelsea is the leading site to “beat” with the most reach and the
highest rank on average.
Let’s visualize this:

major players stats plt = (
ggplot (direct players stats,

aes(x = 'reach', y = 'rank', fill = 'site', colour = 'site',
size = 'se results count')) +
geom point (alpha = 0.8) +
geom_text (direct players stats, aes(label = 'site'),
position=position stack(vjust=-0.08)) +
labs(y = 'Google Rank', x = 'Google Reach') +
scale y reverse() +
scale size continuous(range = [5, 20]) +
theme (legend position = 'none', axis text x=element text (rotation=0,

hjust=1, size = 12))
)

major players stats plt.save(filename =
'images/1l major players stats plt.png',

height=5, width=8, units = 'in', dpi=1000)
major players stats plt

Although Darlings of Chelsea leads the luxury sector, Made.com has the most presence on the more
highly competitive keywords as signified by the size of their data point (se_results_count) (Figure 6-2).

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

60~ |

Google Rank

90 -

i --:_'! | = l, LIS | I ’ I
10 20 30 40 50

Google Reach

Figure 6-2 Bubble chart comparing Google’s top 10s (reach) of each website and their average Google ranking position. Circle size represents the
number of search results of the queries each site appears for

John Sankey on the other hand is the lowest ranking and has the least reach.
Filtering the SERPs data for just the direct competitors, this will make the data less noisy:

player serps = serps df[serps df['site'].isin(player sites 1st)]
player serps

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword rank url se_results_count site count token_count token_size compression connecti
msofas 4
(1] i] Inttps:/iwww.sofasandstuff.com/ 98 www,sofasandstuff.com 1 2 middie Broth No Dy
msofas : i
1 uk 55 https./fwww.sofology.co.uk/stores/chettenham a8 sofology.co.uk 1 2 middie Gzipped No Di
g MmOl hitpeyvww.mada.comizalas-and- o8 ww.made.com 1 2 riclelie NaN N
uk armchairs/valvet-sofas
cheap
3 sofas 63 hitpsi//www.sofology.co.uk/ 1070000 sofology.co.uk 1 3 long Gzipped Mo Dy
derby
Chtep https:/floaf som/meet-the-makers/the-long-
4 sofas B3 i : 1070000 loaf.com 1 3 long Broti Mo D1
eaton-sofa-story
derby
1289 g:‘a;r:: 28 hitps:/fwww.sofology.co.uk/leather-sofas 40300000 sofology.co.uk 1 4 long Gzipped No Dy
1200 If:f:r:: 20 hitps:/fwww.arloandjacob, com/sofas 40300000 www.arloandjacob.com 1 4 long Gzippsd Mo Di
1299 Sofawith o, Bitpa/Awwwmez s, conyanfas-and- 40300000 www.made.com 1 a long NaM N
low arms armchairs/sofas
Iy Inttpss/iwww.j y.CO, -a-fabri i : ; ;
1292 tabrios 42 sample/ 71000000 johnsankey.co.uk 1 2 rnididle Gzippad No D
108 gy Wnadwwsciasrdstill ohole e 71000000 www.sofasandstuff.com 1 2 Friciciie Broti NoDi
fabrics designer-fabrics § :

1294 rows = 175 columns

We end with a dataframe with far less rows from 25,000 to 1,294. Although machine learning algorithms
would generally work best with 10,000 rows or more, the methods are still superior (in terms of insight

speed and consistency) to working manually in a spreadsheet.

We’re analyzing the most relevant sites, and we can proceed to collect data on those sites. These will
form our hypotheses which will form the possible ranking factors that explain the differences in ranking

between sites.

Site crawls provide a rich source of data as they contain information about the content and technical

SEO characteristics of the ranking pages, which will be our starting point.
We'll start by defining a function to export the URLSs for site crawling to a CSV file:

def export crawl (df):

dom name = df.domain.iloc[0]

df = df[['url']]

df = df[['url']].drop duplicates()

df.to _csv('data/l to crawl/' + dom name + ' crawl urls.csv',
index=False)

The function is applied to the filtered SERPs dataframe using the groupby() function:
direct players stats.groupby(site) .apply(export crawl)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

site reach rank se_results_count visibility

5 darlingsofchelsea.co.uk 49 12.0 2.108414e+08 200.0
7 www.sofasandstuff.com 42 27.0 2.922718e+08 65.0
8 sofology.co.uk 41 17.0 3.231102e+08 99.0
9 www.made.com 36 30.0 4.384029e+08 43.0
11 willowandhall.co.uk 30 27.0 1.465901e+08 33.0
21 theenglishsofacompany.co.uk 20 22.0 1.492079e+08 18.0
24 www.heals.com 19 30.0 2.629755e+08 12.0
38 www.arloandjacob.com 11 31.0 3.179770e+08 4.0
52 johnsankey.co.uk 7 600 2.253633e+08 1.0
53 loaf.com 7 50.0 3.558439e+08 1.0

Once the data is crawled, we can store the exports in a folder and read them in, one by one.
In this instance, we set the file path as a variable named “crawl_path”:

crawl path = 'data/2 crawled/'
crawl filenames = os.listdir(crawl path)
crawl filenames

['www_Jjohnsankey co uk.csv',
'www_sofasandstuff com.csv',

'loaf com.csv',
'www_designersofasd4u co uk.csv',
'www_theenglishsofacompany co uk.csv',
'www_willowandhall co uk.csv',
'www_darlingsofchelsea co uk.csv',
'www_sofology co uk.csv',
'www_arloandjacob com.csv']

crawl df 1lst = list()
crawl colnames = list()

Aforloopis used to go through the list of website auditor CSV exports and read the data into a list:

for filename in crawl filenames:
df = pd.read csv(crawl path + filename)

df['sitefile'] = filename
df['sitefile'] = df['sitefile'].str.replace(' ', '.', regex = False)
df['sitefile'] = df['sitefile'].str.replace('.csv', '', regex = False)

crawl colnames.append (df.columns)
crawl df lst.append(df)

This list “crawl_df_Ist” is then combined into a dataframe:
crawl raw = pd.concat (crawl df 1lst)

The column names are made more data-friendly by removing formatting and converting the column
names to lowercase:

crawl raw.columns = [col.lower() .replace(' ', ' '").replace(')"',

' ').replace('(', '_').replace(',"', '_').replacg(', ' ') .replace('.',

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

' '").replace(' ', ' ") for col in crawl raw.columns]

crawl raw
This results in the following:

url base_url crawl_dep

L] https:/www.johnsankey.co.uk/product/fender-stool-856cm-wide-35cm-high-70cm-deep/ No Data Mot &
1 https://www.johnsankey.co.uk/collections/cushion/ No Data Mot §
2 hitps://www.johnsankey.co.uk/product-groups/beckett/ No Data Not §

crawl df = crawl raw.copy ()

Getting the site name will help us aggregate the data by site. Using a list comprehension, we’ll loop
through the dataframe URL column and apply the urisplit() function:

crawl df['site'] = [uritools.urisplit(uri).authority if uritools.isuri (uri)
else uri for uri in crawl df['url']]

Filter for HTML URLs only:
crawl df = crawl df.loc[crawl df['content type'] == 'HTML']

crawl df

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

url base_url crawl_depth crawl_status host http_protoce
4] hittps:/wwwjoh key.co.uk/productfender-stool-95cm-wide-35cm-high-7lcm-deep’ Mo Data Mot Set 5 ww. jot k uk hi
1 hitpsy/fwww. johnsankey.co.uk/collections/cushion/ No Data Mot Set www.jot key.co.uk h
2 hittps:ifwwe) key.co.uk/product-groups/b Mo Data Mot Set 5 www. jot key.co.uk h

Printing the data types using the .dtypes property helps us see which columns require potential conversion
into more usable data types:

print (crawl df.dtypes)

We can see from the following printed list highlighted in blue that there are numeric variables that are in
object format but should be a float64 and will therefore require conversion.
This results in the following:

stylesheets_with unused css int64
total wasted_css_kib floaté64
total wasted _css_percentage floaté64d
total wasted js_kib float64
total_wasted_js_percentage float64
cumulative layout shift object
first contentful paint object
largest contentful paint object
performance score object
time to_interactive object
total blocking time object
perf_ budget document object
perf_budget fonts object
perf budget images object
perf budget media object
perf_budget_ other object

We'll create a copy of the dataframe to create a new one that will have converted columns:
cleaner crawl = crawl df.copy()
Starting with reading time, we’ll replace no data with the current timing format using np.where():

cleaner crawl['reading time mm ss '] =
np.where (cleaner crawl['reading time mm ss '] == 'No Data',

'00:00"',cleaner crawl['reading time mm ss_ '])

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

cleaner crawl['reading time mm ss '] = '00:'
+cleaner crawl['reading time mm ss ']

And convert it to a timing format:

cleaner crawl['reading time mm ss '] =
pd.to timedelta(cleaner crawl['reading time mm ss ']).dt.total seconds()

We’ll convert other string format columns to float, by first defining a list of columns to be converted:
float cols = ['cumulative layout shift', 'first contentful paint’,
'largest contentful paint', 'performance score',

'time to interactive', 'total blocking time']

Using the list, we'll use the apply column and the to_numeric() function to convert the columns:

cleaner crawl[float cols] = cleaner crawl[float cols].apply(pd.to numeric,
errors="'coerce')

We'll now view the recently converted columns:
cleaner crawl[['url', 'reading time mm ss '] + float cols]
This results in the following:

url reading_time_mm_ss_ cumulative_layout_shift first_contentful_paint larg

] httpsyfwww, joh key.co.uk stool-95em-wide-35em-high-70cm-deep/ 120.0 0.030 2913.0
1 hittps:/Awaw joh kay.co.uk/collacti feushion/ 58.0 0.010 2365.0
2 hitps:/wwwj co.uk/product-groups/backett/ 109.0 0.000 2360.0
3 hitps:/hwww.jot Ca.l i hairs/ 64.0 0.01 25509.0
4 https://www johnsankey.co,uk/product-groups/milliner! 111.0 0.000 2724.0
505 https:/fwww.arloandjacob.com/know-how-how-to-pick-the-perfact-snuggler/ 180.0 0.205 7267.0
508 https://www.arlcandjacob.com/comer-sofas-v-normal-sofas/ 204.0 0.205 B098.0
580 hitps:/fwww.arloandjacob fekin/fror ‘rwd/arloandjacob/images/favi 182x192 png 0.0 MaN L
582 hitps:/www.arloandjacot fskinffrontend/rwd/aroandjacob/images/favicons/128x128 png 0.0 NaN NaN
583 hittps:/iwww.arlbandiacob. com/skin/fror frwid/arioandiacob/images/favicons/96x96.png 0.0 Nah Mah

242 rows x 8 columns

The columns are correctly formatted. For more advanced features, you may want to try segmenting the
different types of content according to format, such as blogs, guides, categories, subcategories, items, etc.

For further features, we shall import backlink authority data. First, we'll import the data by reading all of
the AHREFs data in the folder:

read loop files in folder
authority path = 'data/4 ahrefs/'
authority filenames = os.listdir (authority path)

authority filenames

The list of AHREFs files is set ready to iterate through:

['darlingsofchelsea.co.uk-best-pages-by-links-subdomains-12-Sep-2022 19-17-

56.csv',
'sofology.co.uk-best-pages-by-links-subdomains-12-Sep-2022 19-24-00.csv’,
'sofasandstuff.com-best-pages-by-links-subdomains-12-Sep-2022 19-23-

42 .csv',

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

'willowandhall.co.uk-best-pages-by-links-subdomains-12-Sep-2022 19-17-
03.csv',
'theenglishsofacompany.co.uk-best-pages-by-links-subdomains-12-Sep-2022 19-
24-53.csv’',
'arloandjacob.com-best-pages-by-links-subdomains-12-Sep-2022 19-23-19.csv’,
'designersofasdu.co.uk-best-pages-by-links-subdomains-12-Sep-2022 19-16-
38.csv',
'johnsankey.co.uk-best-pages-by-links-subdomains-12-Sep-2022 19-16-04.csv’,
'heals.com-best-pages-by-links-subdomains-12-Sep-2022 19-17-32.csv’',
'loaf.com-best-pages-by-links-subdomains-12-Sep-2022 19-25-17.csv']

Initialize lists to contain the outputs of the for loop:

auth df 1st = list()
auth colnames = list()

The for loop reads in the data using the read_csv function, stores the filename as a column (so we know
which file the data comes from), cleans up the column names, and adds the data to the lists created earlier:

for filename in authority filenames:

df = pd.read csv(authority path + filename, encoding = 'UTF-16', sep =
v\tv)

df['sitefile'] = filename

df['sitefile'] = df['sitefile'].str.replace('.csv', "', regex = False)

df.columns = [x.lower().replace(' ', ' ').replace('(', ' ').replace('")',
' ') .replace(" ', ' ').

replace(' ', ' ') for x in df.columns]
df['sitefile'] = df['sitefile'].str.extract (' (.*?2)\-")

auth colnames.append(df.columns)
print (df['sitefile'] [0])
auth df 1st.append (df)

Once the loop has run, the lists are combined into a single dataframe using the concat() function:

auth df raw pd.concat (auth df 1st)

auth df raw = auth df raw.rename(columns = {'page url': 'url'})
auth df raw.drop(['#', 'size', 'code', 'crawl date', 'language',
'page_title',

'first seen'], axis = 1, inplace = True)
auth df raw

The resulting auth_df raw dataframe is shown as follows with the site pages and their backlink metrics.

url_rating url referring_ _desc_ r
0 48 hitps:/fwww.darlingsofchelsea.co.uk/ 522 1663 993 13 darlingsofch
1 42 http:/fwww. darlingsofchelsea.co.uk/ 278 1210 478 1 darlingsofch
2 0 htlp:;'.’blog.[ianingsufuhalsaﬁ.cu.ulu‘wp—cumenb'umnawm1353:;.;&218;;?“:15‘;‘; a5 121 1 0 darlingsofch
3 30 hitps://darlingsofchelsea.co.uk/ 71 a8 166 0 darlingsofch
4 o oommb’uploansrzmTwrmcmaj;::imt;ufa_w'rth_maisej;\._.z‘olm_lea:herti';g A ik 3 Qb ergsolch
995 o https:/ loaf. fimages/prod ‘_4004"40?1]"94—pamry-kltchen-tabla-in-pa_la- a3 5 0 o
grey.pg
996 0 hﬂps:.’fassets.loaf.oonﬂn‘bages{pmduct_4001’4180@01—oat-bruahed—ounon1?a_3y- a 4 0 0
‘squeeze-armchairjpg
997 0 https loaf.com/images/product_400/4370604-be-amt-0842.jpg 3 4 0 4}
998 o https:/fassets. loaf.com/images/product_400/4373178-st-mim-0091.jpg 3 [o o
999 0 https:/fassets.loaf. com/images/product_400/4436536-412151 -sugar-bum-loveseat jpg 3 4 o o

9325 rows x 7 columns

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Join the Data

Now that the data from their respective tool sources are imported, they are now ready to be joined. Usually,
the common column (known as the “primary key”) between datasets is the URL as that is what search
engines rank.

We'll start by joining the SERPs data to the crawl data. Before we do, we only require the SERPs
containing the competitor sites.

player serps = serps df[serps df['site'].isin(player sites 1lst)]

The vlookup to join competitor SERPs and the crawl data of the ranking URLs is achieved by using the
.merge() function:

player serps crawl = player serps.merge(cleaner crawl, on = ['url'], how =
'left'")
player serps crawl = player serps crawl.rename (columns = {'site x': 'site'})

Drop unnecessary columns using the .drop() function:

player serps crawl.drop(['site y', 'sitefile'], axis = 1, inplace = True)
player serps crawl

This results in the following:

keyword rank url location_code language_code se_results_count site rank_profile branded ¢
msofas :

0 s B https:www.sofasandstuff.com/ 28268 an 98 www.sofasandstuff.com page 1 genaric
msofas =

1 it 55 hitps:fwww.sofology.co.uk/stores/cheltenham 2826 en o8 sofology.co.uk page 2 genaric
msofas https://www.made.com/sofas-and- 3

2 e 77 armchairaivaivet-aofes 2828 en =1:1 www.made.com page_ 2 generic

The next step is to join the backlink authority data to the dataset containing SERPs and crawl metrics, again
using the merge() function:

player serps crawl auth = player serps crawl.copy()
player serps crawl auth = player serps crawl auth.merge (auth df raw, on =
['url'], how = 'left'")

player serps crawl auth.drop(['sitefile'], axis = 1, inplace = True)
player serps crawl auth

The data has now been joined such that each SERP URL has its onsite and offsite SEO data in a single
dataframe:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

keyword rank url location_code language code se_results_count site rank_profile branded cour
msaofas .

o e B hitps:/fwww.sofasandstuff.com/ 2826 en 98 www.sofasandstuff.com page_1 generic
msofas ;

1 uk 55 httpss/www,sofology.co.uk/stores/cheltenham 2826 en a8 sofology.co.uk page_2 generic

2 maciaz 77 fips) made.com/safas-and- 2826 en o8 www.made.com page_2 generic

uk armchalrs/velvet-sofas

Derive New Features

The great thing about combining the data is that you can derive new features that you wouldn’t perhaps get
from the individual datasets. For example, a highly useful feature would be to compare the similarity (or
dissimilarity) of the title tag to the target search phrase. This uses the title tag of the ranking URL from the
crawl data and the SERPs keyword. The new features give us additional hypotheses to test using the
machine learning processes later on.

We'll start by making a new dataframe and derive a number of new data features which will be stored as
additional columns:

hypo serps features = player serps crawl auth.copy ()
Add regional_tld which denotes whether the ranking URL is regionalized or not:

regional tlds = ['.uk']

hypo serps features['regional tld'] =

np.where (hypo serps features['site'].str.contains('|'.Jjoin(regional tlds)),
1, 0)

Add a metric for measuring how much of the target keyword is used in the title tag using the
sorensen_dice() function:

hypo serps features['title'] = hypo serps features['title'].astype(str)
hypo serps features['title relevance'] = hypo serps features.loc|:,
["title', 'keyword']l].apply(

lambda x: sorensen dice(*x), axis=1)

We're also interested in measuring the extent to which title tags and H1 heading consistency are

influential:

hypo serps features['hl'] = hypo serps features['hl'].astype(str)

hypo serps features['title hl'] = hypo serps features.loc[:, ['title',
'hl']].apply(

lambda x: sorensen dice(*x), axis=1)

Does having a brand in your title tag matter? Let’s find out:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

hypo serps features['site'] = hypo serps features['site'].astype (str)
hypo serps features['hostname'] = hypo serps features['site'].apply(lambda
x: extract (x))
hypo serps features['hostname'] = hypo serps features['hostname'].str.get (1)
hypo serps features['title'] = hypo serps features['title'].str.lower()
hypo serps features['title branded'] = hypo serps features.loc[:,

["title',
'hostname']] .apply (

lambda x: sorensen dice(*x), axis=l)
Another useful feature is URL parameters, that is, question marks in the ranking URL:

hypo serps features['url params']

np.where (hypo serps features['url'].str.contains('\?'), '1', '0")
hypo serps features['url params'] =
hypo serps features['url params'].astype ('category')

Another test is whether the ranking URL has Google Analytics code. It’s unlikely to amount to anything,
but if the data is available, why not?

hypo serps features['google analytics code'] = np.where(hypo serps features]|
'google analytics code'].str.contains('UA'), '1', '0")

hypo serps features['google analytics code'] =

hypo serps features['google analytics code'].astype('category')

The same goes for Google Tag Manager code:

hypo serps features['google tag manager code'] = np.where (
hypo serps features['google tag manager code'].str.contains('GIM'), '1l',
vov)
hypo serps features['google tag manager code'] =
hypo serps features['google tag manager code'].astype ('category')

While tracking code in itself is unlikely to explain differences in rank, having a duplicate instance of the
same tracking code might:

hypo serps features['google tag manager code second '] = np.where (
hypo serps features['google tag manager code second '].str.contains('GTM')
lll, IOI)
hypo serps features['google tag manager code second '] = hypo serps features]|
'google tag manager code second '].astype ('category')

Atest for cache control is added to check for whether it’s private, public, or other and converted to a

category:
hypo serps features(['cache privacy'] = np.where(

hypo serps features|['cache-control'].str.contains('private'), 'private',
IOI)
hypo serps features['cache privacy'] = np.where(

hypo serps features(['cache-control'].str.contains ('public'), 'public',
hypo serps features['cache privacy'])
hypo serps features(['cache privacy'] = np.where(

hypo serps features|['cache-control'].str.contains('0'), 'other',

hypo serps features['cache privacy'])
hypo serps features(['cache privacy'] =
hypo serps features|['cache privacy'].astype ('category')

A cache age has also been added by extracting the numerical component of the cache-control string.

«_n

This is achieved by splitting the string on the “=" sign and then using the .get() function, before converting

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

to a numerical float data type

hypo serps features['cache age'] = hypo serps features['cache-
control'].str.split('\=")
hypo serps features|['cache age'

]
hypo serps features|['cache age'].str.get (-1)
hypo serps features(['cache age'] =
np.where (hypo serps features['cache age'].isnull(), O,

hypo serps features|['cache age'])
hypo serps features['cache age'] =
np.where (hypo serps features['cache age'].str.contains('[a-z]'"),
0,
hypo serps features|['cache age'])
hypo serps features(['cache age'] =
hypo serps features['cache age'].astype(float)

Here’s a test for whether the ranking URL is canonical or not:

hypo serps features['self canonicalised'] = np.where (hypo serps features]|
'canonical url'] == hypo serps features['url'], 1, 0)

We drop identifiers such as the canonical URL as these are individual records that identify a single row
which will add nothing to the analysis.

We're only interested in the characteristics or trend of this unique data value in itself.

We also drop hypotheses which are likely to be redundant or not interested in testing, such as the HTTP
protocol. This relies on your own SEO experience and judgment.

hypo serps features.drop (['cache-control', 'canonical url', 'base url'’,
'crawl status', 'host', 'encoding', 'indexable status',

'meta robots response ', 'title', 'title response ', 'title second ',
'title render status', 'meta description',

'meta description response ', 'hl', 'hl second ', 'h2', 'h2 second ',
'open graph audio', 'twitter card site', 'twitter card creator',
'twitter card description', 'twitter card image url', 'twitter card title’,
'content-security-policy', 'referrer-policy', 'hostname',

'open graph description', 'open graph image url', 'open graph locale',
'open graph site name', 'open graph title' , 'open graph url',

'meta robots rendered ', 'twitter card description', 'twitter card title',
'http protocol', 'http status code'], axis = 1, inplace = True)

Once done, we'll create another copy of the dataframe and export as CSV in preparation for machine
learning, starting with single-level factors:

hypo serps pre slf = hypo serps features.copy()

hypo serps pre slf.to csv('data/'+ geo market +' hypo serps pre slf.csv',
index = False)

hypo serps pre slf

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword rank url location_code language code se_results_count site rank _profile branded c
msofas 2
0 uk B httpsz//www.sofasandstuff.com/ 2826 en 98 www.sofasandstuff.com page_1 generic
msofas . .
1 il 55 https//www.sofology.co.uk/stores/cheltenham 2826 en o8 sofology.co.uk page_2 generic
msofas hitps/fwww.made.com/sofas-and-
2 uk 77 arriaraN ANt saTes 2826 en 88 www.made.com page 2 generic
cheap
3 sofas 63 https://www.sofology.co.uk/ 2826 en 1070000 sofelogy.co.uk page_2 generic
derby
chesp hitps:/loaf.com/meet-the-makers/the-long-
4 sofas B3 L S i ong 2826 en 1070000 loaf.com page 2 generic
o eaton-sofa-story
arby
sofa with -
1289 e s 28 https:/fwww.sofology.co.uk/leather-sofas 2826 en 40300000 sofology.co.uk page. 2 generic
1200 ﬁg:aaﬂ:: 29 https:/fwww.arloandjacob.com/sofas 2826 en 40300000 www.arloandjacob.com page 2 generic
sofa with hitps://www.made.com/sofas-and-
1201 i i 30 AN 2826 en 40300000 www.made.com page_2 generic
PPOCREE oot VO Lo o ieties 2826 en 71000000 johnsankey.co.uk e 2 neric
fabrics sampla/ L Gigih pag B
Iuury https:/fwww sofasandstuff.com/housa-and-
1293 fabrics 91 designer-fabrs 2826 en 71000000 www.sofasandstuff.com page 2 generic

1294 rows x 340 columns

Single-Level Factors (SLFs)

A single-level factor is any column which has the same value throughout, which would not only be
redundant, the machine learning code would fail. For example, all of the ranking URL titles might be
branded, in which case, these should be removed.

To remove SLFs, we'll iterate through the dataframe column by column to identify any column that has
data containing 70% or more of the same value and store the column names in a list. 70% is an arbitrary
threshold; you could choose 80% or 90%, for example; however, that comes with a risk of removing some
insightful ranking factors - even if it only applies to a smaller number of URLs which might ironically be the
top ranking URLs.

slf cols = []
slf limit = .7

for col in hypo serps pre slf.columns:
if hypo serps pre slf[col].value counts().iat[0] >=
(hypo serps pre slf.shape[0] * slf limit):
slf cols.append(col)

slf cols

The columns with 70% identical data are printed as follows and will be removed from the dataset:

['location code',

'language code',

'rank profile',

'branded’,

'count',

'crawl depth',

'is subdomain',

'no_query string keys',

'query string contains filtered parameters’,
'query string contains more than three keys',
'query string contains paginated parameters',

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

'query string contains repetitive parameters'’,
'query string contains sorted parameters'’,
'scheme’', ...

Let’s examine a few of these SLF ranking factors using the groupby() function. Starting with branded, we
can see all of the ranking URL titles are branded, so these can be removed:

hypo serps pre slf.groupby('branded') ['count'].sum() .sort values()
branded
generic 1294

Name: count, dtype: into64
hypo serps pre slf.groupby('url params') ['count'].sum() .sort values

Parameterized URLs also appear to be redundant with only 17 URLs that are parameterized. However,
these may still provide insight in unexpected ways.

<bound method Series.sort values of url params
0 1277

1 17

Name: count, dtype: int64>

Having identified the SLFs, we’ll process these in a new dataframe where these will be removed using a
list comprehension:

hypo serps pre mlfs = hypo serps pre slf.copy()

The list of columns to be removed is nuanced further as we’d like to keep url_params as mentioned
earlier and the count column for further aggregation in future processes:

slf cols = [elem for elem in slf cols if not elem in ['count',
'url params']]

Drop the SLF columns:
hypo serps pre mlfs.drop(slf cols, axis = 1, inplace = True)
hypo serps pre mlfs

The resulting hypo_serps_pre_mlfs dataframe has the SLF columns removed:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

keyword rank url se_results_count site count token_count token_size compression connecti
msofas - ;
[i] ik 8 https://www.sofasandstuff. com/ 88 www.sofasandstuff.com 1 2 middle Brotli No v
1 ’“”':: 55 httpsy/www.sofology.co.uk/stores/cheltenham 98 sofology.co.uk 1 2 middle Gzipped No D
msofas hitpe://www.made.com/sofas-and- <
2 ok 7 Snrchakafehiatesotas =1: www.made.com 1 2 middle NaN N
cheap
3 sofas B3 hitps/www.sofology.co.uk/ 1070000 sofology.co.uk 1 3 long Gzipped No v
derby
cheep hitps:/loaf com/meet-the-makers/the-long-
4 sofas 83 i 1070000 leaf.com 1 3 long Brotli No Dv
eaton-sofa-story
derby
sofa with X 1
1289 i airris 28 hitps:/fwww.sofology.co.uk/leather-sofas 40300000 sofology.co.uk 1 4 long Gzipped Mo Di
sofa with 5 . z 7
1290 s i 29 https://www. arloandjacob.com/sofas 40300000 www.arloandjacob.com 1 4 leng Gripped No D:
sofa with hitps://www.made.com/sofas-and-
1201 S ailis 30 i tas 40300000 www.made.com 1 4 leng NaN N
Iunury hitps://www.johnsankey.co.uk/order-a-fabric- { 1 z 1
1202 fabrics 42 sample/ 71000000 johnsankey.co.uk 2 middle Gzipped Mo D¢
A abfanandeh T o
1203 WUV gy hitpsiww 71000000 www.sofasandstuff.com 1 2 middle Brotl NoD:

fabrica designer-fabrics

1294 rows x 175 columns

Rescale Your Data

Whether you're using linear models like linear regression or decision trees, both benefit from rescaling the
data, because the data becomes “normalized,” making it easier for the ML to detect variation when
comparing rank with page speed, for example:

hypo serps preml prescale = hypo serps pre mlfs.copy ()
Separate columns into numeric and nonnumeric so we can rescale the numeric columns using .dtypes:
hypo serps preml num =
hypo serps preml prescale.select dtypes(include=np.number)
hypo serps preml num colnames = hypo serps preml num.columns

Nonnumeric columns are saved into a separate dataframe, which will be used for joining later:

hypo serps preml nonnum =
hypo serps preml prescale.select dtypes (exclude=np.number)

hypo serps preml num

The resulting hypo_serps_preml_num is shown as follows, which includes the numeric columns only,
ready for rescaling:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

rank se_results_count count token_count expires_date no_cookies file_size kib_ total page_size kib_ no_canonical links total_cancnicals no_internal

o 8 98 1 2 0.0 a0 154.51 G777 .26 0.0 0.0
1 55 98 1 2 0.0 7.0 7898.63 5168.04 1.0 1.0
2 717 a8 1 2 NaN NaN NaN NaMN NaN MaM
a 63 1070000 1 3 1200.0 320 983.53 4273.68 1.0 1.0
4 B3 1070000 1 3 0.0 8.0 124.01 1024.95 1.0 1.0
1289 28 40300000 1 4 1200.0 340 840.58 5450.90 1.0 10
1200 29 40300000 1 4 0.0 16.0 428,77 1733.56 1.0 10
1201 a0 40300000 1 4 Nai Nah NaN NaN NaN NaN
1292 42 71000000 1 2 0.0 8.0 514.73 1841.08 1.0 10
1283 ™ 71000000 1 2 0.0 14.0 116.04 4453.60 1.0 1.0

1294 rows = 136 columns

We’ll make use of the MinMaxScaler() from the preprocessing functions of the sklearn API:
from sklearn import preprocessing

Convert the column values into a numpy array and then use the MinMaxScaler() function to rescale the
data:

x = hypo serps preml num.values

min max scaler = preprocessing.MinMaxScaler ()

x _scaled = min max scaler.fit transform(x)

hypo serps preml num scaled = pd.DataFrame(x scaled,
index=hypo serps preml num.index, columns = hypo serps preml num colnames)

hypo serps preml num scaled

This results in the following:

rank se_results_count count token_count expires_date no_cookies file_size kib_ total_page_size _kib_ no_canonical_links total_canonicals no_inte

0 0.068307 1.1865652e-09 0.0 oz 0.000000 0.00000 0.090331 0.154479 0.0 0.0
1 0.534853 1.186552e-09 0.0 o2 0.000000 0.12500 0.481670 0.114133 1.0 1.0
2 0.752475 1.1868552e-09 0.0 02 NaN MNah NaM MaN MNaN NaM
3 0.613861 7.052868e-05 0.0 0.4 0.001884 0.90625 0.600083 0.091710 1.0 1.0
4 0811881 7.052868e-05 0.0 0.4 0.000000 0.15625 D.071801 0.010257 1.0 1.0
1289 0.267327 2.656554e-03 0.0 0.6 0.001984 0.96875 0.567913 0121453 1.0 10
1200 0.277228 2.656554e-03 0.0 0.6 0.000000 0.40625 0.256860 0.028024 1.0 1.0
1291 D.287120 2.656554e-03 0.0 0.6 NaM MNaM MNaM NaN Mal NaM
1292 0.405841 4.680285e-03 0.0 D2 0.000000 0.15625 0.309185 0.030720 1.0 1.0
1293 0.891088 4.680285e-03 0.0 02 0.000000 0.34375 0.066859 0.096220 1.0 10

1294 rows = 136 columns

Near Zero Variance (NZVs)
The next stage is to eliminate redundant numerical data columns which are similar to SLFs known as Near
Zero Variance (NZVs). While the values are different, there may not be much variation that can reliably
explain the differences in ranking positions, and we will therefore want these removed.

To identify NZVs, we’ll use the VarianceThreshold function from the SK Learn API:

from sklearn.feature selection import VarianceThreshold

variance = hypo serps preml num scaled.var()
columns = hypo serps preml num scaled.columns

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Save the names of variables having variance more than a threshold value:

highvar variables = []
nz variables = []

We'll iterate through the numeric columns setting the threshold at 7% such that there must be at least
7% variation in the data to remain in the dataset. Again, 7% is an arbitrary choice. The high variation
columns are stored in the list we created earlier called highvar_variables:

for i in range (0, len(variance)):
if variance[1]>=0.07:
highvar variables.append(columns[i])
else:
nz_variables.append(columns[i])

highvar variables
The highvar_variables are shown as follows:

['rank',

'no_canonical links',

'total canonicals',
'no_internal followed linking urls',
'no_internal followed links',
'no_internal linking urls’,
'no_internal links to url'’,

'url rank', ...]

nz variables

This results in the following:

['se results count',

'count',

'token count',

'expires date',
'no_cookies',
'file size kib ',
'total page size kib ', ...]

The NZVs identified and stored in nz_variables are shown earlier. We can see that more web pages, for
example, have highly similar numbers of keywords in the search query (“token count”) and HTML page
sizes (“total_page_size_kib_"), so we’ll be happy to remove these.

Here’s a quick sanity check to ensure there are no columns that are listed as both high variation and
NZV:

[x for x in highvar variables if x in nz variables]
An empty list is returned, so thankfully there is no crossover:
[]

Let’s examine a couple of the NZV columns identified. Although identified as an NZV, the title relevance
has some variation as shown in the following using the describe() function. We can see the data ranges from
0 to 1 and has an interquartile range of 0.32 to 0.62, which is of course after rescaling. We'll keep
“title_relevance” as from SEO experience, it is an important ranking factor:

hypo serps preml num scaled['title relevance'].describe ()

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

This results in the following:

count 1294.000000

mean 0.478477
std 0.199106
min 0.000000
25% 0.323529
50% 0.512712
75% 0.622487
max 1.000000

Name: title relevance, dtype: float64

The scaled_images column on the other hand is NZV, as shown in the following, where most values are
zero until the 75th percentile of 0.17 showing very little variation and should therefore be excluded:

hypo serps preml num scaled['scaled images'].describe ()
This results in the following:

count 977.000000

mean 0.114348
std 0.163530
min 0.000000
25% 0.000000
50% 0.000000
75% 0.179487
max 1.000000
Name: scaled images, dtype: float64

We'll redefine the highvar_variables list to include some NZVs we think should remain in the dataset:

highvar variables = highvar variables + ['title relevance', 'title branded',
'no_content words', 'first contentful paint', 'scaled images',
'no_outgoing links']

Save a new dataframe to include only columns listed in highvar_variables:
hypo serps preml num highvar =
hypo serps preml num scaled[highvar variables]

hypo serps preml num highvar

The hypo_serps_preml_num_highvar df is shown as follows and has gone from 136 to 38 columns,
removing 98 columns.

rank no_canonical_links total_ no_| B |_linking_urls no_| E _links no_ linking_urls no_internal links_to_url

0 0.068307 0.0 0.0 0.966667 0.496454 0.566667 0.486454

1 0.534653 1.0 1.0 0.000000 0.000000 0.000000 0.000000

2 0.752475 MNalN NaM NaN MNaN NaN MNaM

3 0.613861 1.0 1.0 0.533333 0113475 0.533333 0113475

4 0811881 1.0 1.0 0.000000 0.000000 0.000000 0.000000
1289 0.267327 1.0 1.0 0.533333 0.397163 0.533333 0.387163
1290 0.277228 1.0 1.0 0.766667 1.000000 0.766667 1.000000
1281 0.287129 Nah NaM NaN NaN Mah NaN
1292 0.405841 1.0 1.0 0.733333 0.177305 0.733333 0.177305
1283 0.881088 1.0 1.0 0.033333 0.007092 0.033333 0.007092

1294 rows x 38 columns

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Next, we'll also remove ranking factors that are highly correlated to each other (known as multicollinearity),
using the variance_inflation_factor() function from the statsmodels API to detect large variance inflation
factors (VIF).

Multicollinearity is an issue because it reduces the statistical significance of the ranking features used to
model the search result rankings.

Alarge variance inflation factor (VIF) on a ranking feature or any modeling variable hints at a highly
correlated relationship to other ranking factors. Removing those variables will improve the model’s
predictive consistency, that is, more stable and less degree of error when making forecasts.

from statsmodels.stats.outliers influence import variance inflation factor
Remove rows with missing values (np.nan) and infinite values (np.inf, -np.inf):
vif input =
hypo serps preml num highvar[~hypo serps preml num highvar.isin([np.nan,
np.inf, -np.inf]) .any(1l)]
Store in X variables.
X variables = vif input
Determine columns that are highly correlated by applying the variance_inflation_factor() function:
vif data = pd.DataFrame ()
vif data["feature"] = X variables.columns
vif data["vif"] = [variance inflation factor (X variables.values, i) for i in
range (len (X variables.columns))]

vif data.sort values('vif')

The VIF data distribution using the describe() function is printed to get an idea of what level of
intercolumn correlation is and act as our threshold for rejecting columns:

vif data['vif'].describe()

This results in the following:

count 38.000000
mean inf
std NaN
min 3.254763
25% 26.605281
50% 76.669063
75% 3504.833113
max inf

Name: vif, dtype: floatc4

Having determined the VIF range, we’ll discard any ranking factor with a VIF above the median.
Technically, best practice is that a VIF of five or above is highly correlated; however, in this case, we’re just
looking to remove excessively correlated ranking factors, which is still an improvement:

hypo serps preml lowvif = hypo serps preml num highvar.copy ()

vif exclude df = vif data.loc[vif data['vif'] > vif data['vif'].median()]
vif exclude cols = vif exclude df['feature'].tolist()

hypo serps preml lowvif.drop(vif exclude cols, inplace = True, axis = 1)

hypo serps preml lowvif

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

We’ve now gone from 38 to 19 columns. As you may come to appreciate by now, machine learning is not
simply a case of plugging in the numbers to get a result as much work must be done to get the numbers into
a usable format.

rank no_anchors_with_no_text no_outgoing o _links _files_ scripts_with_unused js total wasted js_kib_ performance score no_go
0 0.068307 0.000000 0.696884 0.000000 0.023256 0.028986 0191919
1 0.534653 0.007892 0.453258 0.833333 0.581305 0.837920 0.101010
2 0.752475 MaN NaM MaM NaM NaM Mah
3 0.613861 0.007892 0.657224 0.833333 0.000000 0.000000 1.000000
4 0811881 0.030769 0.000000 0.000000 0.186047 0.222888 0.313131
1288 0267327 0.007682 0.487252 0.833333 0.651163 0.824791 0.101010
1290 0.277228 0.000000 0.871671 0.833333 0.138535 0.B05868 0.151515
1291 0.287129 MaN NaM MNaM NaM NaM MNaM
1292 0.405841 0.015385 0.132144 D. 166667 0.534884 D.424763 0181818
1293 0.891088 0.000000 0.643059 0.333333 0.023256 0.057513 0100

1294 rows x 19 columns

Median Impute

We want to retain as many rows of data as possible as any rows with missing values in any column will have
to be removed.

One technique is to use median impute where the median value for a given column of data will be
estimated to replace the missing value.

Of course, the median is likely to be more meaningful if it is calculated at the domain level rather than an
entire column, as we're pitting sites against each other. So where possible, we will use median impute at the
domain level, otherwise at the column level.

Import libraries to detect data types used in the for loop to detect columns that are not numeric for
median imputation:

from pandas.api.types import is string dtype
from pandas.api.types import is numeric dtype

hypo serps preml median = hypo serps preml lowvif.copy ()
Variables are set so that the for loop can groupby() the entire column and at the domain level (“site”):

hypo serps preml median['site'] = hypo serps preml prescalel['site']
hypo serps preml median['project'] = 'competitors'

for col, col val in hypo serps preml median.iteritems() :

if col in ['http status code'] or not
is_numeric_dtype (hypo serps preml median[col]):
continue

hypo serps preml median[col].fillna(hypo serps preml median.groupby ('site'
[col].transform('median'), inplace=True)

hypo serps preml median[col].fillna(hypo serps preml median.groupby ('proje
[col] .transform('median'), inplace=True)
hypo serps preml median.drop(['site', 'project'], axis = 1, inplace = True)

hypo serps preml median

The result is a dataframe with less missing values, improving data retention.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

rank no_anchors_with_no_text no_outgoing_ links _files_ scripts_with_unused_js total_wasted_js_kib_ performance_score no_go
0 0.069307 0.000000 0.696884 0.000000 0.023256 0.029986 0.191818
1 0.534653 0.007692 0.453258 0.833333 0.581385 0.837529 0101010
2 0.752475 0.007682 0.453258 0.166667 0.138535 0287817 0.262626
3 0.613881 0.007692 0.657224 0.833333 0.000000 0.000000 1.000000
4 0.B11881 0.030769 0.000000 0.000000 0.186047 0222888 0.313131
1289 0.267327 0.007692 0.487252 0.833333 0.651163 0824791 0101010
1200 0.277228 0.000000 0.971671 0.833333 0.138535 0.805868 0151515
1291 0.287129 0.007692 0.453258 0.166667 0.138535 0297817 0.262626
1292 0.405841 0.015385 0133144 0166667 0.534884 0424763 081818
1293 0.891089 0.000000 0.6430589 0.333333 0.023256 0.067513 0101010

1294 rows x 19 columns

One Hot Encoding (OHE)

One hot encoding (OHE) is a technique to help statistical models convert categorical data into binary
format (1s and 0s) that they can interpret more easily. It achieves this by creating additional columns for
each value of a given categorical data column. Then depending on the data point, they will have a value of
one or zero assigned to the appropriate column. Rather than give an example here, we'll run the code, which
will hopefully be obvious in the resulting dataframe.

We don’t want to create OHEs out of columns such as keywords and URLs as these are not ranking
factors, so we’ll drop these from the dataframe:

stop cols = ['keyword', 'url', 'site']

hypo serps preml cat = hypo serps preml nonnum.drop (stop cols, axis = 1)
Store the categorical data columns in a list:

categorical cols = hypo serps preml cat.columns.tolist()

Use a list comprehension to update the categorical_cols list and ensure the stop columns are not in
there:

categorical cols = [feat for feat in categorical cols if feat not in
stop cols]

categorical cols

The following are the categorical columns that will now be one hot encoded:

['token size',

'compression',

'connection',

'charset’,

'canonical status’,
'canonical url render status',
'flesch kincaid reading ease',
'sentiment’',

'contains paginated html', ...]

hypo serps preml cat

The following is the dataframe with only the OHE columns selected.

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

token_size http_status_code P i i charset ical_status ical_url_render_status flesch_kincaid_reading_ease sentiment cor
o middle 200 Erotli No Data utf-8 Missing Mo Change Very Easy Meutral
1 middle 200 Gzipped Mo Data utf-8 To Self Created Fairly Easy Positive
2 middle NaM NaM MNaN MaN MNaM NaMN MNah NaM
3 long 200 Gzipped Mo Data utf-8 To Salf Created Standard Positive
4 long 200 Erotll Mo Data utf-8 To Self Mo Change Very Easy Positive
1289 long 200 Gripped No Data utf-8 To Self Created Fairly Easy Positive
1290 leng 200 Gzipped Mo Data UTF-8 To Self Mo Change Fairly Easy Positive
1281 long NaN NaM NaN MNaM NaN NaM Mah NaN
1292 middle 200 Gzipped NoData UTF-8 To Self No Change Fairly Easy Meutral
1203 middle 200 Brotli Mo Data utf-8 To Self Mo Change Standard Positive

1294 rows x 38 columns

The get_dummies() will be used to create the OHE columns for each categorical rank factor:

hypo serps preml ohe = pd.get dummies (hypo serps preml cat, columns =
categorical cols)

hypo serps preml ohe
This results in the following:

connection_No connection_keep- charset UTF- charset

token_size_head token size long token_size_middie p _Brotii pression_ o' Bilve, Racpeiis s
o o 1] 1 1 1) 1 a o
1 o 0 1 0 1 1 0]
2 0 0 1 0 0 0 0 0
3 0 1 0 0 1 1 0 0
4 0 1 0 1 0 1 0 0
1289 o 1 (1] o 1 1 a o
1290 0 1 0 0 1 1 0 1
1291 0 1 0 0 0 0 0]
1292 0 0 1 0 1 1 0 1
1293 0 0 1 1 0 1 0]

1294 rows x 95 columns

With OHE, the category columns have now expanded from 38 to 95 columns. For example, the compression
column has been replaced by two new columns compression_Brotli and compression_Gzipped, as there
were only two values for that ranking factor.

Eliminate NAs

With the numeric and category data columns cleaned and transformed, we're now ready to combine the
data and eliminate the missing values.
Combine the dataframes using concat():

hypo serps preml ready = pd.concat ([hypo serps preml ohe,

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

hypo serps preml median], axis = 1)
hypo serps preml ready

The dataframes are now combined into a single dataframe “hypo_serps_preml_ready”

token_size_head token_size long token_size_middle P ion_Brotl jon_Gzi) d - I:l:: alive,!(ee:.:;rl; chamet_U‘l'F‘; chand |
o 0 0 i 1 1] 1 1] 1]
1 0 0 1 0 1 1 0 0
2 [i] a 1 o 1] 1] 1] 1]
3 1] 1 1] o 1 1 1] 1]
4 (1] 1 0 1 0 1 1] 0
1289 [+] 1 o o 1 1 Q 0
1290 0 1 Q0 0 1 1 0 1
1291 V] 1 1] o 0 Q (1] 4]
1292 1] 0 1 o 1 1 1] 1
1293 o o 1 1 o 1 0 o

1294 rows = 114 columns

The next preparation step is to eliminate “NA” values as ML algorithms don’t cope very well with cell values
that have “not available” as a value.

First of all, check which columns have a proportion of NAs, by taking the sum of null values in each
column and dividing by the total number of rows:

percent missing = hypo serps preml ready.isnull().sum() * 100 /
len (hypo serps preml ready)

We put our calculations of missing data into a separate dataframe and then sort values:

missing value df = pd.DataFrame ({'column name':
hypo serps preml ready.columns,

'percent missing': percent missing})
missing value df.sort values('percent missing')

We can see that there are no columns with missing values, which is great news, onto the next stage.
If there were missing values, the columns would be removed as we’ve done what we can to improve the
data to get to this point.

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

column_name percent_missing

token_size_head token_size_head 0.0
x-frame-options_Invalid x-frame-options_Invalid 0.0
x-content-type-options_nosniff x-content-type-options_nosniff 0.0
x-content-type-options_Not Found x-content-type-options_Not Found 0.0
x-content-type-options_None x-content-type-options_None 0.0
perf_budget_images_No perf_budget_images_No 0.0
perf_budget_fonts_Yes perf_budget_fonts_Yes 0.0
perf_budget_fonts_No perf_budget_fonts_No 0.0
is_paginated_No is_paginated_No 0.0
no_outgoing_links no_outgoing_links 0.0

114 rows x 2 columns

Modeling the SERPs

A quickreminder, modeling the SERPs is a formula that will predict rank based on the features of SEO, that
is

rank ~ w_1*feature 1 + w_2*feature 2 + .. + w_n*feature n

~ means explained by.

n is the nth feature.

w is the weighting of the feature.

Here are some points worth mentioning:

e Split the dataset into test (20%) and train (80%). The model will learn from the most of the dataset
(train) and will be applied to the test dataset (data the model has not seen before). We do this to see how
the model really performs in a real-world situation.

e We will use a decision tree-based mode], that is, random forest. A random forest uses a number of
decision trees and takes the average of all the decision trees to arrive at the final model that best
generalizes over the dataset and is therefore likely to perform well on unseen data. A random forest can
also handle nonlinearities, which linear models can’t.

e SetSeed is there to control the randomness of the model to make the results reproducible should another
SEO/data scientist wish to evaluate the research with the same data and get the same results you were
getting.

¢ Cross-validation will be used to make the model as robust as possible with no hyperparameter tuning.

e Typically, a random forest model (or any machine learning model) performs best with 10,000 rows or
more, but it can still deliver useful insight with much less.

Import the relevant APIs and libraries which are mostly from scikit-learn, a free machine learning
software library for Python:

from sklearn.model selection import cross val score
from sklearn.model selection import RepeatedKFold
from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
import category encoders as ce

from sklearn import metrics

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

hypo serps ml = hypo serps preml ready.copy ()
Encode the data:
encoder = ce.HashingEncoder ()
serps_features ml encoded = encoder.fit transform(hypo serps ml)
serps features ml encoded

This results in the following:

token_size_head token_size long token_size middle 1P _Brotli P g connection_ Mo cannection. Keep: phargstUTE: charsst:(

Data alive, Keep-Alive 8

0 0 0 1 1 0 1 0 0

1 0 0 1 o 1 1 0 0

2 0 0 1 0 0 0 0 0

3 0 1 0 0 1 1 0 0

4 0 1 0 1 0 1 0 0
1289 0 1 0 0 1 1 0 0
1290 0 1 0 0 1 1 0 1
1291 0 1 0 0 0 0 0 0
1292 0 0 1 o 1 1 0 1
1283 0 0 1 1 0 1 0 0

1294 rows = 114 columns

Set the target variable as rank, which is the outcome we’re looking to explain and guide our SEO
recommendations:

target var = 'rank'
Assign the ranking factor data to X and rank to y:

X, y = serps_ features ml encoded.drop(target var, axis=1l),
serps features ml encoded[target var]

To train our model, we’re using RandomForestRegressor because it tends to deliver better results than
linear regression models. Alternatives you may wish to trial in parallel are XGBoost, LightGBM (especially
for much larger datasets), and AdaBoost.

Instantiate the model:

regressor = RandomForestRegressor (n _estimators=20, random state=1231)

Cross-validate the model. When a model is cross-validated, what is happening is that the model is being
evaluated by splitting the train dataset further to see how well the model generalizes across all of the
training data and hopefully the real world too.

In our case, we're splitting the model five times and storing the result in n_scores:

n_scores = cross val score(regressor, X, y,
scoring='neg mean absolute error', cv=5, n_ jobs=-1)

n_scores

Split the data randomly into train and test:

X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=1231)

Fit the machine learning model based on the training set:

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

regressor.fit (X train, y train)
Test the model on the test dataset and store the forecasts into y_pred:

y_pred = regressor.predict (X test)

Evaluate the SERPs ML Model

Now that we have our model, we can now use it to test its efficacy. The general principles are

e Feeding the predict command, the test dataset, and the model
¢ (Calculating the Root Mean Squared Error (RMSE) and r-squared

Given the modeling and prediction of rank is a regression problem, we use RMSE and r-squared as
evaluation metrics. So what do they tell us?

The RMSE tells us what the average margin of error is for a predicted rank. For example, an RMSE of 5
would tell us that the model will predict ranking positions + or - 5 from the true value on average.

The r-squared has the formal title of “coefficient of determination.” What does that mean? In practical
terms, the r-squared represents the proportion of data points in the dataset that can be explained by the
model. It is computed by taking the square of the correlation coefficient (r), hence r-squared. An r-squared
of 0.4 means that 40% of the data can be explained by the model.

Beware of models with an r-squared of 1 or anything remotely close, especially in SEO. The chances are
there’s an error in your code or it’s overfitting or you work for Google. Either way, you need to debug.

The r-squared is nowhere near as useful as the RMSE, so we won't be covering it here. However, if you
still wish to get an idea of what the r-squared is, then you can view the r-squared of your training model
(i.e., based on the training data) by running

print ('MAE: %.3f (%.3f)' % (np.mean(n_scores), np.std(n_scores)))
print ('Mean Absolute Error:', metrics.mean absolute error(y test, y pred))
(

print ('Mean Squared Error:', metrics.mean squared error(y test, y pred))
print ('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test,
y_pred)))

MAE: -0.222 (0.010)

Mean Absolute Error: 0.23340777636881724
Mean Squared Error: 0.0861631648297419

Root Mean Squared Error: 0.2935356278712039

You might be wondering what good or reasonable values for each of these metrics are. The truth is it
depends on how good you need your model to be and how you intend to use it.

If you intend to use your model as part of an automated SEO system that will directly make changes to
your content management system (CMS), then the RMSE needs to be really accurate, so perhaps no more
than five ranking positions. Even then, that depends on the starting position of your rankings, as five is a
significant difference for a page already ranking on page 1 compared to a ranking on page 3!

If the intended use case for the model is simply to gain insight into what is driving the rankings and
what you should prioritize for split A/B testing or optimization, then an RMSE of 20 or less is acceptable.

The Most Predictive Drivers of Rank

So what secrets can machine learning model tell us? We’'ll extract the ranking factors and the model
importance data into a single dataframe:

df imp pd.DataFrame ({"feature": X.columns.values,
"importance": regressor.feature importances ,

P

df imp = df imp.sort values('importance', ascending = False)

df imp df imp

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

df imp

The following dataframe result shows the most influential SERP features or ranking factors in
descending order of importance.

feature importance

107 title_relevance 466.821502
96 no_outgoing_navigation_links 100.065025
108 title_branded 50.479885
100 performance_score 49.559890
110 first_contentful_paint 41.219836
105 sitelinks_search_box 0.021771

16 flesch_kincaid_reading_ease_Fairly Difficult 0.003895

48 viewport_error_Initial Scale Missing 0.002879
64 open_graph_type_object 0.000000
82 x-frame-options_Invalid 0.000000

113 rows x 2 columns

Plot the importance data in a bar chart using the plotnine library:

RankFactor plt = (ggplot(df imp.head(7), aes(x = 'reorder (feature,
importance) ', y = 'importance')) +

geom bar (stat = 'identity', fill = 'blue', alpha = 0.6) +

labs(y = 'Google Influence', x = "'"') +

theme classic() +

coord flip() +

theme (legend position = 'none')

)
RankFactor plt.save(filename = 'images/l RankFactor plt.png', height=5,
width=5, units = 'in', dpi=1000)

RankFactor plt

In this particular case, Figure 6-3 shows that the most important factor was “title_relevance” which
measures the string distance between the title tag and the target keyword. This is measured by the string
overlap, that is, how much of the title tag string is taken up by the target keyword.

>>>4f fi.jackgoogleseo.com# B & $ 2. $ fif<<<

title_relevance -
no_outgoing_navigation_links -
title_branded {
performance_score 4
first_contentful_paint 1
title_h1 4

no_content_words 4

100 200 300 400
Google Influence

o

Figure 6-3 Variable importance chart showing the most influential ranking factors identified by the machine learning algorithm

No surprise there for the SEO practitioner; however, the value here is providing empirical evidence to
the nonexpert business audience that doesn’'t understand the need to optimize the title tags. Data like this
can also be used to secure buy-in from non-SEO colleagues such as developers to prioritize SEO change
requests.

Other factors of note in this industry are as follows:

e no_cookies: The number of cookies

e dom_ready_time_ms: A measure of page speed

e no_template_words: The number of words outside the main body content section

¢ link root_domains_links: Count of links to root domains

¢ no_scaled_images: Count of images scaled that need scaling by the browser to render

Every market or industry is different, so the preceding text is not a general result for the whole of SEO!

How Much Rank a Ranking Factor Is Worth

Now that you have your model, you'll probably want to communicate your findings to colleagues and clients
alike. We'll examine one of the ranking factors as an example of how to communicate the findings of the
machine learning model.

Store the most influential ranking factors in a list:

influencers = ['title relevance', 'no outgoing navigation links',
'title branded', 'performance score', 'first contentful paint', 'title hl',

'no_content words']

Select performance_score as the ranking factor we want to examine. According to Python’s zero
indexing, that would be three for the fourth item in the list:

i=3
Calculate the stats to average the site CWV performance and Google rank:

num_ factor agg =

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

hypo serps features.groupby(['site']) .agg({str(influencers[i]): 'mean',
'rank': 'mean', 'se results count': 'sum', 'count': 'sum'}).reset index()
num_ factor agg = num factor agg.sort values(str(influencers([i]))

To show the client in a different color to the competitors, we'll create a new column “target,” such that if
the website is the client, then it’s 1, otherwise 0:

num factor agg['target'] =
np.where (num_factor agg['site'].str.contains (hostname), 1, 0)

num_ factor agg

The following is the dataframe that will be used to power the chart in Figure 6-4.

site performance_score rank se_results_count count target
5 willowandhall.co.uk 7.350746 35.859259 19789670000 135 0
6 www.arloandjacob.com 12.436975 38.907563 37839268000 119 0
9 www.sofasandstuff.com 25.044776 34.067164 39164423098 134 0
1 johnsankey.co.uk 26.751880 57.052632 29973316080 133 1
2 loaf.com 36.016807 51.537815 42345429000 119 0
3 sofology.co.uk 47.314286 29.142857 45235434098 140 0
4 theenglishsofacompany.co.uk 50.446602 31.211538 15517618000 104 0
0 darlingsofchelsea.co.uk 68.821053 27.354545 23192559000 110 0
7 www.heals.com NaN 34.837398 32345983000 123 0
8 www.made.com NaN 35.836158 77597312098 177 0

This function returns a polynomial line of best fit according to whether you'd like it straight (degree 1) or
curved (2 or more degrees):

def poly(x, degree=l):
man
Fit Polynomial
These are non orthogonal factors, but it may not matter if
we only need this for smoothing and not extrapolated
predictions.
d = {}
for i in range (degree+l):
if 1 == 1:
dl'x'] = x
else:
d[f'x**{i}'] = np.power (x, 1)
return pd.DataFrame (d)

Plot the chart:

num_factor viz plt = (
ggplot (num_ factor agg,
aes(x = str(influencers[i]), y = 'rank', fill = 'target', colour
= 'target', #shape = 'cat item',
size = 'se results count')) +

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

geom point(alpha = 0.3) +
geom smooth (method = 'lm', se = False, formula = 'y ~ poly(x,

degree=1)"', colour = 'blue', size = 1.5) +
labs (y = 'Google Rank', x = str(influencers([i])) +
scale y reverse() +
scale size continuous(range = [5, 20]) +
theme (legend position = 'none', axis text x=element text (rotation=0,

hjust=1l, size = 12))
)
num_ factor viz plt
Plotting the average Core Web Vitals (CWV) vs. average Google rank by website which also includes a

line of best fit (Figure 6-4), we can estimate the ranking impact per unit improvement in CWV. In this case,
is about 0.5 rank position gain per 1 unit improvement in CWV.

30-

40 -

Google Rank

20 40 60
performance_score

Figure 6-4 Bubble chart of websites comparing Google rank and CWV performance score

The Winning Benchmark for a Ranking Factor

The winning benchmark also appears to be 70, which may come as a relief to developers as achieving a
score of 90 or above may be incredibly resource intensive to attain.

Thanks to machine learning, we’re not only able to surface the most important factors, when taking a
deep dive, we can also see the winning benchmark.

Tips to Make Your Model More Robust

Naturally, no model is perfect and never will be. The usefulness of the model is down to

¢ Your imagination, inventiveness, SEO knowledge, and ability to form hypotheses that are informative for
model inclusion

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

¢ Your ability to translate these hypotheses into measurable metrics that can be gathered as data on your
site and your competitors
e The way you structure the data that is meaningful for the model to spot patterns

Activation
With your model outputs, you're now ready to make some decisions on your SEO strategy in terms of

¢ Changes you'd like to make sitewide because they’re a “no-brainer;,” such as site speed or increasing
brand searches (either through programmatic advertising, content marketing, or both)

 Split A/B testing of factors included in your model

e Further research into the ranking factor itself to guide your recommendations

Automating This Analysis

The preceding application of ML is great for getting some ideas to split A/B test and improve the SEO
program with evidence-driven change requests. It’s also important to recognize that this analysis is made
all the more powerful when it is ongoing. Why? Because the ML analysis is just a snapshot of the SERPs for a
single point in time. Having a continuous stream of data collection and analysis means you get a more true
picture of what is really happening with the SERPs for your industry.

This is where SEO purpose-built data warehouse and dashboard systems come in, and these products
are available today. What these systems do are

e Ingest your data from your favorite SEO tools daily
e Combine the data
e Use ML to surface insights like before in a front end of your choice like Google Data Studio

To build your own automated system, you would deploy into a cloud infrastructure like Amazon Web
Services (AWS) or Google Cloud Platform (GCP) what is called ETL, that is, extract, transform, and load, so
that your data collection, analysis, and visualization are automated in one place. This is explained more fully
in Chapter 8.

Summary
In this chapter, you learned

e The data science principles behind understanding the ranking factors for competitor analysis
e How to combine data sources

e How to prepare data for machine learning

e How to train a machine learning model

e How to use the model outputs to generate SEO recommendations

Competitor research and analysis in SEO is hard because there are so many ranking factors that are
available and so many to control for. Spreadsheet tools are not up to the task due to the amounts of data
involved, let alone the statistical capabilities that data science languages like Python offer.

When conducting SEO competitor analysis using machine learning (ML), it’s important to understand
that this is a regression problem, the target variable is Google rank, and the hypotheses are the ranking
factors.

In Chapter 7, we will cover experiments which are something that would naturally follow the outputs of
competitor statistical analysis.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_7

7. Experiments

Andreas Voniatis!

(1) Surrey, UK

It’s quite exciting to unearth insights from data or your own thought experiments that could be
implemented on your site and drive real, significant organic improvements. With the rise of split
testing platforms such as Distilled ODN and RankScience, it’s of no surprise that experimentation
is playing an ever-increasing role in SEO.

If you're running a small site where the change leading to a negative impact is inconsequential
or the change is seemingly an obvious SEO best practice, then you may forgo formal
experimentation and simply focus on shipping the changes you believe are required.

On the other hand, if you're working on a large enterprise website, be it in-house or as part of
an agency, then any changes will be highly consequential, and you’'ll want to make sure you test
these changes in order to both understand the impact (both positive and negative) as well as help
shape your understanding to help inform new hypotheses to test.

How Experiments Fit into the SEO Process
To run experiments and split A/B tests successfully, you'll need a process which starts from idea
generation (otherwise referred to as a hypothesis) all the way to implementation. We have

outlined the steps as follows:

1.
Hypothesis generation

Experiment design
Running the experiment
Evaluation

Implementation

We will cover these steps in the following sections.

Generating Hypotheses

Before any experiment starts, you need to base it around your hypothesis, that is, a belief in what
you believe will significantly change your target variable or outcome metric, for example, organic
impressions or URLs crawled.

This step is crucially important because without clear hypotheses, you won’'t begin to know
what it is you will be testing to influence your outcome metric. So think about what it is you want
to learn from that could help you improve your SEO performance.

https://doi.org/10.1007/978-1-4842-9175-7_7

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

There’s a number of areas to source hypotheses from:

e Competitor analysis

e Website articles and social media

¢ You/your team’s ideas

¢ Recent website updates

¢ Conference events and industry peers
¢ Past experiment failures

[usually like to use the format "We believe that Google will give a greater weighting to URLs
linked from by other prominent pages of a website." This statement is then expanded to consider
what you're proposing to test and how you'll measure (i.e., “We’ll know if the hypothesis is valid
when...”).

Competitor Analysis

The competitor analysis that you carried out (explained in Chapter 6) will be a natural source of
ideas to test because they have some statistical foundation to them, surfacing things that your
competitors are doing or not doing to benefit from superior organic performance. These
hypotheses have the added advantage of knowing what the metric is that you'll be testing from the
outset. After all, you had to get the data into your analysis in the first place.

Website Articles and Social Media

Often, we read studies, articles, and social media memes that claim to have driven or decreased
organic performance. That’s not to say these claims are untrue or not substantiated. However,
these claims are not in the context of your situation, and if they made the news, they most
probably merit testing. As an aside, in the early days of our SEO careers before data science was
actually a thing, the best way to really know your data was to test everything we read about SEO
online, such as Webmaster World, BlackHatWorld forums, etc., and see what worked and what
didn’t work. If you didn’t have sites banned from the index in Google, you weren’t respected as an
SEO or perhaps you were just not being bold with your experiments. The very essence was
“optimizing” for search engines.

Naturally, things have moved on, and most of us in SEO are working for brands and established
businesses. So some of the creative wild experiments would be inappropriate or rather career
limiting, which we’re not advocating to do.

You/Your Team'’s Ideas

The test hyoptheses are not limited to your immediate SEO team (in-house or agency), not even
your digital marketing team. This could be colleagues that have any exposure to the website with
any ideas. Most of them might be unviable to devote resources to an experiment. However, their
ideas, since they (should) care about the business, are worthy of some consideration. Naturally,
your immediate SEO team may have the better ideas of things to test from an SEO perspective.

Recent Website Updates

Usually, it’s better to test things before a large website update impacts your organic traffic.
However, you may not get such luxuries with other competing priorities or tight timelines.
Nevertheless, if a product update is expected to impact your organic traffic, good or bad, such as
the launch of a stripped back top-level navigation, you'll ideally want to know why and get ahead of
its full launch so that you can test it to understand the impact for SEO.

Conference Events and Industry Peers

Why limit your ideas to online and your company? Attending industry events can be a great way of
not only finding new things to test for SEO but also meeting people at the events who may be

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

wrestling with the same problems. Diversity of thought is highly valued and could lead to
breakthrough experiment ideas.

Past Experiment Failures

If and when you fail, try, try, and try again. Usually, if an experiment fails, it’s often due to the
experiment not having the required sample size or the experiment was designed or ran incorrectly.
Learn from it and reiterate. Whether it’s designing, running it correctly, or reformulating your
hypotheses, do it and keep iterating until you get the desired result. You may get taken in a
different direction to the original failed experiment, but you will have learned so much in the
process.

Experiment Design

Having decided on what hypotheses you're going to test, you're now ready to design your
experiment. In the following code example, we will be designing an experiment to see the impact of
atestitem (it could be anything, say a paragraph of text beneath the main heading) on organic
impressions at the URL level.

Let’s start by importing the APIs:

import re

import time

import random

import pandas as pd

import numpy as np

import datetime

import requests

import json

from datetime import timedelta

from glob import glob

import os

from plotnine import *

import matplotlib.pyplot as plt

from pandas.api.types import is string dtype
from pandas.api.types import is numeric dtype
from datetime import datetime, timedelta

These are required for carrying out the actual split test:

from statsmodels.discrete.discrete model import NegativeBinomial
from statsmodels.tools.tools import add constant

from collections import Counter

import uritools

pd.set option('display.max colwidth', None)
gmatplotlib inline

Because we're using website analytics data of which popular brands include Google, Looker,
Adobe, this is easily exported from a landing report by date. If this is a large site, then you may
need to use an API (see Chapter 8 for Google Analytics).

Depending on your website analytics package, the column names may vary; however, if you're
looking to test the difference in impressions between URL groups over time, you will require

e Date

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

¢ Landing page URL
e Sessions

Other outcomes than sessions can also be tested, such as impressions, ctr, position, etc.
Assuming you have a CSV export, read the data from your website analytics package using
pd.read_csv:

analytics raw = pd.read csv("data/expandable-content.csv")

Print the data types of the columns to check for numerical data that might be imported as a
character string which would need changing:

print (analytics raw.dtypes)

landing page object
date object
sessions float64

dtype: object

The session data is a numerical float which is fine, but the data is classed as “object” which
means it will need converting to a date format.

We'll make a copy of the dataframe using the .copy() method. This is so that any changes we
make won't affect the original imported table. That way, if we’re not happy with the change, we
don’t have to go all the way to the top and reimport.

analytics clean = analytics raw.copy ()

The date column uses the to_datetime() function which takes the column and the format the
date is in and is then normalized to convert the string into a date format.
This will be important for filling in missing dates and plotting data over time later:

analytics clean['date'] = pd.to datetime(analytics clean(['date'],
format='%d/%m/%Y') .dt.normalize ()

analytics clean
The Pandas dataframe below shows ‘analytics clean’ which now has the

data in a usable format for further manipulation such as graphing
sessions over time.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

landing_page date sessions

1 https://www.next.com/shop/1-state-boots/ 2019-08-09 2.0

3 https://www.next.com/shop/1-state-boots/ 2019-08-12 1.0

5 https://www.next.com/shop/1-state-boots/ 2019-08-21 1.0

7 https://www.next.com/shop/1-state-boots/ 2019-08-13 1.0

9 https://www.next.com/shop/1-state-boots/ 2019-08-25 1.0
315347 https://www.next.com/shop/zuhair-murad-tops/ 2019-08-22 1.0
315349 https://www.next.com/shop/zuhair-murad-tops/ 2019-08-25 1.0
315351 https://www.next.com/shop/zuhair-murad-tops/ 2019-08-24 1.0
315353 https://www.next.com/shop/zuhair-murad-tops/ 2019-08-18 1.0
315355 https://www.next.com/shop/zuhair-murad-tops/ 2019-08-29 1.0

157678 rows x 3 columns

Let’s explore the sessions’ distribution using .describe():

analytics raw.describe()

The following screenshot shows the distribution of sessions including count (number of data
points), the average (mean), and others.

sessions

count 157678.000000

mean 2.155976
std 4.009260
min 1.000000
25% 1.000000
50% 1.000000
75% 2.000000

max 152.000000

We can see that the average (mean) number of sessions per URL on any given date is about 2,
which varies wildly shown by the standard deviation (sd) value of 4. Given the mean is 2 and a

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

landing page can’t have a session of -2 (mean of 2 less standard deviation of 4), this implies that
some outlier pages are getting extremely high sessions, which explains the variation.
Now look at the dates:

analytics clean['date'].describe ()

This results in the following:

count 157678
unique 28
top 2019-08-18 00:00:00
freq 6351
first 2019-08-06 00:00:00
last 2019-09-02 00:00:00

Name: date, dtype: object
There’s not much to infer other than the data’s date range of about a month in August.

Zero Inflation

Web analytics typically only logs data against a web page when there is an impression.

What about the days when the page doesn’t receive an impression? What then?

Zero inflation is where we add null records for pages that didn't record an organic impression
on a given day. If we didn’t zero-inflate, then there would be a distortion of the mean of the data for
a given web page, let alone for a group of pages, namely, A and B.

For example, URL X may have had 90 sessions on 10 days within a given day period logged in
analytics which should suggest that average impression per day is 9 per day.

However, because they happened on the 10 days, your calculations would mislead you to think
the URL is better than it is. By zero-inflating the data, that is, adding null rows to the dataset for the
days in the 30-day period, when URL X didn’t have any organic impressions, the average calculated
would be restored to the expected 3 per day.

Zero inflation also gives us another useful property to work from, and that is the Poisson
distribution.

It’s beyond the scope of this book to explain the Poisson distribution. Still, what you need to
know is that the Poisson distribution is common for rare events when we test for the difference
between groups A and B.

Any statistically significant difference between the two groups will hopefully show that the test
group B had significantly less zeros than A. Enough science, let’s go.

There is a much easier (and less comprehensible) way to fill in missing dates. Both methods
are given in this chapter starting with the longer yet easier to read.

Here, we use the function date_range() to set the date range from the minimum and maximum
dates found in the analytics dataframe, with an interval of one day. This is saved into a variable
object called “datelist”:

datelist = pd.date range(start=analytics clean['date'].min(),
end=analytics clean['date'].max (), freg='1ld'")

nd is the length of days in the date range, and nu is the unique list of landing pages we want the
dates for:

nd = len(datelist)
nu = len(analytics clean['landing page'].unique())

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Here, we create a dataframe with all the possible landing page and date combinations by a
cross-product of the landing page and the dates:

analytics expanded = pd.DataFrame ({'landing page':
analytics clean(['landing page'].unique() .tolist () * nd,
'date':np.repeat (datelist, nu)})

Then we look up which dates and landing pages have sessions logged against them:

analytics expanded = analytics expanded.merge (analytics clean,
how="left")

Any that are unmatched (and thus null) are filled with zeros:
analytics expanded[['date', 'sessions']] =
analytics expanded.groupby ('landing page') [

['"date', 'sessions']].fillna (0)

Convert the sessions to numerical float for easier data handling:

analytics expanded['sessions'] =
analytics expanded['sessions'].astype('int64")

analytics expanded

The resulting dataframe “analytics_expanded,” shown as follows, is our zero-inflated dataframe
ready for split testing. Note the original analytics data had 157,678 rows, and with zero inflation,
it'snow 807,212 rows.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

landing_page date sessions

0 https://www.next.com/shop/1-state-boots/ 2019-08-06 0

1 https://www.next.com/shop/1-state-flats/ 2019-08-06 0

2 https://www.next.com/shop/1-state-heels/ 2019-08-06 0

3 https://www.next.com/shop/1-state-jackets/ 2019-08-06 0

4 https://www.next.com/shop/1-state-jumpsuits/ 2019-08-06 0
807207 https://www.next.com/shop/zuhair-murad-dresses/ 2019-09-02 3
807208 https://www.next.com/shop/zuhair-murad-jackets/ 2019-09-02 0
807209 https://www.next.com/shop/zuhair-murad-jumpsuits/ 2019-09-02 1
807210 https://www.next.com/shop/zuhair-murad-pants/ 2019-09-02 0
807211 https://www.next.com/shop/zuhair-murad-tops/ 2019-09-02 0

807212 rows x 3 columns

Let’s explore the data using the .describe() which will tell us how the distribution of sessions has
changed having been zero-inflated:

analytics expanded.describe ()
The following screenshot shows the distribution of sessions following zero inflation.

sessions

count 807212.000000

mean 0.421141
std 1.967350
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000

max 152.000000

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

And what a difference! The mean has shrunk by over 75% from 2.16 to 0.42, and hardly any pages
get over one session just under a month.

Split A/A Analysis
A/Atesting is the process by which we test the same items against themselves over a time period.

This is the type of split test popularized by SearchPilot (formerly Distilled ODN) as illustrated in
Figure 7-1.

Confidence intervals - positive example

Upper bound
A :
i Estimated

000 - - cumulative impact

<100 - E
2002 - 95% confident
! there is an uplift

-3000 -

Y

Lower bound

There is a 95% chance of the true impact of the test lying within the shaded area. Statistical
significance is reached at any point when the shaded area is all above or below the x-axis

Figure 7-1 Split A/B analysis by SearchPilotSource: www.searchpilot.com/features/seo-a-b-testing/

For example, we take a sample of URLs and benchmark the performance before implementing a
test on said URL sample to see if a significant impact results or not.

The main motivation for us to conduct A/A testing is to determine whether the A/B test design
is reliable enough to proceed with or not. What we’re looking for are no differences between A
before and A after.

We’ll test a period of 13 days, assuming now changes have been made, although in a real
setting, you would check nothing has changed before testing.

Why 13 days? This is an arbitrary number; however, methods are given later on determining
sample size for a robust A/B test to ensure any differences detected are significant. The same
methods could be applied here.

This A/Atestis just an illustration of how to create the data structures and test. So if you
wanted to conduct a “SearchPilot” style of split testing, then sample size and testing period
determination aside, the following code would help you run it:

aa_test period = 13
Set the cutoff date to be the latest date less the test period:

cutoff = analytics expanded['date'].max() - timedelta(days =
aa_test period)

Create a dataframe copy for A/A testing “analytics_phased”:

http://www.searchpilot.com/features/seo-a-b-testing/

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

analytics phased = analytics expanded.copy ()

Set the A/A group based on the date before or after the cutoff:

analytics phased['aa group'] = np.where(analytics expanded['date'] <

cutoff,

"pre test", "test period")

analytics phased

This should result in the following output:

landing_page date sessions aa_group

0 https://www.next.com/shop/1-state-boots/ 2019-08-06 0 pre_test

1 https://www.next.com/shop/1-state-flats/ 2019-08-06 0 pre_test

2 https://www.next.com/shop/1-state-heels/ 2019-08-06 0 pre_test

3 https://www.next.com/shop/1-state-jackets/ 2019-08-06 0 pre_test

4 https://www.next.com/shop/1-state-jumpsuits/ 2019-08-06 0 pre_test
807207 https://www.next.com/shop/zuhair-murad-dresses/ 2019-09-02 3 test_period
807208 https://www.next.com/shop/zuhair-murad-jackets/ 2019-09-02 0 test period
807209 https://www.next.com/shop/zuhair-murad-jumpsuits/ 2019-09-02 1 test_period
807210 https://www.next.com/shop/zuhair-murad-pants/ 2019-09-02 0 test_period
807211 https://www.next.com/shop/zuhair-murad-tops/ 2019-09-02 0 test_period

807212 rows x 4 columns

Before testing, let’s determine analytically the statistical properties of both A/A groups, which is
indicative of what the actual split A/A test result might be.

The first function is day_range() which returns the number of days in the date range which is
the latest date less the earliest date:

def day range (date):

return

(max (date) - min(date)) .days

First, we calculate the means by filtering the data for nonzero sessions and then aggregate the
date range and average by A/A group:

daa_means

=

analytics phased.loc[analytics phased["sessions"]
.groupby (["aa group"])

.agg ({"date":

)

["min", "max", day range],

daa_means

"sessions":

nmeanu”

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

The resulting aa_means dataframe shows the following output:

date sessions
min max day range mean
aa_group
pre_test 2019-08-06 2019-08-19 13 2.279396
test_period 2019-08-20 2019-09-02 13 2.007706

We can see that the day ranges and the date range are correct, and the averages per group are
roughly the same when rounded to whole numbers.

aa means = analytics phased.loc[analytics phased['sessions'] != 0]
Let’s determine the variation between groups:

aa_ zeros = analytics phased.copy ()
Create a zeros column so we can count zeros and the ratio:

aa_ zeros|['zeros'] = np.where(aa zeros|['sessions'] == 0, 1, 0)
aa _zeros['rows'] =1

Aggregate the number of zeros and data points by A/A group:

aa means sigmas = aa zeros.groupby('aa group').agg({'zeros': sum,
'rows': sum}) .reset index()

Calculate the variation “sigma” which is 99.5% of the ratio of zeros to the total possible
sessions:

aa _means_sigmas|['sigma'] =
aa_means_sigmas['zeros']/aa_means_sigmas['rows’] * 0.995

aa_means_sigmas
This should result in the following output:

aa_group Zeros rows sigma

0 pre_test 317556 403606 0.782863

1 test_period 331978 403606 0.818417

We can see the variation is very similar before and after the cutoff, so that gives us some
confidence that the URLs are stable enough for A/B testing.
Put it together using the .merge() function (the Python equivalent of Excel’s vlookup):

aa _means_stats.merge (aa means_sigmas, on = 'aa group', how = 'left')

This should result in the following output:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

aa_group min_date max_date sessions date_range zeros rows sigma

0 pre_test 2019-08-06 2019-08-19 2.279396 13 days 317556 403606 0.782863

1 test_period 2019-08-20 2019-09-02 2.007706 13 days 331978 403606 0.818417

If you were conducting an A/A test to see the effect of an optimization, then you’d want to see the
test_period group report a higher session rate with the same sigma or lower. That would indicate
your optimization succeeded in increasing SEO traffic.

Let’s visualize the distributions using the histogram plotting capabilities of plotnine:

aa_test plt = (
ggplot (analytics phased,

aes (x = 'sessions', fill = 'aa group')) +
geom histogram(alpha = 0.8, bins = 30) +
labs(y = '"Count', x = "") +
theme (legend position = 'none',
axis text y =element text(rotation=0, hjust=1l, size = 12),
legend title = element blank()
) +

facet wrap('aa group')

)

aa_test plt.save(filename = 'images/2 aa test plt.png',
height=5, width=8, units = 'in',

dpi=1000)

aa_test plt

The chart shown in Figure 7-2 confirms visually there is no difference between the groups.

pre_test test_period

400000-

=

300000-

200000-

Count

100000-

0- N

0 50 100 150 0 50 100 150

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Figure 7-2 Histogram plots of pretest and test period A/A group data

The box plot gives more visual detail of the two groups’ distribution which will now be used:

aa_test box plt = (
ggplot (analytics phased,

aes(x = 'aa group', y = 'sessions',
fill = 'aa group', colour = 'aa group')) +
geom boxplot (alpha = 0.8) +
labs(y = '"Count', x = "") +
theme (legend position = 'none',
axis text y =element text (rotation=0, hjust=l, size = 12),

legend title = element blank()
)
)

aa test box plt.save(filename = 'images/2 aa test box plt.png',
height=5, width=8, units = 'in',

dpi=1000)

aa_test box plt

Figure 7-3 shows again in aa_test_box_plt that there is no difference between the groups other
than the pretest group having a larger number of higher value outliers.

150- .
:
:
&
i
100- i
=
3
(@]
o
50-
0-
p!‘E_ItESt test_[')eriod

Figure 7-3 Box plots of pretest and test period groups

Let’s perform the actual A/A test using a statistical model. We'll create an array, which is a list
of numbers marking data points as either 0 (for pretest) or 1 (test_period), which will then be
assigned to X:

X = np.where(analytics phased['aa group'] == 'pre test', 0.0, 1.0)

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

add constant (X)
np.asarray (X)

XXX
Il

This results in the following:

array([[1l., 0.],
[1., 0.1,
[1., 0.1,

r 11y
(1., 1.1,
r 1011
Xis used to feed the NegativeBinomial() model which will be used to test the difference in the

number of sessions between the two A/A groups.
The arguments are the outcome metric (sessions) and the independent variable (aa_group):

aa model = NegativeBinomial (analytics phased['sessions'], X).fit()
Then we’ll see the model results using the .summary() attribute:
aa_model.summary ()
The resulting aa_model.summary() is shown as follows:

Optimization terminated successfully.
Current function wvalue: 0.762045
Iterations: 3
Function evaluations: 8
Gradient evaluations: 8

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

NegativeBinomial Regression Results

Dep. Variable: sessions No. Observations: 807212
Model: NegativeBinomial Df Residuals: 807210
Method: MLE Df Model: 1

Date: Tue, 18 Oct 2022 Pseudo R-squ.: 0.001896

Time: 08:50:29 Log-Likelihood: -6.1513e+05

converged: True LL-Null: -6.1630e+05

Covariance Type: nonrobust LLR p-value: 0.000
coef stderr z P>|z| [0.025 0.975]

const -0.7216 0.004 -163.064 0.000 -0.730 -0.713
x1 -0.3104 0.006 -48.458 0.000 -0.323 -0.298
alpha 58461 0.024 247.865 0.000 5.800 5.892

The printout shows that p-value (LLR p-value) is zero, which means there is significance. However,
the x1 is -0.31, indicating there is a small difference between groups.

[s that enough of a difference to stop the A/B test? That’s a business question. In this case, it
isn’t; however; this is subjective; the graphs and analytical tables would support the claim that
there is no real difference - onward.

Determining the Sample Size

Getting the sample size right is absolutely key because it can really make or break the reliability of
your test results. Some basic principles are to ensure you have enough to get conclusive results in
areasonable time period and to ensure you don’t terminate a test early like many software do
when significant changes are observed before the experiment has run its course.

We won’t be going into more detail into the factors that determine the appropriate sample size
for your SEO experiment, such as power, because this isn’t a statistics textbook (and there are
plenty of really good textbooks that teach statistics such as the Openintro Statistics).

The main factor that determines your required sample size is the required level of statistical
significant difference between test and control. The typical and most conventional level of cutoffis
95%. That is, there’s a 5% (or less) chance that the test results are the same as the control results
due to random noise, and therefore you may reject the null hypothesis that there is no difference
between test (B) and control (A).

The reality is that the 95% rule, while conventional, is not set in stone. You can decide what is
good enough. For example, you may wish to go for 89%, which is absolutely fine, because 89 times
out of 100, your test will beat control. That’s the way to think about it.

The following is some code to do exactly that. We'll estimate some parameters which will be
used to help us determine the required sample size based on the minimum number of sessions:

num_rows = analytics phased["sessions"].count ()
mu = analytics phased[analytics phased["sessions"] !=
0].agg({"sessions": "mean"})

sigma = get sigma(analytics phased["sessions"])

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

print (num rows, mu, sigma)

807212 sessions 2.155976
dtype: floato64 0.8006401416232662

With the parameters set, these will feed the following functions. python_rzip will generate and
return a random Poisson distribution based on the parameters:

def python rzip(n, mu, sigma):
rng = np.random.default rng/()
P = rng.poisson (mu, n)

return [p i1f random.random() > sigma else 0 for p in P]

simulate_sample uses the python_rzip function to return a split test between two groups of
data assuming there is a difference of 20% or more:

def simulate sample(n, difference=0.2):
control = python rzip(n, mu, sigma)
test = python rzip(n, mu + difference, sigma)
test = stats.ttest ind(control, test)
return test[1]

Finally, run_simulations uses simulate_sample to estimate the significance of a sample size of a
given level of traffic:

def run simulations(n, difference=0.2, n simulations=100):

p _values = [simulate sample(n, difference) for i in
range (n_simulations)]
significant = sum(map (lambda x: x <= 0.05, p values))

return significant / n_simulations

With the three functions defined, we can test for significance at varying levels of traffic. If you
fancy a challenge to avoid repetitive code and stretch your Python skills, try implementing the
run_simulations function as part of a list comprehension:

print (run simulations (n=100), ": 100")
print (run simulations (n=1000), ": 1000")
print (run simulations (n=10000), ": 10000™)
print (run_simulations (n=15000), ": 15000™)
print (run simulations (n=18000), ": 16000")
print (run_simulations (n=18000), ": 18000")
print (run_simulations (n=20000), ": 20000")
print (run_simulations (n=25000), ": 25000")
print (run_simulations (n=30000), ": 30000")
print (run simulations (n=50000), ": 50000")

This results in the following:

0.04 : 100

0.08 : 1000
0.74 : 10000
0.85 : 15000
0.86 : 16000

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

0.9 : 18000
0.96 : 20000
0.97 : 25000
1.0 : 30000
1.0 : 50000

The preceding output shows the levels of significance (p-value) achieved at different sample
size levels, which in our case are the required number of sessions. If we would be happy with a
90% (or higher) chance that a 20% difference would be observed, then we’d require 18,000
sessions per group or more.

So we'll set the experiment sample size as appropriate:

exp sample size = 18000

Test and Control Assignment
Once you've set your sample size at the desired level of statistical significance, you're now ready to
start assigning URLs for test and control at random.

We aggregate the average sessions and number of days by landing page and store this as a
dataframe “urls_agg”:

urls agg = analytics clean.groupby('landing page') .agg({'sessions':
'mean', 'date': 'count'}).reset index()

The testing_days, which is the maximum number of days to run the test, will be set at 30, which
is an arbitrary number set by the business. This of course can be lower.

testing days = 30

With the max period of testing days set, we’ll need the minimum URLs for the test group to hit
the required number of user sessions in that time period. Dividing the sample session size of
18,000 by the number of testing days will give us that approximate number.

Bear in mind that it can take up to two weeks (and sometimes longer) for Google to register the
site changes and reflect these in the search results (i.e., they have to crawl, index, and rerank their
results). So to limit the risk of ending the experiment early, we’ll double the minimum URLs
required for testing, in order to increase the likelihood of Google, in the first instance, crawling the
test URLs (those with the change(s)):

url sample size = int (exp sample size / testing days) * 2
print (url sample size)
1200

1200 URLs are required for the test group. Note that it’s implicitly assumed that the test URLs
are much smaller than the control such that there are plenty of URLs in the control group to hit the
minimum sessions during the testing period.

urls agg

Our resulting dataframe shows each landing page and their average sessions and number of
days where sessions are generated. Some URLs get more than one day of sessions as shown by the
date column.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

landing_page sessions date

0 https://www.next.com/shop/1-state-boots/ 1.125000 8
1 https://www.next.com/shop/1-state-flats/ 1.000000 3
2 https://www.next.com/shop/1-state-heels/ 1.000000 5
3 https://www.next.com/shop/1-state-jackets/ 1.500000 8
4 https://www.next.com/shop/1-state-jumpsuits/ 1.100000 10

28824 https://www.next.com/shop/zuhair-murad-dresses/ 1.840000 25
28825 https://www.next.com/shop/zuhair-murad-jackets/ 1.000000 1
28826 https://www.next.com/shop/zuhair-murad-jumpsuits/ 1.722222 18
28827 https://www.next.com/shop/zuhair-murad-pants/ 1.142857 7

28828 https://www.next.com/shop/zuhair-murad-tops/ 1.000000 5

28829 rows x 3 columns

We will now sample the dataframe based on the required 1200 URLs and assign these to the “test”
group:

urls test = urls agg.sample(url sample size) .assign(ab group="test")

Drop the sessions and date column as we only need the URLs to send to the web developer
team for allocation:

urls test.drop(['sessions', 'date'], axis = 1, inplace = True)
urls test

The urls_test is shown as follows:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

landing_page ab_group

7129 https://www.next.com/shop/henrik-vibskov-coats/ test
16561 https://www.next.com/shop/mens-le-mont-st-michel-jackets/ test
13017 https://www.next.com/shop/mens-cartier-belts/ test
16169 https://www.next.com/shop/mens-jw-anderson-t-shirts/ test

8949 https://www.next.com/shop/kensie-totes/ test

9813 https://www.next.com/shop/lizzie-fortunato-shoulder-bags/ test
12857 https://www.next.com/shop/mens-buscemi-sneakers/ test
18681 https://www.next.com/shop/mens-raey-jackets/ test

6000 https://www.next.com/shop/forever-21-knitwear/ test
20060 https://www.next.com/shop/mens-the-quiet-life-hats/ test

1200 rows x 2 columns

Our dataframe shows the test landing pages:

urls test list = urls test["landing page"]
urls test list

This results in the following:

7129 https://www.next.com/shop/henrik-vibskov-coats/
16561 https://www.next.com/shop/mens-le-mont-st-michel-jackets/
13017 https://www.next.com/shop/mens-cartier-belts/
16169 https://www.next.com/shop/mens-jw-anderson-t-shirts/
8949 https://www.next.com/shop/kensie-totes/
9813 https://www.next.com/shop/lizzie-fortunato-shoulder-bags/
12857 https://www.next.com/shop/mens-buscemi-sneakers/
18681 https://www.next.com/shop/mens-raey-jackets/
6000 https://www.next.com/shop/forever-21-knitwear/
20060 https://www.next.com/shop/mens-the-quiet-life-hats/

Name: landing page, Length: 1200, dtype: object

Test landing pages are converted to a list which will be used to mark the other (non test
allocated) URLs as control:

urls control =
urls_agg[~urls _agg["landing page"].isin(urls test list.values)].assign(
ab_group="control"

)
urls control.drop(['sessions', 'date'], axis = 1, inplace = True)

urls control

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

The urls_control dataframe shows the control groups:

landing_page ab_group

0 https://www.next.com/shop/1-state-boots/ control
1 https://www.next.com/shop/1-state-flats/ control
2 https://www.next.com/shop/1-state-heels/ control
3 https://www.next.com/shop/1-state-jackets/ control
4 https://www.next.com/shop/1-state-jumpsuits/ control

28824 https://www.next.com/shop/zuhair-murad-dresses/ control
28825 https://www.next.com/shop/zuhair-murad-jackets/ control
28826 https://www.next.com/shop/zuhair-murad-jumpsuits/ control
28827 https://www.next.com/shop/zuhair-murad-pants/ control

28828 https://www.next.com/shop/zuhair-murad-tops/ control

27629 rows x 2 columns

Both test and control groups will now be combined into a single dataframe showing which URLs
are test and control:

split ab dev = pd.concat ([urls control, urls test],
axis=0) .sort index()

split ab dev

The following shows the split_ab_dev dataframe:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

landing_page ab_group

0 https://www.next.com/shop/1-state-boots/ control
1 https://www.next.com/shop/1-state-flats/ control
2 https://www.next.com/shop/1-state-heels/ control
3 https://www.next.com/shop/1-state-jackets/ control
4 https://www.next.com/shop/1-state-jumpsuits/ control

28824 https://www.next.com/shop/zuhair-murad-dresses/ control

28825 https://www.next.com/shop/zuhair-murad-jackets/ control
28826 https://www.next.com/shop/zuhair-murad-jumpsuits/ control
28827 https://www.next.com/shop/zuhair-murad-pants/ control
28828 https://www.next.com/shop/zuhair-murad-tops/ control

28829 rows x 2 columns
split ab dev.to csv("data/split ab developers.csv")

The final dataframe is combined and exported into a CSV for the software development team'’s
reference.

Running Your Experiment

So far, we have assumed near perfect lab conditions, and there are quite a number of pitfalls that
could scupper your experiment. We'll deal with these in turn.

Ending A/B Tests Prematurely

Whatever you do, ensure you run your tests to the full sample size. Just because your test group
might reach a statistically significant difference before the required sample size, it doesn’t mean
the test result is conclusive.

What can and does happen is that the test could regress back to similar levels of performance
as the control group after outperforming control. However; if you end the experiment prematurely,
you won't know and therefore end up wasting your time and company resources on an invalid
experiment.

So if your experiment requires 20,000 pageviews, make sure your experiment reaches 20,000
pageviews for both groups.

Not Basing Tests on a Hypothesis

If you've got this far and you haven’t based this on a hypothesis, start again and form a hypothesis.
Having a hypothesis helps frame the outcome of your experiment, so that you can be certain of
what it is you've actually learned from the experiment. For example, if you're testing whether 100
worded body copy below the H1 will increase SEO impressions, then simply state it so. Just make
sure you do it from the outset. This will help you to be more precise about what it is you are
testing, how you will test it, and what it is you have learned.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Simultaneous Changes to Both Test and Control

This happens more often than you might think. We were once asked by a few CTOs whether it
would be acceptable to make changes to both test and control while the experiment was running.

We advised it would not because even though the change may be applied equally to both
groups, one or both of them may have an interaction with the simultaneous change and not
necessarily in the same direction. Of course, it sounds unlikely, so if you're ever tempted or get
asked if the simultaneous change is okay, avoid or refuse it.

One thing you can do is to make the control group for your experiment be the control group for
other experiments. Just ensure the test group is left intact and untouched.

So if you wanted to run another experiment, assuming you have plenty of control URLSs to hit
the minimum sessions for the first experiment, some could be allocated to a second test.

Non-QA of Test Implementation and Experiment Evaluation

It may be obvious, but we shall state it nonetheless: do check and QA the implementation of the
test across all browsers, operating systems, and device types to avoid any kind of bias in the
experiment results.

With the experiment having run, you're now ready to evaluate the experiment. How do you
know it’s run? When both groups have reached the required number set earlier, in this case, 18,000
pageviews.

To repeat, it can take up to two weeks to crawl the changes on your test group pages and
another two weeks to recalculate the effects of those changes before reflecting them in the SERPs,
be they better, worse, or no change.

With the experiment run, we’ll import data from our website analytics. Just as before, the data
is a CSV extract from a website analytics software:

test analytics = pd.read csv('data/sim split ab data.csv')
Convert the date to date format:

test analytics["date"] = pd.to datetime(test analytics["date"],
format="%Y/%m/%d")

test analytics

You'll see that you now have a dataframe with all the URLs by date and outcomes labeled as test
and control. As is the nature of analytics data, some dates are missing:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

landing_page ab_group date sessions

0 https://www.next.com/shop/1-state-boots/ control 2019-09-05 0

1 https://www.next.com/shop/1-state-boots/ control 2019-09-10 0

2 https://www.next.com/shop/1-state-boots/ control 2019-09-12 1

3 https://www.next.com/shop/1-state-boots/ control 2019-09-13 0

4 https://www.next.com/shop/1-state-boots/ control 2019-09-16 1
427207 https://www.next.com/shop/zoe-morgan-earrings/ test 2019-09-18 6
427208 https://www.next.com/shop/zoe-morgan-earrings/ test 2019-09-22 5
427209 https://www.next.com/shop/zoe-morgan-earrings/ test 2019-09-26 4
427210 https://www.next.com/shop/zoe-morgan-earrings/ test 2019-09-28 0
427211 https://www.next.com/shop/zoe-morgan-earrings/ test 2019-09-29 2

427212 rows x 4 columns

Add missing dates as some URLs from either group will not have logged a pageview. We'll use the
list comprehension technique to fill in the missing dates where for every unique landing page, we’ll
create a new date row where none exists:

test analytics expand = pd.DataFrame (

[(x, V)
for x in test analytics(['landing page'].unique ()
for y in test analytics['date'].unique ()], columns=

("landing page", "date"),)
test analytics expand

The following is a screenshot of test_analytics_expand:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

landing_page date
0 https://www.next.com/shop/1-state-boots/ 2019-09-05
1 https://www.next.com/shop/1-state-boots/ 2019-09-10

https://www.next.com/shop/1-state-boots/ 2019-09-12

https://www.next.com/shop/1-state-boots/ 2019-09-13

AW N

https://www.next.com/shop/1-state-boots/ 2019-09-16

807207 https://www.next.com/shop/zoe-morgan-earrings/ 2019-09-09
807208 https://www.next.com/shop/zoe-morgan-earrings/ 2019-09-17
807209 https://www.next.com/shop/zoe-morgan-earrings/ 2019-09-26
807210 https://www.next.com/shop/zoe-morgan-earrings/ 2019-09-28

807211 https://www.next.com/shop/zoe-morgan-earrings/ 2019-09-08

807212 rows x 2 columns

Note that there are more rows than before because of the added missing dates. These will need to
have session data added, which will be achieved by merging the original analytics data:

test analytics expanded = test analytics expand.merge (
split ab dev, how="left", on=['landing page'])

test analytics expanded = test analytics expanded.merge (
test analytics, how="left", on=["date", "landing page",

'ab group'])

Post merge, any landing pages with missing dates will have “NaNs” (not a number), which is
dealt with by filling those with zeros and converting the data type to an integer:

test analytics expanded['sessions'] =
test analytics expanded['sessions'].fillna(0) .astype (int)
test analytics expanded

The following is a screenshot of test_analytics_expanded which has the landing pages labeled
by their ab_group:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

landing_page date ab_group sessions

0 https://www.next.com/shop/1-state-boots/ 2019-09-05 control 0

1 https://www.next.com/shop/1-state-boots/ 2019-09-10 control 0

2 https://www.next.com/shop/1-state-boots/ 2019-09-12 control 1

3 https://www.next.com/shop/1-state-boots/ 2019-09-13 control 0

4 https://www.next.com/shop/1-state-boots/ 2019-09-16 control 1
807207 https://www.next.com/shop/zoe-morgan-earrings/ 2019-09-09 test 2
807208 https://www.next.com/shop/zoe-morgan-earrings/ 2019-09-17 test 0
807209 https://www.next.com/shop/zoe-morgan-earrings/ 2019-09-26 test 4
807210 https://www.next.com/shop/zoe-morgan-earrings/ 2019-09-28 test 0
807211 https://www.next.com/shop/zoe-morgan-earrings/ 2019-09-08 test 0

807212 rows x 4 columns

Our dataset is ready for some data exploration before finally testing. We explore the data to
observe the distribution of sessions, which helps with our model selection.

Split A/B Exploratory Analysis

We’ll estimate the parameters including the average sessions and their variation by A/B group:

ab means = (
test analytics expand[test analytics expand["sessions"] != 0]
.groupby (["ab group"])
.agg({"date": ["min", "max", day range], "sessions": "mean"})

)

ab_sigmas =

test analytics expand.groupby (["ab group"]) .agg({"sessions":
[get sigmal})

pd.concat ([ab means, ab_ sigmas], axis=1)

The pd.concat([ab_means, ab_sigmas], axis=1) dataframe is shown as follows:

date sessions
min max day_range sum mean get_sigma
ab_group
control 2019-09-05 2019-10-02 27 173547 2.165467 0.891922
test 2019-09-05 2019-10-02 27 72813 4.399577 0.504903

The dataframe shows that the minimum sample sessions were comfortably hit and that it looks
like the test group has made a significant difference, that is, a statistically significant higher
number of sessions.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Let’s plot the data by test and control groups to explore it more, starting with an overall time
trend. The data will be aggregated by date and ab_group with the sessions averaged:

simul abgroup trend = sim split ab data.groupby(["date",
'ab group']l) .agg({"sessions": "mean"}) .reset index()
simul abgroup trend.head()

The simul_abgroup_trend.head() is shown as follows:

date ab_group sessions

0 2019-09-05 control 0.505078

1 2019-09-05 test 4.068471
2 2019-09-06 control 0.500034
3 2019-09-06 test 4.046225
4 2019-09-07 control 0.466905

Once aggregated, we can now plot:

simul abgroup trend plt = (
ggplot (simul abgroup trend,

aes(x = 'date', y = 'sessions', colour = 'ab group', group
= 'ab group')) +
geom line(alpha = 0.6, size = 3) +
labs(y = 'Count', x = "") +
theme (legend position = 'right',
axlis text y =element text (rotation=0, hjust=1l, size = 12),

legend title = element blank()
)
)

simul abgroup trend plt.save(filename =
'images/3 simul abgroup trend plt.png',
height=5, width=8, units = 'in',
dpi=1000)
simul abgroup trend plt

Figure 7-4 shows the resulting time series plot of simul_abgroup_trend_plt. Both groups
experienced dips during that period; however, the test group has outperformed the control group.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

4-
J
= control
=
8 2. test
s
2019-09-05 2019-09-09 2019-09-13 2019-09-17 2019-09-21 2019-09-25 2019-09029-10-01
Figure 7-4 Time series plot of both test and control group sessions over time
Next, we'll inspect the distribution of sessions overall, starting with a histogram:
ab assign plt = (
ggplot (test analytics expanded,
aes(x = 'sessions', fill = 'ab group')) +
geom histogram(alpha = 0.6, bins = 30) +
labs(y = '"Count', x = "") +
#scale y loglO() +
#coord flip() +
theme (legend position = 'none',
axis text y =element text(rotation=0, hjust=1l, size = 12),
legend title = element blank()
) +
facet wrap('ab group', scales = 'free')
)
ab_assign plt.save(filename = 'images/4 ab test plt.png',
height=5, width=8, units = 'in',
dpi=1000)

ab_assign plt

Figure 7-5 shows ab_assign_plt, which is a side-by-side comparison of both control and test
distributions of sessions. The chart shows that the distribution of the test group has much more
data points above zero, which looks promising

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

control test
15000-
600000 -
N 10000-
< 400000-
Q
O
200000- S -
0- 0-
0 50 100 150 0 10 20

Figure 7-5. Histogram distribution plots of both Control and Test

The box plot method will be used to contrast the distributions further:

ab_assign box plt = (
ggplot (test analytics expand,

aes(x = 'ab group', y = 'sessions',
fill = 'ab group', colour = 'ab group')) +
geom boxplot (alpha = 0.8) +
labs(y = 'Count', x = "") +
theme (legend position = 'none',
axis text y =element text (rotation=0, hjust=l, size = 12),

legend title = element blank()
)
)

ab assign box plt.save(filename = 'images/4 ab test box plt.png',
height=5, width=8, units = 'in',

dpi=1000)

ab assign box plt

Figure 7-6 shows ab_assign_box_plt, which is a box plot comparison of the control and test
groups.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

150- !
g
.
|
]
i
100- i
=
=
(@]
(@
50 -
0-

]]
control test

Figure 7-6 Box plot of test and control sessions

The control group has many more outliers, but the test group has much less zeros than the
control group.

The scales make this hard to distinguish, so we’ll take a logarithm of the session scale to
visualize this further:

ab _assign log box plt = (
ggplot (test analytics expanded,

aes(x = 'ab group', y = 'sessions',
fill = 'ab _group', colour = 'ab group')) +
geom boxplot (alpha = 0.6) +
labs(y = '"Count', x = "") +
scale y loglO() +
theme (legend position = 'none',
axis text y =element text (rotation=0, hjust=l, size = 12),

legend title = element blank()
)
)

ab assign log box plt.save(filename =
'images/4 ab assign log box plt.png',
height=5, width=8, units = 'in',
dpi=1000)
ab assign log box plt

Figure 7-7 shows ab_assign_log_box_plt, which is a box plot comparison of the control and test
groups, only this time with a logarized vertical axis for an easier visual comparison.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

100-
€
3
o 10- 3
L]
L]
L]
1L !
cor&ro] tést

Figure 7-7 Box plot of test and control

In all cases, we can see that the average sessions are close to zero, and there are many landing
pages on any given day with zero sessions, which indicates that sessions are a rare event. This
type of distribution is known as “Poisson.”

As a consequence, we'll use a negative binomial distribution to test the differences between
test and control for significance.

First, we’ll mark up the data as being test (1.0) or control (0.0), then convert it to an array:

= np.where(test analytics expand['ab group'] == 'control', 0.0, 1.0)
add _constant (X)
np.asarray (X)

XXX
Il

—
=
~
(@]
-
~

(1., 1.1,
(1., 1.1,
(1., 1.11)
Fit a model of sessions by ab_group using negative binomial:

ab model = NegativeBinomial (test analytics expand['sessions'],
X).fit ()

Print the model summary:

ab model.summary ()

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

The following is a screenshot of ab_model.summary():

Optimization terminated successfully.
Current function value: 1.155104
Iterations: 9
Function evaluations: 10
Gradient evaluations: 10

NegativeBinomial Regression Results

Dep. Variable: sessions No. Observations: 807212

Model: NegativeBinomial Df Residuals: 807210

Method: MLE Df Model: 1

Date: Thu, 20 Oct 2022 Pseudo R-squ.: 0.02809

Time: 08:16:19 Log-Likelihood: -4.3946e+05

converged: True LL-Null: -4.5216e+05

Covariance Type: nonrobust LLR p-value: 0.000
coef stderr z P>zl [0.025 0.975]

const -1.4918 0.004 -350.822 0.000 -1.500 -1.484
x1 2.2453 0.018 126.281 0.000 2.210 2.280
alpha 9.5438 0.049 196.050 0.000 9.449 9.639

From the preceding result, we can conclude that the change was indeed significant. The test group
(shown by x1) exhibited 2.24 more pageviews on average compared to control.

In terms of significance, the LLR p-value is zero, so the chances of the difference occurring due
to random noise are incredibly slim.

Interestingly, the pseudo r-squared which measures the extent to which ab_group can explain
the sessions per se is very low at 0.029, which means the model is very noisy and would require
many more other factors to predict levels of traffic other than ab_group.

Inconclusive Experiment OQutcomes
Experiments may not go the way you expected for a number of reasons:

* The expected difference is too high - so consider revising and rerunning the experiment.

¢ The hypothesis needs to be tested differently — perhaps using a different measure or a different
test.

¢ You need a different time period - despite meeting the sample size requirements, it could be
down to seasonal effects such as the time of year or the data fulfilling the sample requirement
before a full week is run or Google wasn’t given a chance to process the changes (see the
previous discussion).

¢ Other external forces.

By setting your hypothesis in the first instance, regardless of the outcome, you will have
learned something, and you will be able to move forward with a sensible plan, be it your next test

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

or a sitewide implementation of your test.

Summary

Experiments have always been a part of the SEO expert’s skill in determining what tactics are likely
to work, even if sometimes the scientific rigor is missing. In the enterprise setting, a rigorous
experiment design is essential due to the impact on revenue and the need to prove
recommendations are beneficial, before rolling out changes sitewide. While there are tools that
assistin this area, it is also useful to understand the data science behind SEO split tests and the
considerations that must be borne in mind. In this chapter, we covered

¢ The importance of experiments in SEO

¢ Generating hypotheses

¢ Experiment design

¢ Running your experiments

e Evaluating your experiments

¢ And what to do if your experiment “fails”

In the next chapter, we will cover SEO reporting in the form of dashboards.

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A.Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_8

8. Dashboards

Andreas Voniatis?!

(1) Surrey, UK

Although a performance dashboard system in itself doesn’t solve SEO problems directly, having the
infrastructure can be a very useful repository for data to support SEO science as well as create visuals that
communicate useful trends, changes, threats, and opportunities.

Even more importantly, SEO is data rich, and there are numerous data sources and a good many number
of things you can possibly measure in SEO, so the picture can look very noisy and at worst can be useless if
you can’t clearly see and get to the signal.

Having a performance reporting system that uses well-designed and well-thought-out dashboards will
help highlight the most important trends from the noisy data. It will also be easier to identify causal effects.

We will be supplying some code, written in SQL, to help you understand how to achieve some of the
most valuable visuals.

Data Sources

The types of data sources you would want for your dashboard will be anything that (a) offers an APl and (b)
obviously adds information to understanding your SEO performance more effectively. These may include
(and this is by no means exhaustive)

e Website analytics: Google Analytics (GA), Adobe Analytics, Looker, Segment
Webmaster tools: Google Search Console (GSC), Bing Webmaster

Cloud web crawlers: DeepCrawl, OnCrawl, and Botify

SERPs: getSTAT, SEO Monitor, DataForSEO, AWR, AccuRanker

Link checkers: AHREFs, Majestic, DataForSEQO

Social: BuzzSumo

Keywords: SEMRush, Keywords.io

Ad platforms: Google Ads, DV360

Don’t Plug Directly into Google Data Studio
Google provides convenient connectors to plugging in data sources, like Google Analytics (GA) and Google
Search Console (GSC). This allows for data to be imported directly into Google Data Studio (GDS) which
makes SEO dashboards easy.

However, this is a missed opportunity because there is no way to overlay the data between the two data
sources in GDS. GDS is a front end for visualizing data.

Without a process that goes between the data source and the front end, the data is raw, undistilled, and
less useful for spotting trends and uncovering insights.

Using Data Warehouses
This is where a data warehouse like Google’s BigQuery or Amazon’s Redshift comes in. You store the data in
those data warehouses, and the front end, be it GDS, Tableau, DOMO, or others, will use custom Structured
Query Language (SQL) to query the data warehouse and get the data in a format ready to drive the charts
you want to show.

We will share SQL code with you and some charts to help you on your way to building your own SEO
dashboards.

https://doi.org/10.1007/978-1-4842-9175-7_8

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

However, before you start building, you need to get the data into the data warehouse. So, how do we
achieve that?

Extract, Transform, and Load (ETL)
Extract, transform, and load (ETL) is a method by which you literally

e Extractyour data from your data source APIs.
e Transform is where you run calculations and create new calculated fields from the data extracted.
e Loadis the part where you load the transformed data into the data warehouse.

There are numerous configurations you can pursue depending on which cloud stack you go with, your
team’s cloud engineering skills, and your budget.

Extracting Data

The extract process will usually be automated where your APIs get queried on a daily basis (known as
“polling”) using a virtual machine running the script. The data gets stored either in storage or a data
warehouse.

If your cloud engineering skills are nonexistent, you can still upload data via CSV format to the data
warehouse.

The following is some code to extract data from a number of APIs which will be the main Google
products and some of (not all of) the more well-known SEO processes:

¢ Google Analytics

¢ Google Search Console
e DataForSEO SERPs API
* Google PageSpeed API

We'll now provide Python code for you to connect to these APIs not just for reporting purposes as this
code can be adapted to support other SEO science activities covered in other chapters.

Google Analytics

Traffic remains a key lever of growth, and Google Analytics is widely used as a web analytics package.
However, more organic search traffic will not always correlate directly with more revenue, but it may
indicate engagement through other means.

The following will detail code to extract data from the most well-known and used website analytics APIs
being Google Analytics version 4.

Import the APIlibraries:

import pandas as pd

from pathlib import Path

import os

from datetime import date, timedelta

Set the file path of the credential keys which is a JSON file and obtainable from your Google Cloud
Platform account under API Libraries » Credentials:

credentials path = Path("keys/xxxxx.json")
credentials path str = str(credentials path.absolute())
os.environ["GOOGLE APPLICATION CREDENTIALS"] = credentials path str

Import the other APIs from the other Google library:

from google.analytics.data vlbeta import BetaAnalyticsDataClient
from google.analytics.data vlbeta.types import DateRange

from google.analytics.data vlbeta.types import Dimension

from google.analytics.data vlbeta.types import Metric

from google.analytics.data vlbeta.types import RunReportRequest

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

client = BetaAnalyticsDataClient ()

Define a function to run an aggregated report which will require a date range and the property ID of the
GA4 account.

In this function, we query the API using the inputs to build the request which includes the metrics we
want and store the APl response.

We've set the dimension as landingPage because that’s how we want the traffic numbers broken down.
Other dimensions may be used which are listed here
(https://developers.google.com/analytics/devguides/reporting/data/vl/api-
schema).

def aggregated run report(client, property id="[your-GA-property-id]",
date ranges=[DateRange (start date="2020-03-31", end date="today")]):

request = RunReportRequest (
property=f"properties/{property id}",
dimensions=[Dimension (name="landingPage")],
metrics=
[

Metric (name="activeUsers"),

(
Metric (name="screenPageViewsPerSession"),
Metric (name="bounceRate"),
Metric (name="averageSessionDuration"),
Metric (name="userConversionRate"),

(

Metric (name="ecommercePurchases"),

I
date ranges=date_ ranges,
)

response = client.run report (request)
return response

response = aggregated run report(client)
print ("Report result:")
for row in response.rows:
print (row.dimension values[0].value, row.metric values[0].value)

Report result:

/ 11347
/blog/sell-airtime-over-charged-your—-line-dont-panic 8423
/faqg 4870
/blog/sell-airtime-over—-charged-your-line-dont-panic 2355
/privacy 1338

The next function uses the APl response result rows and packages it into a single dataframe:

def gad4 response to df (response):
dim len = len(response.dimension headers)
metric len = len(response.metric headers)
all data = []
for row in response.rows:
row_data = {}
for i in range(dim len):
row_data.update ({response.dimension headers[i] .name:
row.dimension values([i].value})
for i in range (metric len):
row_data.update ({response.metric headers[i].name:
row.metric_values[i].value})
all data.append(row_data)

https://developers.google.com/analytics/devguides/reporting/data/v1/api-schema

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

df = pd.DataFrame(all data)
return df

df = ga4 response_ to df (response)
df.info ()

This results in the following:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 8 columns):

Column Non-Null Count Dtype

0 landingPage 418 non-null object

1 dateRange 418 non-null object

2 activeUsers 418 non-null object

3 screenPageViewsPerSession 418 non-null object
4 bounceRate 418 non-null object

5 averageSessionDuration 418 non-null object
6 userConversionRate 418 non-null object
7 ecommercePurchases 418 non-null object

dtypes: object (8)
memory usage: 26.2+ KB

Printing the dataframe’s properties via df.info() tells us the data types which all appear to be strings,
which is okay for the landing page but not for metrics, such as activeUsers, which should be converted to
numeric before the data can be processed further.

df.head()

The following resulting dataframe shows the dimensions “landingPage” along with the metrics. The data
is aggregated across the entire date range.

landingPage dateRange activellsers screenPag b geSessionDurati userC ionR; Purch

/blog/sell-airtime-

0 over-charged-your- 2022'1,‘; 305.0 1758878 0204833 186.317980 0.0 0.0
line-dont...
/blog/sell-airtime- 5022-11-
1 over-charged-your- x 297.0 1803175 0298413 159541673 0.0 0.0
line-dont...
/blog/sell-aitime- 05 L,
2 over-charged-your- 27 279.0 1.835526 0.256579 206458100 0.0 0.0
line-dont...
3 ki 2022‘121{; 265.0 2.515901 0.155477 80.787187 0.0 0.0
4 ['4 2022-11- 261.0 2.536496 0.145885 71.557897 0.0 0.0

26

But suppose you wanted the data broken down by date as well.
The following function will do just that with the default number of day parameters set to two years:

def dated run report to df (client, property id="xxxxxxxxx", n days=365*2):

date ranges = []

count = 0

df output = pd.DataFrame ()

for i in range(n_days):
count += 1

current = date.today() - timedelta (days=i)
before = date.today() - timedelta(days=i+1l)
date ranges.append(DateRange (start date=before.strftime ("%Y-%m-3d"),

http://df.info/

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

end date=current.strftime ("$Y-%m-%d"),
name=current.strftime ("$Y-%m-%d")))

if count ==
response = aggregated run report (client,
property id=property id, date ranges=date ranges)
df = ga4 response to df (response)
df output = pd.concat ([df output, df], ignore index=True)
Re-initialize
count = 0
date ranges = []
return df output
Run the function; in this case, we'll extract the last 90 days:

df = dated run report to df(client, n days=90)

The following function converts the column data formats from str to their appropriate formats which
are mostly numeric:

def format df (df):

df ["dateRange"] = pd.to datetime (df["dateRange"])
df ["activeUsers"] = df["activeUsers"].astype("float")
df ["screenPageViewsPerSession"] =
df ["screenPageViewsPerSession"] .astype ("float")
df ["bounceRate"] = df["bounceRate"].astype ("float")
df ["averageSessionDuration"] =
df ["averageSessionDuration"] .astype ("float")
df ["userConversionRate"] = df["userConversionRate"].astype("float")
df ["ecommercePurchases"] = df["ecommercePurchases"].astype("float")

return df

df = format df (df)
df.info ()

This results in the following:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 376 entries, 0 to 375
Data columns (total 8 columns) :

Column Non-Null Count Dtype
0 landingPage 376 non-null object
1 dateRange 376 non-null datetime64 [ns]
2 activeUsers 376 non-null floato4
3 screenPageViewsPerSession 376 non-null floato4
4 bounceRate 376 non-null floato4d
5 averageSessionDuration 376 non-null floato4d
6 userConversionRate 376 non-null floato4
7 ecommercePurchases 376 non-null floato4

dtypes: datetime64[ns] (1), float64(6), object(l)
memory usage: 23.6+ KB

df

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

landingPage dateRange activeUsers a P i b i i userConver
/blog/sell-aitime- 2022-11-
(1] over-charged-your- 26 305.0 1.759878 0294833 186.317980 0.0 0.0

line-dont...

/blog/sell-aitime- 2022-11-

1 aver-charged-your- 25 287.0 1.803175 0298413 159.541673 0.0 0.0
line-dont...
/blog/sell-aitime- 2022-11-
2 aver-charged-your- 27 279.0 1.835526 0256579 206.458100 0.0 0.0
line-dont...
3 ¥ 2022_122 265.0 2515801 0.155477 90.767197 0.0 0.0
4 5 ARzt 261.0 2.536496 0,145985 71.557897 0.0 0.0

26

The result is a dataframe ready for transformation.

DataForSEO SERPs API

The DataForSEO SERPs APl is purpose built to return the Google search results for a given keyword. This is
useful for checking rankings, understanding the search intent of keywords, and other SEO research.
We start by defining our target keyword list:

keywords 1lst
This results in the following:

['"airtime app',

'airtime to cash app',

'airtime transfer',

'app to sell airtime’',

'app to transfer airtime from one network to another',
'bet with airtime and win cash',

'buy airtime online',

'buy airtime with discount’',

'buy recharge card online',

'buy recharge card online with debit card’,
'can 1 subscribe dstv with airtime?',

'can 1 use my airtime to buy electricity?',
'can you convert airtime to cash?', ...]

With this AP, you’ll need your DataForSEO client file which resides in the same folder as the Jupyter
notebook script file running this code:

from client import RestClient
client = RestClient (" [your-username]", "XXXXXXXXXXXKXKKXKXKX")

The API will need to know which country you’d like to see the search results for, the device, and the
language, which are defined as follows. The countries list may be found here
(https://docs.dataforseo.com/v3/serp/google/locations/?bash).

location = 2826
language = "en"
device input = 'mobile'

The following are functions to query the APIL. set_post_data will set the parameters for the search:

def set post data(search query):
post _data = dict()
post data[len(post data)] = dict(
language code = language,
location code = location,

https://docs.dataforseo.com/v3/
https://docs.dataforseo.com/v3/serp/google/locations/?bash

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

device = device input,
keyword = search query,
calculate rectangles = True)

return post data

The function get_api_result uses the preceding function to structure the input which will be used to
request the search results. The API result is stored in a variable named “response.”

There is a try loop in place so that should there be an issue with the API call, the function carries on and
moves on to the next keyword, to prevent holding up the entire operation or stalling:

def get api result(search query):

post data = set post data(search query)

response = client.post ("/v3/serp/google/organic/live/advanced",
post data)

try:

return response
except Exception as e:

print (response)

print (e)

return None

With multiple keywords to be queried, we’ll want to call the function multiple times, so we’ll do that
using a for loop.
Initialize an empty dictionary to store the individual API results:

desktop serps returned = {}

Add a for loop to query the API for each and every keyword in the list:
i=0

for search query in set (keywords 1lst):
print (search query, i + 1, len(keywords 1lst) - i - 1)
i+=1
serp dict = get api result(search query)
desktop_ serps returned[search query] = serp dict

Printing the entire output in this book and in the Jupyter notebook would be too impractical. Instead,
we’ll print the keys of the dictionary where the data is stored which shows the keywords that have API data:

desktop serps returned.keys|()

dict keys(['buy recharge card online with debit card', 'can i use my airtime
to buy electricity?', 'buy recharge card online', 'can you convert airtime
to cash?', 'airtime to cash app', 'app to sell airtime', 'bet with airtime
and win cash', 'airtime sell', 'buy airtime online', 'airtime sharing', 'can
i subscribe dstv with airtime?', 'buy mtn', 'airtime buy', 'airtime
transfer', 'buy airtime with discount', 'airtime app', 'airtime
application', 'airtime bills', 'airtime funding', 'app to transfer airtime
from one network to another'])

With the data stored, the dictionary requires unpacking into a dataframe format, which will be carried
out as follows.
Initialize an empty list:

desktop serps flat df = []

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Using a for loop, we’ll iterate through the dictionary keys which will be used to select parts of the
dictionary by keyword. Then we loop through the contents of the dictionary data for that keyword and add
these to the empty list initialized earlier:

for serp in desktop serps returned.keys():

single serp = desktop serps returned[serp]
keyword = serp
for task in single serp['tasks']:

cost = task['cost']

task id = task['id']

se = task['data']['se']

device = task['data']['device']

os = task['data']['os']

for res in task['result']:
for idx, item in enumerate(res['items']):
desktop serps flat df.append(
(
cost, task id, se, device, os, res['keyword'],
res['location code'], res['language code'],
res['se results count'], res['type'], res['se domain'],
res['check url'], item['rank group'], item['rank absolute'],
item.get ('url', None), item.get('domain'), item.get('is image'),
item.get ('is featured snippet'),
item.get ('is video'), item.get('is malicious'),
item.get ('is web story'),
item.get ('description'), item.get ('pre snippet'),
item.get ('amp version'),
item.get ('rating'), item.get('price'), item.get('highlighted'),
item.get ('links'), item.get('faq'),
item.get ('extended people also search'),
item.get ('timestamp'), item.get('rectangle'),
res['datetime'], item.get('title'), item.get('cache url')

Once the list has all the added keyword SERP data, it is converted into a dataframe:

desktop full df = pd.DataFrame (

desktop serps flat df,

columns=([
'cost', 'task id', 'se', 'device', 'os', 'keyword',
'location code', 'language code', 'se results count',
'type', 'se domain', 'check url', 'rank group',
'rank absolute', 'url', 'domain', 'is image', 'is featured snippet',
'is video', 'is malicious', 'is web story',
'description', 'pre snippet', 'amp version',
'rating', 'price', 'highlighted', 'links',
'faq', 'extended people also search', 'timestamp',6 'breadcrumb',
'datetime', 'title', 'cache url'

]

)
desktop_ full df.head(2)

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

cost task_id se device os keyword location_code language code se_results count type .. price highlighted links
buy
08171635- b=
2300-0139- = i
0 0.004 0000- google desktop windows online 2840 an 9280000 organic ... None MNone Nonea N
with
B0754972b3ac debit
card
buy
08171635 mecharge ——
2300-0139- cand [(type:
1 0.004 0000- google desktop windows online 2840 en 9280000 organic ... MNone Mone ‘ad_link_element’, N
with “title': ‘myWalgr...
60754972b3ac dabi
card

The result is the API data in a dataframe which is ready for reporting or prereporting transformation.

Google Search Console (GSC)

Google Search Console (GSC) is first-party data and the source of truth for most SEOs. Here, we will show
you how to extract data from the API which will provide more rows than the standard 1000 rows available
in the interface.

The API will require a Google Cloud Platform (GCP) account in which you will have to create a GCP
project and, within that project, some credentials with a JSON key.

Let’s start by importing some libraries:

from apiclient import errors
from apiclient.discovery import build

import datetime

import httplib2

import re

import pandas as pd

import numpy as np

from collections import defaultdict

from ocauth2client.client import OAuth2WebServerFlow
from datetime import datetime, timedelta, date

from dateutil.relativedelta import relativedelta
import calendar

import time

The script is constructed to allow you to query multiple domains, which could be useful for an agency
reporting system where you look after more than one client or; if you're in the client side, multiple sites:

site list = ['https://www.babywishiest.com']
site = 'https://www.babywishiest.com'
client name = babywishiest

The dimensions will give a breakdown of the data, while no dimensions will return summary data for the
date range:

dimensions = ['query', 'page']
To filter to a device, enter MOBILE, DESKTOP, or TABLET or leave it blank for all devices:
device filter = "'
To filter to a search type, enter WEB, IMAGE, VIDEO, or discover. This defaults to WEB if left blank:

search filter =

To filter to a specific three-digit country code (e.g., FRA). Alist of country codes is available here
(https://en.wikipedia.org/wiki/ISO 3166-1 alpha-3).Ifleft blank, the API will default to all:

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

country filter = "'

» o« » o«

To filter pages which contain a string, you can use operators such as “equals,” “contains,
or “notEquals”:

J

notContains,
page filter string = "'
page filter operator = 'equals'

The same can be applied to queries:

query filter string = "'
query filter operator = "'

State your date range for the query, which will be converted in datetime format:

start date = '2022-08-01"
end date = '2022-11-30"'

start date datetime = datetime.strptime(start date, '%Y-%m-%d').date()

end date datetime = datetime.strptime (end date, '%Y-%m-%d') .date()
print (start date datetime, end date datetime)

Enter a date grouping to break down the data. Use D (day), W (week), M (month), or A (all):
date grouping = 'A'
Enter API credentials obtainable from the APIs section of your GCP project:

CLIENT ID = 'xXXXxXXX'
CLIENT SECRET = 'xxxxxx'

Add sleep time between requests. Increase this if you are hitting limits or getting errors:
sleep time = 10
2022-08-01 2022-11-30

With the parameters specified, the next block deals with authentication using the OAuth method:

OAUTH SCOPE = 'https://www.googleapis.com/auth/webmasters.readonly'
REDIRECT URI = 'urn:ietf:wg:ocauth:2.0:00Db'

Run through the OAuth flow and retrieve credentials:

flow = OAuth2WebServerFlow (CLIENT ID, CLIENT SECRET, OAUTH SCOPE,
redirect uri=REDIRECT URI)

authorize url = flow.stepl get authorize url()

print ('Go to the following link in your browser: ' + authorize url)
code = input ('Enter verification code: '").strip()

credentials = flow.step2 exchange (code)

Create an httplib2.Http object and authorize it with your credentials:

http httplib2.Http ()
http = credentials.authorize (http)

webmasters service = build('searchconsole', 'vl', http=http)

Go to the following link in your browser: https://accounts.google.com/o/oauth:
client id=xxxxx&redirect uri=xxxxx&scope=https%3A%2F%2Fwww.googleapis.com%2Fal

Enter verification code: xxxxxx

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Once authenticated, set the custom number of rows to retrieve from the API per request:

row limit = 25000

Create a dataframe to store the full output:
output = pd.DataFrame ()
request = {
'rowLimit': row limit,
'startRow': O

}

if dimensions:

request['dimensions'] = dimensions

if search filter:
request|['searchFilterGroups'] =

[{'dimension':
Build dimension filters from the settings:

dimension filters = []

if device filter:

dimension filters.append({'dimension':

if country filter:

dimension filters.append({'dimension':

if pageifilEeristring:

dimension filters.append({'dimension':

'operator': page filter operator})
if query filter string:

dimension filters.append({'dimension':

'operator': query filter operator,})
request['dimensionFilterGroups'] =

print (f'Filter: {dimension filters}')

[{"filters':
'search', 'expression':search filter}]}]

'device', 'expression':device filter})

'country', 'expression':country filte:

'page', 'expression':page filter strinc

'query', 'expression':query filter str:

[{'filters':dimension filters}]

Loop through all the dates from start to end, inclusive and populate the request start and end dates with

the date from the loop:

for site in site list:

for single date in daterange(start date datetime, end date datetime,

date grouping) :
request|['startDate'] =

request|['endDate']

print(site + ' - "

run = True
rowstart = 0

request['startRow'] = rowstart

while run:

f"{single date[0].strftime ('Y’
{single date[0].strftime('%m')}-{single date[0].strftime (
= f"{single date[l].strftime('%Y")}
{single date[l].strftime('3m')}-{single date[l].strftime ('

+ request|['startDate']

+ ' to ' + request['endDate'])

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

try:
response_page = execute request (webmasters service, site, request)
scDict results = defaultdict(list)

try:
for row in response page['rows']:

if dimensions:
for i,dimension in enumerate (dimensions) :
scDict results[dimension].append(row['keys'] [1] or 0)

scDict results['clicks'].append(row['clicks'] or 0)

scDict results['ctr'].append(row['ctr'] or 0)

scDict results['impressions'].append(row['impressions'] or 0)
scDict results['position'].append(row['position'] or 0)

df = pd.DataFrame (data = scDict results)

df['start date'] = request['startDate']
df['end date'] = request['endDate']

df ['site'] = site

frames = [output, df]

output = pd.concat (frames)
print (str(len(df)) + ' results')

time.sleep(sleep time)

if len(df) == row_limit:
rowstart += row limit
request['startRow'] = rowstart
else:
run=False
except:

print ('No results found for this date range')
run=False

except HttpError:
print ('Got an error. Retrying in 1m.'")
time.sleep (60)

Filter: []

https://www.babywishiest.com - 2022-08-01 to 2022-11-30
1672 results

output

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

query page clicks ctr impressions position start_date end _date site
0 baby wishlist https://www.babywishiestcom/ 154 D.564103 273 1.139194 2022'0031' 2022‘1;6 https:/fwww babywishisst.com
1 babyw:issl: https:/fwww.babywishiest.com/ 23 0.718750 32 1.000000 2022'031' 2022'1;[; hitps:/'www.babywishiest.com
2 baby wishlist https:/fwww.babywishiest.com/login/ 12 0.044118 272 1.139706 2022'0031' 20@'1316 hitps:/fwww.babywishiest.com
3 babywishlist https:/fwww.babywishiest.com/ 6 1.000000 6 1.000000 2022'031' 2022'1316 https:/fwww.babywishiest.com
Jbwort 2022-08- 2022-11-
4 changing https://www.babywishiest.com/praducts/motherea... 5 0.031447 150 8.547170 01 30 hitps:/fwww.babywishiest.com
unit
BULLNKCT : 2022-08- 2022-11- .
1667 CO3nATE https:/fwww.babywishiest.com/ 0 0.000000 1 98000000 01 a0 hitps:/fwww.babywishiest.com
OHNAIH
1668 OHnaiH https:/fwww.babywishiest com/ 0 D.0000C0 > 4spooopn 202208 202211 i babywishiest.com
BULNMCT o 30
CO3NATE
1669 BALLNKCT https:/fwww.babywishiest.com/ 0 0.000000 14 72.785714 Al 031 202 1310 hittps:/fwww.babywishiest.com
OHNERH
1670 "":,‘,:_Ig https:/fwww. babywishiest. com/products/baby-bjo. .. 0 0.000000 9 20.555556 2022'0[;'1' 2022'1315 hitps:/fwww babywishiest.com
i
1671 vofe https:/fwww babywishiest.com/ 0 0.000000 2 90.500000 2022'031' 2022'1;[; https:/fwww babywishisst.com

1672 rows = 9 columns
Although it’s a large block of code, the API can be used to extract 100,000 rows of data if not much more.

Google PageSpeed API

The PageSpeed APl is another core metric for SEOs especially with the Core Web Vitals (CWV) initiative
introduced by Google in April 2020. The APl is not only useful for checking your own site’s CWV scores but
also those of your SERP competitors.

To make use of this AP], a key will be required which is obtainable from Google Cloud Platform (GCP) in
the APIs section.

Start by defining your list of URLs to check CWV scores against:

desktop serps urls = ['https://pay.jumia.com.ng/services/airtime’,
'https://pay.jumia.com.ng/"',
'https://vtpass.com/"',
'https://www.gloverapp.co/products/airtime-to-cash',
'https://www.zoranga.com/ "',
'https://airtimeflip.com/"',
'https://www.tingtel.com/blog/sell-airtime-over-charged-your-line-dont-
panic',
'https://vtpass.com/payment',
'https://pay.jumia.com.ng/services/mobile-data/mtn-mobile-data', ...]

"https://www.googleapis.com/pagespeedonline/v5/runPagespeed?url=[test-
Url] KEY=XXXXXXXXXXXXXXXXXXXKXXXXXXXXXXKXXKX XXX XXX XKKXKKX"

Set the parameters for the API:

base url = 'https://www.googleapis.com/pagespeedonline/v5/runPagespeed?url="
strategy = '&strategy=desktop'
api url = '&key=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXKXXKXXX'

Initialize an empty dictionary to store the data and a counter to keep track of the number of URLs being
queried:

desktop_cwv = {}
i=0

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Loop through the list of URLs to query the API:

for url in desktop serps urls:
request url = base url + url + strategy + api url

response = json.loads (requests.get (request url) .text)
i+=1

print (i, " ", request url)

desktop cwv[url] = response

The keys are printed to list the URLs queried successfully:
desktop cwv.keys ()

dict keys(['https://pay.jumia.com.ng/services/airtime’,
'https://pay.jumia.com.ng/', 'https://vtpass.com/',
'https://www.tingtel.com/blog/buy-airtime-get-discount-on-every-airtime-
recharge', 'https://www.gloverapp.co/products/airtime-to-cash',
'https://www.zoranga.com/', 'https://airtimeflip.com/"',
'https://www.tingtel.com/blog/sell-airtime-over-charged-your-line-dont-
panic', 'https://www.tingtel.com/', 'https://www.tingtel.com/fag/airtime-
sell', 'https://vtpass.com/payment',
'https://pay.jumia.com.ng/services/mobile-data/mtn-mobile-data’',
'https://www.tingtel.com/blog/transfer-airtime-one-airtime-works-for-all-
networks', 'https://www.tingtel.com/blog/airtime-bills-settle-electricity-
cable-tv-bills-with-airtime', 'https://www.tingtel.com/blog/fund-wallet-
with-airtime'])

Iterate through the PageSpeed AP1JSON Response dictionary, starting with an empty list:
desktop psi 1lst = []
Loop through the dictionary by key to extract the different CWV metrics and store them in the list:

for key, data in desktop cwv.items () :
if 'lighthouseResult' in data:
FCP = data['lighthouseResult']['audits']['first-contentful-paint']
["numericValue']
LCP = data['lighthouseResult'] ['audits']['largest-contentful-paint']
['"numericValue']

CLS = data['lighthouseResult']['audits']['cumulative-layout-shift"']
['numericValue']
FID = data['lighthouseResult']['audits']['max-potential-fid"']

["numericValue']

SIS = data['lighthouseResult']['audits'] ['speed-index']['score'] *
100

desktop psi lst.append([key, FCP, LCP, CLS, FID, SIS])
desktop psi df = pd.DataFrame (desktop psi 1st, columns = ['url', 'FCP',
'"LCP', 'CLS', 'FID', 'SIS'])
desktop_psi df

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

url FCP LCP CLS FID sIs

0 https://pay.jumia.com.ng/services/airtime 730.000000 1116.000000 0.010691 267.0 98.0
1 https://pay.jumia.com.ng/ 770.000000 997.000000 0.535293 267.0 89.0
2 https://vtpass.com/ 870.000000 2390.000000 0.003771 81.0 90.0
3 https://www.tingtel.com/blog/buy-airtime-get-discount-on-every-airtime-recharge 1010.000000 1246.000000 0.316606 23.0 97.0
4 https://www.gloverapp.co/products/airtime-to-cash ~ 423.945510 2043.964767 1.002655 179.0 74.0
5 https://www.zoranga.com/ 1752.145607 2586.145607 0.004675 27.5 12.0
6 https://airtimeflip.com/ 522.000000 3822.500000 0.020568 439.0 53.0
7 https.//www.tingtel.com/blog/sell-airtime-over-charged-your-line-dont-panic 1000.000000 1080.000000 0.257226 58.0 97.0
8 https://www.tingtel.com/ 576.008945 1040.000000 0.011780 33.0 99.0
] https://www.tingtel.com/fag/airtime-sell 1000.000000 1000.000000 0.000192 28.0 97.0
10 https://vtpass.com/payment 785.000000 1317.500000 0.006833 36.0 0.0
11 https://pay.jumia.com.ng/services/mobile-data/mtn-mobile-data 730.000000 1465.000000 0.103316 330.0 97.0

12 https://www.tingtel.com/blog/transfer-airtime-one-airtime-works-for-all-networks 1012.000000 1152.000000 0.257163 46.0 97.0
13 hitps://www.tingtel.com/blog/airtime-bills-settle-electricity-cable-tv-bills-with-airtime 1000.000000 1140.000000 0.257163 49.0 97.0

14 https://www.tingtel.com/blog/fund-wallet-with-airtime 1011.000000 1191.000000 0.263009 59.0 97.0

The result is a dataframe showing all the CWV scores for each URL.

Transforming Data

The purpose of transforming the data, which has been extracted by the API or other means from your data
source, is to

e Clean it up for further calculated metrics
e Derive meaningful stats such as month-on-month (mom) variance
¢ Insertit (i.e. loading) into a data warehouse

The code is going to continue from the Google Analytics (GA) data extracted earlier where we will cover
the preceding points.
We start by copying the GA dataframe:

df clean = df.copy()
Reprofile “averageSessionDuration” to be the number of seconds:

df clean]'averageSessionDuration'] = (df clean['averageSessionDuration'] /

60) .round (1)
Create new columns for easier transformation based on time and calendar date units:
df clean['month'] = df clean['dateRange'].dt.strftime('%m'")
df clean['year'] = df clean['dateRange'].dt.strftime('3Y")
df clean['month year'] = df clean['dateRange'].dt.strftime('$Y-%m')

df clean

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

q g i g P b i ation userConversionRate ecommercePurchases month
/blogisell-
airtime-over-

0 charged- 2032";& 305.0 1750878 0.294833 a1 0.0 0.0 11
your-line-
dont...
/blog/sell-
airtime-over-

1 charged- 2022 1215 207.0 1.803175 0.288413 27 0.0 0.0 1
your-ling-
dont...
/blog/sell-

airtime-over- 2022-11-

2 charged- 27 278.0 1.835526 0.256579 3.4 0.0 0.0 "
your-line-
dont...

3 S 265.0 2515001 0155477 15 0.0 0o M

4 g R0t 261.0 2536496 0145085 12 0.0 0.0 11

26

With the data formatted, we can start transforming to derive new columns of trend data such as

e Averages
e Standard deviations (for variation)
e Periodic changes (such as month-on-month)

Let’s make a copy and rename it to reflect that we're aggregating by landing page and by month:

ga4 1lp agg month = df clean.copy ()

We’ll create some basic summary statistics which will be the average (“mean”) and total (“sum”) of
various GA metrics using the groupby() and agg() functions:

gad4 lp agg month basic = ga4 lp agg month.groupby (['landingPage',

'month year']) .agg({'activeUsers':'sum',
'screenPageViewsPerSession': 'mean’',
'bounceRate': 'mean’',
'averageSessionDuration': 'mean',
'userConversionRate': 'mean',
'ecommercePurchases':'sum'

}) .reset _index()
gad4 lp agg month basic

This results in the following:

landingPage month_year activeUsers g i iate g ionDuration userConversionRate ecommercePurchases
1] (not set) 2022-08 110.0 0.000000 0.977922 0.436364 0.0 0.0
1 [not set) 2022-08 185.0 0.000000 0.989683 0.183333 0.0 0.0
2 {not set) 2022-10 196.0 0.000000 0.977181 0.432258 0.0 0.0
3 (not set) 2022-11 220.0 0.000000 1.000000 0.032143 0.0 0.0
4 / 2022-08 1753.0 2.3233 0.218771 3.418182 0.0 0.0

The metrics as shown earlier are summarized by landing page and month_year which can be used to feed a
basic SEO dashboard reporting system.

Usually in all cases, we track the mean and standard deviation. The average gives us a useful indicator of
where a channel is at in terms of performance, as it will indicate where most data points were or will be for
a given category of data for a given point of time.

Averages, as every statistician (and many others being statistically aware) will tell you, can be
dangerous on their own when making inferences or decisions even. This is why we also track the standard
deviation as this indicator tells us something about the variation of a given metric, that is, how consistent it
is.

In practical terms, the standard deviation tells us how close the data points are to the average. And what
can we deduce from this?

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

We can deduce which averages we’'re more likely to trust or rely on for comparing between months. So
the standard deviation can tell us a bit about the quality of the averages for the purpose of confidence in the
data and for comparisons and also how the metric we're tracking is behaving over time.

For example, you might find that the standard deviation is increasing or decreasing and should
therefore try to understand what the reason behind it is. Could it be

¢ Changes in Google through algorithm updates?
¢ Changes in your user behavior, search intent of the query, your brand positioning, or the market?
e Changes in your site’s UX or content or an architectural change?

Tracking the standard deviation could help you see whether something is afoot for the better or worse:
ga4 1lp agg month = df clean.copy ()
Perform an aggregation to derive various average and standard deviation statistics:
ga4 1lp agg month mean = gad4 lp agg month.groupby (['landingPage',
'month year']).agg({'activeUsers':'mean',

}) .reset _index()

ga4 lp agg month mean = gad4 lp agg month mean.rename (columns =
{'activeUsers':'activeUsers avg'})

While “mean” calculates the average, “std” calculates the standard deviation:
gad4d lp agg month std = gad4 lp agg month.groupby (['landingPage',
'month year']) .agg({'activeUsers':'std',
'bounceRate':'std',
}) .reset _index()
Rename the columns:
ga4 1lp agg month std = ga4 lp agg month std.rename (columns =
{'activeUsers':'activeUsers std',

'bounceRate': 'bounceRate std'

1)
Join the data to the basic dataframe created earlier:

gad4 lp agg month stats = gad4 lp agg month basic.merge(ga4 lp agg month mean,
on = ['landingPage', 'month year'], how = 'left')

ga4 1lp agg month stats = gad4 lp agg month stats.merge(ga4 lp agg month std,
on = ['landingPage', 'month year'], how = 'left')

ga4 1lp agg month stats.head()

This results in the following:

1 i g _mtd std
DO0O0Y O.8TTEZ2 0436364 0o] 10000000 7. 745961 0056046
0.000000 0.060803 0.183303 L] oo 6600000 3.0i6760 0.02e008
0000000 087181 1432258 no on AR225A1 3135810 0.057248
0000001 1.000000 0532163] oo TEETI 3,802530 0.006000
23398 0287 BAIBIEZ 0.0 1] 150363636 111.988096 0.048891

We can now see the additional columns created earlier.

The next block of code calculates the month-on-month on the various performance data.

First, we sort values to get the rows in month order for each landing page as the month-on-month
calculation will be dependent on the row positioning.:

gad4 lp agg month moms = ga4 lp agg month stats.sort values(['landingPage',
'month year'])

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

We're just calculating the monthly stats for activeUsers and bounceRate; however, you can use the same
methods on all of the other metric columns.

First, we start by calculating the absolute change from the current row to the previous row (the previous
month) using the shift() function.

Note that “1” was entered as a parameter to the shift() function, which means 1 row. If you wanted to
calculate the year-on-year difference, then you would enter “12” (i.e., .shift(12)), which would look at the
value 12 rows before.

gad4 lp agg month moms['activeUsers delta'] =
gad4 lp agg month moms['activeUsers'] -
gad4 lp agg month moms['activeUsers'].shift (1)

The month-on-month is then calculated by dividing the absolute change by the current month value and
multiplied by 100:

gad4d lp agg month moms['activeUsers mom'] =
((ga4 lp agg month moms['activeUsers delta'] /
gad4 lp agg month moms['activeUsers'].shift(1l) * 100)).round(1)

This procedure is repeated for the bounce rate:

ga4 1lp agg month moms['bounceRate delta'] =

ga4 1lp agg month moms|['bounceRate'] -

gad4 lp agg month moms['bounceRate'].shift (1)

ga4 1lp agg month moms['bounceRate mom'] =

((gad4 lp agg month moms['bounceRate delta'] /

gad4d lp agg month moms|['bounceRate'].shift (1) * 100)).round(1)

ga4 1lp agg month moms

This results in the following:

ionf activeUsers_avg activeUsers_std bounceRate std activeUsers delta activeUsers_mom dalta mom
0.0 0.0 10.000000 7745867 0.050046 Nah MaM MaN Mal
0.0 0.0 6.500000 3058750 0.038389 85.0 773 0.011760 1.2
0.0 0.0 6.322581 3155810 0.051246 1.0 0.5 -0.012501 -1.3
0.0 0.0 7.857143 3.922530 0.000000 24.0 12.2 0.022819 23
0.0 0.0 150.363636 111.968096 0.0469891 1533.0 B696.8 -0.781229 -78.1

The delta and month-on-month columns are added. Note the NaN for the first row which is because no
previous row existed for the shift() function to work.

To overwrite NaNs, you could use the np.where() function to replace .isnull() with zero.

An alternative approach would be to use a special function to avoid ordering the rows. However, this
could be computationally more expensive to run in the cloud if you're planning to automate this as an all-
encompassing SEO data warehouse dashboard reporting system.

Once done, you're ready to upload to your data warehouse of choice.

Loading Data

As mentioned earlier in the chapter, loading involves moving the transformed data into the data warehouse.
Once uploaded, it’s a good idea to check your data schema and preview what you've uploaded.
The following SQL will produce user trends by month and channel:

select yearMonth, channel, sum(users) as users from (
select yearMonth, 'organic' as channel, users sum as users from
google analytics.multichannel ga monthly
where channel in ('Organic Traffic')
and

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

DATE DIFF (CURRENT DATE (), PARSE DATE ('$Y-%m-%d',
CONCAT (SUBSTR (CAST (yearMonth AS STRING), 1, 4),"-",
SUBSTR (CAST (yearMonth AS STRING), 5, 2),"-",'01')), MONTH) <= 12
union all
select yearMonth, 'non seo' as channel, all users - organic as users
from (
SELECT yearMonth
;, MAX(IF(channel = 'Organic Traffic', users sum, 0)) organic
;, MAX(IF(channel = 'All Users', users sum, 0)) all users

from google analytics.multichannel ga monthly
where channel in ('Organic Traffic', 'All Users')
group by yearMonth
)
)
where
DATE DIFF (CURRENT DATE (), PARSE DATE ('$Y-%m-%d',
CONCAT (SUBSTR (CAST (yearMonth AS STRING), 1, 4)
SUBSTR (CAST (yearMonth AS STRING), 5, 2)
group by yearMonth, channel
order by yearMonth LIMIT 100;

,"-",'01")), MONTH) <= 12

The following SQL will produce user traffic stats by month with year-on-year:

select
yearMonth,
CASE
WHEN channel = 'All Users' THEN "non_ seo"
ELSE channel
END as channel,
users_yoy
from google analytics.multichannel ga monthly
where
channel in ("All Users", "Organic Traffic")
and
DATE_DIFF(CURRENT_DATE(), PARSE_DATE('%Y—%m—%d',
CONCAT (SUBSTR (CAST (yearMonth AS STRING), 1, 4),"-", SUBSTR(CAST (yearMonth AS
STRING), 5, 2),"-",'01")), MONTH) <= 12
order by yearMonth desc LIMIT 100;

The following SQL will produce year-on-year user traffic stats by month with this year vs. last year, for
the months year to date:

SELECT yearMonth
, year
, SUBSTR(CAST (yearMonth AS STRING), 5, 6) as mon_ X
, users_sum
from google analytics.multichannel ga monthly
where
channel in ("Organic Traffic")
order by mon x, year desc;

This results in the following:
Once run, the result is generated by Google BigQuery under the “Results” tab (Figure 8-1).

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

Query results i SAVE RESULTS 4l EXPLORE DATA w

Query complete (0.2 sec elapsed, 3.8 KB processed)

Job information Results JSON Execution details

Row yearMonth year mon_x users_sum

1 202001 2020 O1 22894
2 201901 2019 01 40411
3 202002 2020 02 23655
4 201902 2019 02 32101
5 202003 2020 03 24035
6 201903 2019 03 36341
7 202004 2020 04 28234
8 201904 2019 04 26358

Figure 8-1 Preview of Google BigQuery results following SQL execution

Visualization

If you're satisfied with the SQL results, you can use the same queries and visualize these in your front end
such as Looker Studio, Tableau, etc., as shown in the following. How does organic search compare to other
channels? By volume (top) and YoY (bottom) over time, shown in the Looker Studio graph (Figure 8-2).

— NON_SEO —(Jrgﬂnlt'
S00K
100K 32
E———
S0K
5 39
15,656 15,076 19258 15351

201907 201908 201908 201970 2man 201912 202007 202002 202003 202004 202005 207006

Figure 8-2 Looker Studio graph showing organic vs. non-SEO channels over the last 12 months

How does organic search compare to other channels year-on-year? The Looker Studio graph in Figure 8-
3 visualizes the SQL statement which calculates the year-on-year traffic numbers for both organic and non-
SEO channels. This is useful for seeing how well the SEO is performing for the time of the year (i.e.,
independent of seasonality). It also gives some measure of how SEO has performed relative to non-SEO
channels for the same period.

B Croanic Traffic [non_seo
1K

S00

409,65

35041

27848934 44

221 .68

157.36161.22

201909 2mein 20191 20012 SL2004 202002 202003 202004 202005 202008

Figure 8-3 Looker Studio bar chart of year-on-year traffic numbers for both organic and non-SEO channels by month

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

How do organic search users compare to last year? The Looker Studio graph in Figure 8-4 shows this
year and last year traffic numbers for organic traffic only. This is useful for comparing this year’s SEO
performance vs. last year’s SEO performance in isolation.

15,656 16,076 18,358 18,391]

Figure 8-4 Looker Studio graph showing this year and last year traffic numbers for organic traffic only

Automation

Naturally, this can all be automated; you just need a team of competent cloud software engineers to
automate

¢ Polling of data via APIs (extract)
¢ Cleaning, restructuring, and creating new calculated fields (transform)
e Loading (into BigQuery, Amazon Redshift, or others)

The result is simple, although the execution in reality is far more complicated, which relies on cloud
engineering skills.

Summary

When putting dashboards together, it’s important to begin with the end in mind and think about what the
purpose of the dashboard is and who it is for (that is your audience). Once you know the outputs, then work
backward.

Dashboards are driven by the data, so you'll need to consider which data sources you’ll need. Raw data is
seldom a good idea to plug straight into the front end like Looker Studio as it’s likely to overwhelm the front
end and thus load slowly or crash. Instead, you'll want to summarize the data into meaningful trends.

Extract, transform, and load (ETL) is the process of automating the data collection, summarizing the
data, and then loading it into a system. We provided code to help you

e Extract SEO data from common SEO sources including Google Analytics
e Transform to summarize by channel
¢ See what the data could look like when loaded into Looker Studio

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A.Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_9

9. Site Migration Planning

Andreas Voniatis?!

(1) Surrey, UK

This chapter covers site migration mapping so that you could set the structure of your new site and
semiautomate the formation of your migration URLs. The following are some of the techniques we’ll be
using:

¢ String manipulation
e Iterating through dataframe rows by converting these into a list
¢ Using natural language processing (NLP) to compare URL strings

While these techniques will speed up the processing of data for a site migration, they can easily be
applied to other use cases.

Verifying Traffic and Ranking Changes

Though the step of verifying the traffic and/or ranking changes following relaunch is not strictly necessary,
it’s good to go through in case any colleagues are doubtful as to whether the changes in traffic or rankings
were attributable to the date you claim. If you're pushed for time however, you can skip this step.

import re

import time

import random

import pandas as pd

import numpy as np

import datetime

from textdistance import sorensen dice
from textdistance import jaccard

pd.set option('display.max colwidth', None)

target site search = 'Saga travel'

first gen = ['Holidays', 'Cruises', 'Travel Updates', 'Accessibility and
Support', 'Brochure Request', 'My Travel', 'Trade']

target roots = first gen

source_root url
target root url

'https://travel.saga.co.uk/"'
'https://www.saga.co.uk/'

The data comes from a spreadsheet which is a representation of the site taxonomy or hierarchy, that is,
folders and subfolders with the site levels organized in columns:

hierarchy raw = pd.read csv('data/saga_hierarchy.csv')
hierarchy raw

This results in the following:

https://doi.org/10.1007/978-1-4842-9175-7_9

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

1 2 3 4 5 6 7

0 Existing Customers NaN NaN NaN NaN NaN NaN

1 Homepage NaN NaN NaN NaN NaN NaN
2 Homepage Insurance NaN NaN NaN NaN NaN
3 NaN Insurance Contact Us NaN NaN NaN NaN

4 NaN Insurance Refer a Friend T&Cs NaN NaN NaN NaN
367 NaN NaN Updates Coronavirus Holidays Guests NaN NaN NaN
368 NaN NaN Updates Cruise Coronavirus Vaccine NaN NaN NaN
369 NaN NaN Updates Holidays Coronavirus Vaccine NaN NaN NaN
370 NaN NaN Updates Safe Travels NaN NaN NaN
371 NaN Travel Brochures NaN NaN NaN NaN

372 rows x 7 columns

In the preceding table, we can see how the spreadsheet looks with numbers across the top denoting the site
levels and the page (we'll call them nodes) with names per row with their immediate parent.
Let’s get the site levels for each of the parent nodes:

site levels = pd.DataFrame (hierarchy raw.unstack())
site levels site levels.dropna () .drop duplicates ()

site levels = site levels.rename(columns = {0 : 'node'})

site levels = site levels.reset index()

site levels = site levels[['level 0', 'node']]

site levels = site levels.rename (columns = {'level 0': 'level'})

site levels

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

level node

0 1 Existing Customers

1 1 Homepage
2 2 Insurance
3 2 Boat Insurance
4 2 Caravan Insurance
325 7 Noordam
326 7 Suites
327 7 Jools Holland
328 7 Artists
329 7 Build Progress

330 rows x 2 columns

With the site nodes defined, which will come in handy later, we’re going to find the pairs of parent and child
nodes.

Identifying the Parent and Child Nodes
Child nodes are the immediate pages that are a single click away from the parent node. To do this, we’ll need
a couple of functions. The apply pcn function will treat the dataframe as a collection of rows and apply
the second function. This approach is faster than iterating through a dataframe row by row using
.iterrows(), which the latter is known for being very slow.

The parent child nodes will take the row, convert it to alist, and then use a list comprehension to
ignore blank cells (NaNs, short for “not a number”) and append the contents to the list “pairs.”

Once done, the “pairs” list will be put into a new dataframe “parent_child_map.”

Let’s iterate by row to pick pairs:

pairs = []

def parent child nodes (row) :

data = row.values.tolist ()
data = [e for e in data if str(e) not in ('nan')]
print (data)

pairs.append (data)

def apply pcn(df):
return df.apply(
lambda row:
parent child nodes(
row),
axis=1

)
apply pcn(hierarchy raw)

parent child map = pd.DataFrame (pairs,columns=['parent', 'child'])
parent child map

We now have a table showing the parent and child nodes:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

parent child

0 Existing Customers None

1 Homepage None
2 Homepage Insurance

3 Insurance Contact Us

4 Insurance Refer a Friend T&Cs
367 Updates Coronavirus Holidays Guests
368 Updates Cruise Coronavirus Vaccine
369 Updates Holidays Coronavirus Vaccine
370 Updates Safe Travels
371 Travel Brochures

372 rows x 2 columns

Of course, if we want the full URL path, we need to process the data further using a copy of hierarchy_raw.
Start with a downward fill of the first column for the home page and then populate the cell should the
adjacentright cell not be blank (checked using the functionhas data right):

hierarchy fp = hierarchy raw

Forward Fill HOMEPAGE
hierarchy fp['l'] = hierarchy fp['1'].f£fill()

Here’s the function to check for cells on the right to see if populated with data or NANs:

def has data right (idx):
return hierarchy fplhierarchy fp.columns[idx:]].notnull () .apply(any,
axis=1)

for ¢ in hierarchy fp.columns[1l:]:
hierarchy fp.loclhas data right (int(c
hierarchy fp.loclhas data right (int(c)),

o —
H
H
-
—
—

hierarchy fp

The following shows the resulting hierarchy_fp dataframe with all the folder names needed to construct
a full path to the URL:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

1 2 3 4 5 6 7

0 Existing Customers NaN NaN NaN NaN NaN NaN

1 Homepage NaN NaN NaN NaN NaN NaN
2 Homepage Insurance NaN NaN NaN NaN NaN
3 Homepage Insurance Contact Us NaN NaN NaN NaN

4 Homepage Insurance Refera Friend T&Cs NaN NaN NaN NaN
367 Homepage Travel Updates Coronavirus Holidays Guests NaN NaN NaN
368 Homepage Travel Updates Cruise Coronavirus Vaccine NaN NaN NaN
369 Homepage Travel Updates Holidays Coronavirus Vaccine NaN NaN NaN
370 Homepage Travel Updates Safe Travels NaN NaN NaN
37 Homepage Travel Brochures NaN NaN NaN NaN

372 rows x 7 columns

With this in mind, we can now iterate row by row in the dataframe to remove blanks (NaNs) and join them
with a forward slash (/):

min fp nonnan = hierarchy fp
full paths = []

def find full paths(row):
data = row.values.tolist ()

data = [e for e in data if str(e) not in ('nan')]
data = '/'.join (data)
print (data)

full paths.append(data)

def apply ffp(df):
return df.apply(
lambda row:
find full paths(
row),
axis=1

)

apply ffp(min fp nonnan)
full paths

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

['Existing Customers',
'Homepage ',
'Homepage/Insurance',
'Homepage/Insurance/Contact Us',
'Homepage/Insurance/Refer a Friend T&Cs',
'Homepage/Insurance/Saga Credit Agreement',
'Homepage/Boat Insurance',
'Homepage/Boat Insurance/How to Make a Claim',
'Homepage/Caravan Insurance',
'Homepage/Caravan Insurance/Additional Cover',
'Homepage/Caravan Insurance/Cover at a Glance',
'Homepage/Caravan Insurance/Discounts and Excesses',
'Homepage/Caravan Insurance/Frequently Asked Questions’,
'Homepage/Caravan Insurance/How to Make a Claim',
'Homepage/Caravan Insurance/Policy Booklets',
'Homepage/Car Insurance',
'Homepage/Car Insurance/Over 70s',
'Homepage/Car Insurance/Buildings Insurance',

Now that we have the full folder names joined, a bit of string formatting is required to get them to resemble
URL paths. This is what we’ll do here:

#full paths

full path df = pd.DataFrame (full paths,columns=['full path'])

full path df['full path'] = full path df.full path.str.replace('Homepage/',
ll)

full path df['full path'] = full path df.full path.str.replace ('Homepage',

")

full path df['full path’
full path df['full path’
full path df['full path'
full path df['full path'
full path df

] = full path df.full path.str.replace(' ', '-"')

] = full path df.full path.str.replace('&', 'and')
] = full path df.full path.str.lower ()

] = target root url + full path df.full path

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

full_path
0 https://www.saga.co.uk/existing-customers
1 https://www.saga.co.uk/

https://www.saga.co.uk/insurance

https://www.saga.co.uk/insurance/contact-us

O

https://www.saga.co.uk/insurance/refer-a-friend-tandcs

367 https://www.saga.co.uk/travel/updates/coronavirus-holidays-guests
368 https://www.saga.co.uk/travel/updates/cruise-coronavirus-vaccine
369 https://www.saga.co.uk/travel/updates/holidays-coronavirus-vaccine
370 https://www.saga.co.uk/travel/updates/safe-travels

3an https://www.saga.co.uk/travel/brochures

372 rows x 1 columns

The full URL path has now been constructed and pushed into a dataframe, so we can now add this to the
parent_child_map dataframe created earlier:

Join Parent nodes to Full paths
full node map = pd.concat ([parent child map, full path df], axis=1l)
full node map

Now we have a table with the nodes and the full path:

parent child full_path

0 Existing Customers None https://www.saga.co.uk/existing-customers

1 Homepage MNone https://www.saga.co.uk/

2 Homepage Insurance https://www.saga.co.uk/insurance

3 Insurance Contact Us https://www.saga.co.uk/insurance/contact-us

4 Insurance Refer a Friend T&Cs https://www.saga.co.uk/insurance/refer-a-friend-tandcs
367 Updates Coronavirus Holidays Guests https://www.saga.co.uk/travel/updates/coronavirus-holidays-guests
368 Updates Cruise Coronavirus Vaccine https://www.saga.co.uk/travel/updates/cruise-coronavirus-vaccine
369 Updates Holidays Coronavirus Vaccine https://www.saga.co.uk/travel/updates/holidays-coronavirus-vaccine
370 Updates Safe Travels https://www.saga.co.uk/travel/updates/safe-travels
371 Travel Brochures https://www.saga.co.uk/travel/brochures

372 rows x 3 columns

Separating Migration Documents

Often, it's quite common in large organizations for different business units wanting separate migration
documents for their particular website. In the following, we will iterate by row to find all of the child nodes
for the “Travel” division and append these to a list “target_roots”:

filter for target BU

target node map = full node map

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

def append target pairs(row):
data = row.values.tolist()
[target roots.append(datal[l]) for e in data if str(e) in target roots]

def apply atp(df):
return df.apply(
lambda row:
append target pairs(
row),
axis=1

)

apply atp(target node map)
target roots = list(set(target roots))
target roots

This results in the following:

['Mauritius',
'Guide to the Dolomites',
'Meet the Team',
'Big Ship Cruising’,
'‘Christmas Breaks',
'Suites’',
'Coronavirus Cruise Passengers',
'FAQs ',
'Brexit Travel Advice',
'Holiday Creators',
'Hassle Free Travel Service',
'All Inclusive',
'At the Airport',
'My Travel',
'Britannia Club',
'Bespoke Tours',
'Spirit of Adventure Blog',
'Hosts',

Having extracted the Travel nodes in target_roots, we can now filter for Travel URLs only, starting with child
nodes:

#Target Children

stop_strings = ['insurance', 'breakdown-cover']
target parent nodes =
target node map[~target node map.full path.str.contains('|'.Jjoin(stop strings)

target parent nodes

This results in the following:

>>>4f fi.jackgoogleseo.com# B & $ 2. $ fif<<<

parent child full_path
111 Holidays Destinations httpsy//www.saga.co.uk/holidays/destinations
112 Destinations Africa https://www.saga.co.uk/holidays/destinations/africa
113 Africa Egypt https://www.saga.co.uk/holidays/destinations/africa/egypt
114 Egypt Ancient Egypt Revealed https:/www.saga.co.uk/holidays/destinations/africa/egypt/ancient-egypt-revealed
115 Egypt Ancient Wonders of Egypt https://www.saga.co.uk/holidays/destinations/africa’egypt/ancient-wonders-of-egypt
359 Accessibility and Support Assistance Dogs https://www.saga.co.uk/travel/accessibility-and-support/assistance-dogs
360 Accessibility and Support Mobility Aids https://www.saga.co.uk/travel/accessibility-and-support/mobility-aids
361 Accessibility and Support Saga Cruises https://www.saga.co.uk/travel/accessibility-and-support/saga-cruises
362 Accessibility and Support Transport and Transfers https://www.saga.co.uk/travel/accessibility-and-support/transport-and-transfers
363 Accessibility and Support Travelling by Air https://www.saga.co.uk/travel/accessibility-and-support/travelling-by-air

247 rows x 3 columns
And now the parent nodes:

target parent nodes = target node map[target node map.child.isin(first gen)]
target parent nodes

This results in the following:

parent child full_path
110 Homepage Holidays https://www.saga.co.uk/holidays
111 Holidays Destinations https.//www.saga.co.uk/holidays/destinations
112 Destinations Africa https://www.saga.co.uk/holidays/destinations/africa
113 Africa Egypt https://www.saga.co.uk/holidays/destinations/africa/egypt
114 Egypt Ancient Egypt Revealed https://www.saga.co.uk/holidays/destinations/africa/egypt/ancient-egypt-revealed
366 Updates Coronavirus Cruise Passengers https://www.saga.co.uk/travel/updates/coronavirus-cruise-passengers
367 Updates Coronavirus Holidays Guests https://www.saga.co.uk/travel/updates/coronavirus-holidays-guests
368 Updates Cruise Coronavirus Vaccine hitps://www.saga.co.uk/travel/updates/cruise-coronavirus-vaccine
369 Updates Holidays Coronavirus Vaccine https://www.saga.co.uk/travel/updates/holidays-coronavirus-vaccine
370 Updates Safe Travels https://www.saga.co.uk/travel/updates/safe-travels

183 rows x 3 columns
The next job is to concatenate both of these into a single table:

target node map = pd.concat ([target parent nodes, target kid nodes])
target node map

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

parent child full_path
110 Homepage Holidays https://www.saga.co.uk/holidays
111 Holidays Destinations https://www.saga.co.uk/holidays/destinations
112 Destinations Africa https://www.saga.co.uk/holidays/destinations/africa
113 Africa Egypt https://www.saga.co.uk/holidays/destinations/africa’egypt
114 Egypt Ancient Egypt Revealed hitps://www.saga.co.uk/holidays/destinations/africa/egypt/ancient-egypt-revealed
359 Accessibility and Support Assistance Dogs https://www.saga.co.uk/travel/accessibility-and-support/assistance-dogs
360 Accessibility and Support Mobility Aids https://www.saga.co.uk/travel/accessibility-and-support/mobility-aids
361 Accessibility and Support Saga Cruises https://www.saga.co.uk/travel/accessibility-and-support/saga-cruises

362 Accessibility and Support Transport and Transfers https://www.saga.co.uk/travel/accessibility-and-support/transport-and-transfers

363 Accessibility and Support Travelling by Air https://www.saga.co.uk/travel/accessibility-and-support/travelling-by-air
430 rows x 3 columns
With the Travel site URLs successfully filtered, we will now join the site levels:

nodes levelled = pd.merge(target node map, site levels, how='left',

left on='child', right on='node')

del nodes levelled['node']

nodes levelled['child'] = np.where(nodes levelled.child.isnull() .values, '',
nodes levelled.child)
nodes levelled['level']
nodes levelled.level)
nodes levelled

np.where (nodes levelled.level.isnull () .values, O,

This results in the following:

parent child full_path level

0 Homepage Holidays https://www.saga.co.uk/holidays 2

1 Holidays Destinations https://www.saga.co.uk/holidays/destinations 3

2 Destinations Africa https://www.saga.co.uk/holidays/destinations/africa 4

3 Africa Egypt https://www.saga.co.uk/holidays/destinations/africa/egypt 5

4 Egypt Ancient Egypt Revealed https://www.saga.co.uk/holidays/destinations/africa/egypt/ancient-egypt-revealed 6
425 Accessibility and Support Assistance Dogs hitps://www.saga.co.uk/travel/accessibility-and-support/assistance-dogs 4
426 Accessibility and Support Mobility Aids https://www.saga.co.uk/travel/accessibility-and-support/mobility-aids 4
427 Accessibility and Support Saga Cruises https://www.saga.co.uk/travel/accessibility-and-support/saga-cruises 4

428 Accessibility and Support Transport and Transfers https://www.saga.co.uk/travel/accessibility-and-support/transport-and-transfers 4

428 Accessibility and Support Travelling by Air https:/www.saga.co.uk/travel/accessibility-and-support/travelling-by-air 4

430 rows x 4 columns

The site levels were joined using Pandas Merge which is equivalent to Microsoft Excel’s vlookup function.
Because the column names were different in both tables, this had to be specified under left_on and right_on
as shown earlier.

Finding the Closest Matching Category URL

Now that we have the new category level URL structures for the travel division, we're ready to find the
closest matching live site URL.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

You could try using natural language processing (NLP) techniques here, but these will be quite fruitless.
That’s because the live URL strings may not reflect the proposed URL structure, especially if you're looking
to “clean house” and put in more sensible new ideas for the site relaunch.

The approach we take here is to let Google do the work by taking the highest ranking URL for a search
(as displayed in Google’s search results) on a combination of the parent child site names. After all, Google
has far better tools at its disposal, so it only makes sense to use them.

nodes levelled['search query'] = target site search + ' ' +
nodes levelled.parent + ' ' + nodes_ levelled.child

nodes levelled['search query'] = target site search + ' "' +
nodes levelled.parent + ' ' + nodes levelled.child + '"'
nodes levelled

This results in the following:

parent child full_path level search_query
] Homepage Haolidays https://www.saga.co.uk/holidays 2 Saga travel "Homepage Holidays®
1 Holidays Destinations hitps:/iwww,saga.co.uk/holidays/destinations 3 Saga travel "Holidays Destinations*
2 Destinations Africa hitps://www.saga.co.uk'holidays/destinations/africa 4 Saga travel "Destinations Africa®
3 Africa Egypt hitps:/iwww.saga.co.uk/holidays/desti f gypt 5 Saga travel "Africa Egypt"
Ancient Egypt https:/fwww.saga.co.uk/holidays/destinations/africa’egypt/ancient-egypt- .. " a
4 Egypt Revealed sl & Saga travel "Egypt Ancient Egypt Revealed
Accessibility and 2 | T e : Saga travel "Accessibility and Support
425 Support Assistance Dogs https:/fwww.saga.co a-SUDR ce-dogs 4 Assistance Dogs®
Accessibility and S— . R AT o Saga travel "Accessibillty and Support
426 Support Mahbility Aids hitps://www.saga.co.uk/travelfaccessibility-and-support/mobility-aids 4 Mobility Alds®
427 Accesaiblifty-and Saga Cruises hitps://www.saga.co.uk/travel/accessibility-and-support/saga-cruises 4 LB R sag?
Support Crulses
428 Accessibility and Transport and https:/fwww.saga.co.ukitravel/accessibility-and-support/ part-and- 4 Saga travel "Accessibility and Support
Support Transfers transfars Transport and Transfars”
429 Accessibility and Travelling by Air https:/fwww.saga.co.uk/travel/accessibility-and-support/travelling-by-air 4 Saga travel "Accessibillty and Support

Support Travelling by Air*

430 rows x 5 columns

Having taken a combination of the site name and parent and child nodes, these have formed the search
strings we will use to get SERPs data for:

serptool queries = nodes levelled['search query'].to list()
serptool queries

This results in the following:

['Saga travel homepage holidays',

'Saga travel homepage cruises',

'Saga travel homepage travel updates',

'Saga travel homepage accessibility and support',
'Saga travel homepage brochure request',
'Saga travel homepage trade',

'Saga travel holidays destinations',

'Saga travel destinations africa',

'Saga travel africa egypt',

'Saga travel egypt ancient egypt revealed',
'Saga travel egypt ancient wonders of egypt',
'Saga travel egypt el quseir',

'Saga travel el quseir radisson blu resort',
'Saga travel africa ethiopia',

Using the preceding data, these could be checked using your favorite SEO rank checking tool APl and
then loaded into the notebook

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

saga_serps = pd.read csv('client serps.csv')
saga_serps

This results in the following:

keyword rank_absolute wrl

0 Saga travel england art in the north east 1 https:/itravel. saga.co.uk/holidays/destinations/europ gl fart-in-the-north-east.aspx

1 Saga travel england art in the north east 2 https:/ftravel saga.co.uk/haoli /destinations/europe/uk/england/art-in-bournemaouth.aspx

2 Saga travel england art in the north east 3 https://travel.saga.co.uk/holidays/destinations/europe/uk/england/liverpools-art-collections.aspx

4 Saga travel england art in the north east 5 https://travel saga.co.uk/holidays/destinations/s pe/uk/england aspx

5 Saga travel england art in the north east 6 https://travel saga co.uk/holidays/destinations/europe/uk/england/gardens-of-the-north-sast. aspx
20423 Saga travel uk northam ireland 16 https:/ftravel.2aga.co.uk/crui go/british-is i crets-of-thi I-izle.aspx
20424 Saga travel uk northem ireland 17 https://travel saga.co.uk/forms/request-a-brochure.aspx
20425 Saga travel uk northemn ireland 18 hittps:/travel.saga.co.uk/travel-insurance.aspx
20426 Saga travel uk northem ireland 19 hitps:/firavel.saga.co.uk/fags.aspx
20449 Saga travel uk northem ireland 42 https./ftravel.saga.co.uk/cruises/ocean/where-we-go/ritish-isles-cruises.aspx

2434 rows = 3 columns

Earlier, we have the SERPs loaded into the notebook, showing the keyword, rank position, and URL.

It is now time to extract the top ranking URL, by grouping the SERPs dataframe by keyword and then
selecting the top ranked URL (if it hasn’t already been selected). The reason is a single URL cannot be
simultaneously redirected to two different URLs; hence, the “while” clause used in the Python code is
checking whether the URL hasn’t already been used for a previous keyword:

serps grp = saga_serps.groupby ('keyword'")
current allocated = []

def filter top serp(df):
del df['keyword']

i=20
while not df.iloc[i]['url'] in current allocated:
if not df.iloc[i]['url'] in current allocated:
current allocated.append(df.iloc[i]['url'])
return df.iloc[1i]
else:

i+=1
current map = serps grp.apply(filter top serp)
Concatenate with the initial dataframe:

current map df = pd.concat([current map],axis=0).reset index()
del current map df['rank absolute']

current map df = current map df.rename(columns = {'keyword': 'search query',
'url': 'current url'})

current map df['current alloc'] =
pd.DataFrame ({'current alloc':current allocated})

current map df['current url'] =
np.where (current map_ df.current url.isnull(),
current map df.current alloc, current map df.current url)

del current map df['current alloc']
current map df['search query'] = current map df.search query.str.lower ()

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

current map df

The result is a dataframe with the current URLs which we can now join to the main table:

search_query current_url
111 saga travel holidays book with confidence https://travel.saga.co.uk/holidays/book-with-confidence.aspx
112 saga travel holidays deals https://travel.saga.co.uk/cruises.aspx
113 saga travel holidays destinations https://travel.saga.co.uk/holidays/destinations.aspx
114 saga travel holidays flying from your local airport https://travel.saga.co.uk/travel-updates.aspx
115 saga travel holidays hassle free travel service https://travel.saga.co.uk/holidays.aspx
116 saga travel holidays holiday types https://travel.saga.co.uk/holidays/holiday-types.aspx
117 saga travel holidays meet the team https://travel.saga.co.uk/holidays/holiday-types/hotel-holidays/signature-hotels.aspx
118 saga travel holidays our awards https://travel.saga.co.uk/inspire-me/bestsellers.aspx
119 saga travel holidays reasons to choose saga https://travel.saga.co.uk/inspire-me/bucket-list-tour-experiences.aspx
120 saga travel holidays reassurance promise https://travel.saga.co.uk/holidays/reassurance-promise.aspx
121 saga travel holidays vip travel service https://travel.saga.co.uk/holidays/vip-travel-service.aspx
122 saga travel holidays what's included https://travel.saga.co.uk/inspire-me/travel-guides.aspx
123 saga travel holidays when to go https://travel.saga.co.uk/inspire-me/wonders-of-the-world.aspx

Mapping Current URLs to the New Category URLs
The following code joins the current live category level URLs to the proposed new site URLs:

nodes levelled['search query'] = nodes levelled.search query.str.lower ()
ia_current mapping = pd.merge (nodes levelled, current map df, on =
'search query', how = 'left")

ia current mapping = ia_ current mapping[['parent', 'child', 'level'’,

'current url', 'full path']]
ia current mapping

Here, we can see that neither this method nor Google is perfect. Nonetheless, it’s a good start and saves
alot of manual work.

parent child level current_url full_path

Existing httpsy/www.saga.co.uk/ins. fravel-i existing i . "
1] Custormers 1] Sisiomers hitps://www.saga.co.uk/existing-customers
1 Homepage 0 hitps:/ftravel.saga.co.uk/meset-the-team/travel-consultants.aspx https:/fwww.saga.co.uk/
2 Homepage Holidays 2 https:fwww. fredholidays.co.uk/ https:/iwww.saga.co.uk/holidays
3 Holidays Destinations 3 https:/ftravel saga.co.uk/holic L aspx hitpss//www.saga.co.uk/holidays/destinations
4 Destinations Africa 4 httpsy/travel saga.co.uk/holidays/destinations/africa.aspx hitps:/fwww.saga.co.ukholidays/destinations/africa
i Ac ibility and Assi 4 hitps:/ftravel saga.co. ibility-and-suppor s hitps://www.saga.co.uk/travel/accessibility-and-
Support Dogs dogs.aspx support/assistance-dogs
Accessibility and — https://travel saga.co.uk/ac ibility-and-supf il hitps:/fwww.saga.co.uk/travel/accessibility-and-
493 Suppart Mahiity Alds 4 aicls. aspx supportmakility-aids
454 Accessibility and Saga Cruises 4 hitps:/ftravel. saga.co.uk/accessibility-and-support/saga- hittps:/fwww.saga.co.uk/travel/accessibility-and-
Suppart cruises.aspx support/saga-cruises
495 Accessibility and Transport and 4 https://travel.saga.co. ibility-and-support/ part-and- https://www.saga.co.uk/travel/accessibility-and-
Support Transfers transfers.aspx support/transport-and-transfers
Accessibility and 2 Ihttps://travel.saga co.uky/; ibility-and-support/ ing-by https:/fwww.saga co.uk/travel/accessibility-and-
e Support Frawelling by A # airaspx support/traveling-by-air

497 rows x 5 columns
Let’s tidy the table up by renaming a few columns and replacing NaNs with blanks:

rearrange columns

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

ia_current mapping = ia_ current mapping[['parent',6 'child',
'level', 'search query', 'current url', 'full path']]
ia current mapping = ia current mapping.rename (columns = {'full path':

'migration url'})

ia_current mapping['current url'] =

np.where(ia current mapping.current url.isnull(), '',
ia_current mapping.current url)

ia current mapping

In the following table, you can see that the first five lines have a simi value of zero, because the current
URLs are blank, so of course there is zero string similarity between the proposed migration URL and the

current URL.

parent child level current_url migration_url

Existing httpsy/www.saga.co.ukfinsurance/travel-insurance/existing- i . "
0 P 1]] hitps://www.saga.co.uk/existing-customers
1 Homepage 0 hitps:/travel.saga.co.uk/mest-the-team/travel-consultants.aspx https:/fwww.saga.co.uk/
2 Homepage Holidays 2 hittps:Awww. fredholidays_co.uk/ hitps:/fwww.saga.co.uk/holidays
3 Holidays Destinations 3 hitps://travel saga.co.uk/holic inations.aspx https:/fwww.saga.co.uk/holidays/destinations
4 Destinations Africa 4 hittps://travel.saga.co.uk/Mmoli inati ica.aspx hitps://www.saga.co.uk'holidays/destinations/africa
sio Ac ibility and Assi 4 hitps:/ftravel saga.co. ibility-and-suppor s hitps://www.saga.co.uk/travel/accessibility-and-
Support Dogs dogs.aspx support/assistance-dogs
Accessibility and — https://travel saga.co.uk/ac ibility-and-supf il hitps:/fwww.saga.co.uk/travel/accessibility-and-
" Suppart Mahiity Alds 4 aicls. aspx supportmakility-aids
Accessibility and hitps:/ftravel.saga.co.uk ibility-and-support/saga- hitps:/fwww.saga.co.uk/travel/accessibility-and-
404 Support Saga Cruises 4 cruises aspx support/saga-cruises
495 Accessibility and Transport and 4 https://travel.saga.co. ibility-and-support/ part-and- https://www.saga.co.uk/travel/accessibility-and-
Support Transfers transfers.aspx support/transport-and-transfers
Accessibility and 4 2 https:/itravel.saga.co.uk/accessibility-and-support/travelling-by- hitps://www.saga_co.uk/travel/accessibility-and-
49 Support Traveling by & 4 air.aspx support/travelling-by-air

487 rows x 5 columns

With the table tidied, we will use NLP methods to compare the string similarity of the current URL:

ia_current simi = ia current mapping
ia current simi = ia current simi.drop duplicates()
ia current simi['simi'] = ia current simi.loc]|

H ['carrentiurl', 'migrationiurf']].apply(
lambda x: sorensen dice(*x), axis=l)

ia current simi

The string similarity is helpful because when we review the migration URLs in a spreadsheet app like
Microsoft Excel, we can filter for URLs that are not very similar, for instance, less than 0.9, which shows us
current URLs that might not be a good match for the migration URLs. Rows with missing current URLs will
need to be manually fixed, and the ones deduced from the SERPs will require a review.

ia current mapping.to csv('exports/' + target site search +
' ia current mapping.csv')

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

parent child level current_url migration_url simi
Existing . A
(1] Cligtericrs 0 hitps:/fwww.saga.co.uk/existing-customers 0.000000
1 Homepage o hitps:/fwww.saga.co.uk/ 0.000000
2 Homepage Holidays 2 hitps:ifiravel saga.co.uk/cruises/oceanind-your- hitps://www.saga.co.uk/holidays 0.586957
crulse.aspx
] Holidays Destinations 3 https:iftravel. saga.co.uk/holidays/destinations.aspx hitps://www.saga co.uk/holidays/destinations 0.854167
4 Destinations Afnca 4 psf |.zaga.co.uk/holidays/destinations/africa.aspx hittps:/fwww.saga.co.uk/holidays/destinati fri 0.872727
Coronavirus hitpsy/fwww.saga.co uk/travel/updates/coronavirus-
250 Updiins Holidays Guests 4 holidays-guests. Bt
260 Updates Ccmcacfrliz 4 hittps://www.saga.co.uk/travel/updates/cruise- 0.000000
P # comnavirus-vaccine
Vaccina
Holidays - idays-
261 Updates GO OREE 4 hnps.f.-’www.saga.co.uk.-‘travelfupdatgsa’holida?s 0.000000
coronavirus-vaccine
Vaccine
262 Updates Safe Travels 4 https:/fwww.saga.co.uk/travel/updates/safe-travels 0.000000
263 Travel Brochures 3 httpsyfwww.saga.co.ukftravel/brochures 0.000000

264 rows x 6 columns

Mapping the Remaining URLs to the Migration URL

Now that the category URLs and subcategory URLs have the URL structures set, we're ready to set the
migration URLs for the rest of the site. We’'ll assume that you've edited the ia current mapping CSV
export generated earlier in Excel, corrected any errors not processed such as the missing current URLs
(now not missing), and are thus ready to import:

import re

import time

import random

import pandas as pd

import numpy as np

import datetime

from textdistance import sorensen dice
pd.set option('display.max colwidth', None)
import os.path

target site search = 'saga'

target bu = 'travel'

target roots = ['Holidays', 'Cruises', 'Travel Updates', 'Accessibility and
Support', 'Brochure Request', 'My Travel', 'Trade']

source root url = 'https://travel.saga.co.uk/'

migration root url = 'https://www.saga.co.uk/'

source hostname = 'travel.saga.co.uk'

file path = 'cases/'+ target site search + '/!'

latest mapping raw = pd.read csv('data/Saga
travel ia edited mapping dd.csv')
latest mapping raw

The imported mapping is an edited Excel file to reflect the business and operational requirements that
wouldn’t be adjusted for in the previous section.

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

parent child level current_ur| migration_url
o Homepage Holidays o https./itravel.saga.co.uk/ https://www.saga.co.uk/holidays
1 Homepage Holidays 2 hitps://travel. saga.co.uk/holidays https:/www.saga.co.uk/holidays
2 Halidays Destinations 3 https:/ftravel saga co.uk/holidays/destinations. aspx https:/fwww.saga.co.uk/holidays/destinations

3 Destinations Africa 4 hitps:/ftravel.saga.co.. iday inati ica.aspx https/fwww.saga.co.L
4 Africa Egypt 5 htips://travel.saga.co. i inati icalegypt.aspx hitpsfwww.saga.co.uk/halic inati icalegypt
464 Accessibility Assistance 4 hitpsi/travel.saga.co.uk/accessibility-and-support/assistance- ht‘tpa:f.'www.aaga.ca.uh"traveh’acce_ssibility-and-
and Support Dogs dogs.aspx support/assistance-dogs
465 ::;ess:'i:b;nitryt Mability Aids 4 https://travel.saga.co. ibility-and-suppor aids.asp" hittps://www.5aga.co.uk E;Pwm;;;iéiﬁ;
466 ,:::ess:'i;bgl‘:h: Saga Gruises 4 https://travel saga.co.uk ibility-and &;ise;::;x httpsz/ =aga.co.uk/ 1 ibill und—suppor‘tca;ia;g:;
467 Accessibility Transport and 4 https://travel. saga.co.uk/accessibility-and-support/transport-and- https:/fwww.saga.co.uk/travel/accessibility-and-
and Support Transfers transfers aspx support/transport-and-transfers
Py Accessibility Travelling b_y 4 https://travel.saga.co.L ibifi d-support/ '_ g-by- hnps:f.fwww.saga:o,uhﬂravsﬁaccassit_)ility-and_-
and Support Air airaspx support/travelling-by-air

469 rows x 5 columns

With the URL structures set for the category and subcategory URLs, we're now going to break down the
current URLs and the migration URLSs, so that we can create a mapping formula.

When we import the rest of the site URLs, the script will use their folder structure to convert them to the
new migration URL structure:

latest mapping full branch = latest mapping raw[['parent',6 'child', 'level'’,
'current url', 'migration url']]

latest mapping full branch['current url'] =
np.where (latest mapping full branch.current url.isnull(), '',
latest mapping full branch.current url)

To create the new URL structures, create a template variable called “new_branch”; we simply take the
migration URLs and grab the folders between the root domain and the web page URL string.

For example, the new_branch value of
https://travel.saga.co.uk/holidays/destinations.aspx becomes /holidays/.

To extract the folders in between, we remove the root domain, split the string by forward slashes (‘/"),
then extract everything apart from the last element.

Set the new URL structure:

latest mapping full branch['new branch'] =

latest mapping full branch['migration url'].str.replace(migration root url,
' regex = False)

latest mapping full branch['new branch'] =

latest mapping full branch['new branch'].str.split('/').str[:-1]

latest mapping full branch['new branch'] = ['/'.Jjoin(map(str, 1)) for 1 in
latest mapping full branch['new branch']]

Similar principles are applied to the following old_branch, which is the URL structure for the current
URLs:

latest mapping full branch['old branch'] =
latest mapping full branch['current url'].str.replace(migration root url,
'', regex = False)

To make the new URLs more evergreen and thus without dates, we stick all of the undesirables into a list
and tell Python to remove everything from the list:

remove strs = ['2018/', '2019/', '2020/','2021/', 'jan/', 'feb/', 'mar/’',
'apr/', 'may/','jun/', 'jul/', ‘aug/',6'sep/','oct/', 'nov/', 'dec/']

https://travel.saga.co.uk/holidays/destinations.aspx

latest mapping full branch['old branch'] =

latest mapping full branch['old branch']

")

Remove the node:

latest mapping full branch['old branch'

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

.str.replace('|"

.join(remove strs),

]
latest mapping full branch['old branch'].str.split('/') .str[:-1]
latest mapping full branch['old branch'] =
latest mapping full branch['old branch'].apply(lambda x: '/'.join (map (str,

x)))

The node is the URL string that is specific to the page itself, which we’re extracting as follows:

set the NODE

latest mapping full branch['node'

] =

latest mapping full branch['current url'].str.split('/").str([-1]

latest mapping full branch['node'] =

latest mapping full branch['node'].str.replace('.aspx', '', regex = False)
latest mapping full branch['node'] =

latest mapping full branch['node'].str.replace(' ', '-', regex = False)

If any old_branch values are empty, then we just substitute the node. np.where is the Pandas equivalent

of Excel’s if statement:

latest mapping full branch]|

'old branch'] =

np.where (latest mapping full branch['old branch'] ==
latest mapping full branch[old branch'])

latest mapping full branch.node,
latest mapping full branch

This results in the following:

parent child level current_url migration_uri new_branch old_branch node
(1] Homepage Holidays o https://travel.saga.couk’ hitps:ifwww.saga.co.uk/hal...
1 Homepage Holidays 2 hitpsifitravel saga.co.uk/... https:iwww.saga.co.ukfhol... holidays hedidays
2 Holidays Destinations 3 httpsi/iftravel.saga.co.uk/... hitps:/www.saga.co.uk/hol... holidays holidays destinations
3 Destinations Africa 4 hitps:/itravel.saga.co.uk/... hitps://www.saga.co.uk/hol... holidays/destinations d africa
4 Africa Egypt 5 https:/ftravel.saga.co.uk/... hitps://www.saga.co.uk/hol.. holi ica holiday ionsfafrica eqypt
Accessibility Assistance = . s i assistance-
464 0 Suppart Dogs 4 https:/ftravel.saga.co.uk/... hitps:/www.saga.co.uk/tra... y-and-s... and-support dios
Accessibility) g far L
465 and Support Mebility Aids 4 httpsi//travel.saga.co.uk/... https:/www.saga.co.ulkftra.. travel/accessibility-and-s... accessibility-and-support maobility-aids
ags fooessbIY - gpon G 4 ravel K. hitpsiih ukfira... travelaccessibility-and ibility-and t i
and Support aga ises https:/ftravel.saga.co.uk/... https://www.saga.co.uk/tra... ‘accessibility-and-s... accessibility-and-suppol saga-cruises
Accessibifity Transport and . . e fil ~ transport-
487 and Support Transters 4 hitps:/travel.saga.co.uk/... https:\fwww.saga.co.uk/tra... ity nd-support and-translers
Accessibility Travelling by 4 = i biltveand-s . accassibill i travelling-by-
468 and Support Air 4 https:/travel saga co.uk/... hitps:www.saga.co.uk/ftra... ty-and-s... nd-suppart air

469 rows x B columns

With URL structures broken down and reconstituted, we’re ready to put a mapping together. A bit of cleanup
happens as follows, where we drop duplicate rows and remove blank rows with empty current_url values.
We don’t expect any anomalies at this stage, but just in case.

branch map = latest mapping full branchbranch map =
branch map.sort values('old branch')

branch map = branch map.drop duplicates (subset =
branch map = branch map[~branch map['current url']
branch map = branch map[['old branch', 'new branch'

'old branch')
.isnull ()]
1]

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

branch map['new branch'] = np.where(branch map['new branch'] == "'',
'holidays', branch map['new branch'])
branch map

This results in the following:

old_branch new_branch

0 holidays
466 accessibility-and-support travel/accessibility-and-s...
173 cruises cruises
397 cruises/ocean cruises/ocean

368 cruises/ocean/cruise-excur... cruises/ocean/cruise-excur...

356 meet-the-team holidays/meet-the-team
360 offers holidays/deals
362 offers/flight-offers holidays/deals/flight-offers
461 trade travel/trade
460 travel-updates travel/trade

81 rows x 2 columns

Importing the URLs
With the mapping in place, we're ready to import the URLs and fit them to the new migration structure:

DETERMINE the unallocated URLs
target crawl raw = pd.read csv('data/crawl urls.csv')
target crawl raw

We’'re removing URLs and subfolders that won't move as part of the site relaunch:

target crawl urls = target crawl raw
stop folders = ['/membership/', '/magazine/', '/saga-charities/', '/legal/',
'/money/', '/my/', '/care/', '/magazine-subscriptions/',
' /membership', '/magazine', '/saga-charities', '/legal',
'/money', '/my', '/care', '/magazine-subscriptions', 'boardba:s
'/antiquity', '/pharaoh', '/orca', '/italy-splendour', '/walkir
'/archaeology',
'/gardens', '/music', '/MyS', '/404', '/contentli']
target crawl urls =

target crawl urls[~target crawl urls['URL'].str.contains('|'.join(stop folder:
target crawl urls =
target crawl urls[target crawl urls['Host'].str.contains('www.saga.co.uk')]

target crawl urls

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

deeprank level hitp status code indexable page_title url description found_at url primary.
Find your
Saga
Holidays - E:.?Lm
1] 10.00 1.0 200 True Cwver 50s https:i/travel.saga.co.uk/ Tk ag httpsy//travel saga.co.uk/fags.aspx
Haolidays & 50s
Cruises - ... b
European Relax in the
River Crulse splendour
1 913 20 200 True Holidays hitps:/travel.saga.co.uk/cruises/river.aspx of Europe's https:/ftravel saga.co.uk/
For Over most
50s-.., beaufi...
Ocean Saga
Cruises - boutique
2 912 20 200 True E“;;'E'i:: https:/itravel.saga.co.ukierui mpx SUEN hitps:/travel saga.co.uk/
Holidays smaller
ForQ... ships, get...
Holidays In Dismtv:;
Tha Uk - beautiful
3 885 20 200 True Over 505 https.//travel.saga.co. Sk hitps/ftravel saga.co.uk/
Holidays & . ds’g
Cruis... NG cldes
toh..
- Saga
Holiday 2
Destinations g‘d‘;{:
4 877 20 200 True & Packages hitps://iravel.saga.co. i d il https:/ftravel.saga.co.uk/
ForCrvor aurneyul' the
AawY. best...

The crawl data is in and now subsetted for the URLs we want to migrate. Next, we're sticking these into a
list to ensure they are unique:

current url 1st = latest mapping full branch.current url.to list()
mapped url lst = list(set(current url 1lst))
print (len(mapped url 1lst))

This results in the following:

469
258

Then we create a new dataframe “target_crawl_unmigrated” which excludes URLs already mapped (i.e.,
the category and subcategory URLs):

target crawl unmigrated =

target crawl urls[~target crawl urls['URL'].isin (mapped url 1st)]
target crawl unmigrated

At this stage, it's sensible to check if we have any redirects (300 responses) and other non-“200” server
status URLs:

target crawl unmigrated.groupby ('HTTP Status Code').agg ({'HTTP Status Code':
'count'})

This results in the following:

http_status_code

http_status_code

200 1140

We can see that all of the filtered URLs we’ve yet to migrate all serve live pages (returning a 200 response).
If we did have 301s, we could use the following code to inspect those 301 URLs:

target crawl unmigrated[target crawl unmigrated['HTTP Status Code'] ==

'301']1[[url]]

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

To handle redirecting URLs, we want to ensure they are included in the mapping so that we can avoid
redirect chains when migrating the site URLs. A redirect chain is when there are multiple redirects between
the initial URL requested and the final destination URL. We'll achieve this by ensuring these are listed as
current URLs.

Mutate the old_branch:

target crawl mutate = target crawl unmigrated
target crawl mutate = target crawl mutate.rename (columns = {'url':
'current url'})

Create a list of our conditions:

redirect conds = [

target crawl mutate['http status code'].isin(['200', '204', '404',
'410', '500'1),

target crawl mutate['http status code'].isin(['301', '302', '307',
'308'])
]

Create a list of the values we want to assign for each condition:

desturl values = [target crawl mutate['current url'],
target crawl mutate['redirected to url'],

]

Create a new column and use np.select to assign values to it using our lists as arguments:

target crawl mutate['dest url'] = np.select(redirect conds, desturl values)
target crawl mutate = target crawl mutate[['dest url']]
target crawl mutate = target crawl mutate.rename (columns = {'dest url':

'current_urlT})

Redirects notwithstanding, at this point these are dealt with. The following code will now break down
the URL into structures ready for mapping using the table created in earlier steps:

target crawl mutate['old branch'] =
target crawl mutate['current url'].str.replace (source root url, '', regex =
False)

remove strs = ['2018/', '2019/', '2020/','2021/', 'jan/', 'feb/', 'mar/',
vapr/v, 'may/','jun/',

'jul/', ‘aug/','sep/','oct/', 'nov/', 'dec/']
target crawl mutate['old branch'] =
target crawl mutate['old branch'].str.replace('|'.join(remove strs), '')
target crawl mutate['old branch'] =
target crawl mutate['old branch'].str.split('/').str[:-1]

target crawl mutate['node'] =
target_crawl_mutate['current_url'].str.split('/').str[—l] # node only
target crawl mutate['node'] =

target crawl mutate['node'].str.replace('.aspx', '', regex = False)

target crawl mutate['node'] = target crawl mutate['node'].str.replace(' ',
'-', regex = False)

target crawl mutate['old branch'] =
target crawl mutate.old branch.apply(lambda x: '/'.join (map(str, x)))

target crawl mutate

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

The following crawl data “target_crawl_mutate” now has old branches, which means after a bit of
cleanup, removing unnecessary column names, we can merge these with the branch map created earlier to
help formulate the migration URLs.

ted_to_url_digest url_alias_digest url_digest old_branch node
NaN /sObE3zPuFU2qCUZQuvoFPUNCYwEZVS/oSiH.. /sObE3zPuFU2gCUZQvgFPUNCYWEZVS/oSTH... helidays/holiday-types s::g::;
Mah sAIZ3mRABUGcyrPyl/yBAcYapRRNWgMIX/ 1Ny... sAIZImREU GeyrPyl/yBAcYapRRnWgMIX/ 1T Ny. .. holidays/destinations europe
Nah NaxRifewr+ ZNhjTesENQZewEoiJcHINMYfuG... NaxRifewrs ZNhjTeeENQZewBolJecHNMYuG. .. halidays/destinations/surope spain
NaN tAUc/HuzDLlgmywHrbg+2GVpLTWISHg4nX... tRUGHUZDLIgrmwHba+2GVpLTWJSHg4nX. . forms i
NaN XzhiT3V3UKBhIWZE2ZCO3wdPdWH/S9xkhVIA... XzhiTAVIUKBRIWZB2ZCD3wdPAWH/Q0xkhV1A. . cruises

Let’s now look up a new branch as there may be old branches not quite covered in the remaining URLSs, that
is, unmatched exceptions:

unallocated branch = target crawl mutate[['current url', 'http status code',
'old branch', 'node'l]]

unallocated branch = unallocated branch.merge (branch map, on = 'old branch',
how = 'left')

unallocated branch

This results in the following:

current_url http_status_code old_branch node new_branch

0 hitps:/itravel.saga.co.uk/holidaysmh.,.. 200 holidays/holiday-types singles-holidays holidays

1 hitps:/ saga.co.ul i fd... 200 holidays/destinations aurope holidays/destinations

2 hitps:/ftravel.saga.co.uk/molidays/d... 200 holidays/destinations/europe spain holidays/destinations/europe

3 httpsi/ftravel.saga.co.uk/forms/regu... 200 forms request-a-brochure MNaM

4 https://travel.saga.co.uk/cruises.aspx 200 cruises holidays
1135 https:/travel.saga.co.uk/holidaysh... 200 holidays/holiday-types/escorted-tour... rv-mekong-pandaw holidays/types/escorted-tours/small-...

= . . rocky-mountains-and-

1136 hitps:/ftravel.saga.co.uk/holidays/d... 200 halidays/destinations/north americal .. al adveniure MaN
1137 hitps:/ftravel saga.co.uk/holidays/d... 200 holidays/destinations/surope/uk/eng| gibert-and-sullivan- 1. e jdestinations/eurape/ukiengland
1138 hitps:/fravel saga.co.uk/holidays/d... 200 holidays/destinations/eurcpesuk/england Ch"s‘m‘:ﬁgz;:ﬁ; holidays/destinations/europeduk/england
1139 hitps:/ftravel saga.co.uk/holidays/d... 200 holidays/destinations/north-americal. .. trsesres-ci-the yucatan? NaN

pld=ppsg&sc...
1140 rows x 5 columns

The unmigrated URLs now have the suggested URL structure which can be used to create a new column
forming the suggested migration URL. We will start with a bit of cleanup to handle blank new branch values:

allocated fillnb = unallocated branch

allocated fillnb['new branch'] =

np.where (allocated fillnb.new branch.isnull(),
L]

allocated fillnb.new branch)

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

allocated fillnb['new branch']

allocated fillnb =

= np.where(allocated fillnb.new branc

allocated fillnb.old branch,
allocated fillnb.new branch)

allocated fillnb.sort values('new branch')

This results in the following:

current_url http_status_code

old_branch

node

allocated fillnb[allocated fillnb.new branch != '"']

new_branch

s

70

117

216
1104
1004

938

888

hitps://travel.saga.co.uk/brochure-r... 200
hitps:/itravel saga.co.uk/brochure-r.., 200
hitps://travel.saga.co.uk/brochure-r... 200
hitps:/ftravel saga.co.uk/brochure-r.. 200
https:/ftravel saga. co.uk/brochure-r... 200
https://travel saga.co.uk/travel-upd... 200
hitps:/ftravel saga.co.uk/trade/mana... 200
https://travel.saga.co.uk/trade/prod... 200
hitps:/ftravel saga.co.uk/trade/ffags... 200
hitps:/travel. saga.co.ukffradefince... 200

1140 rows x 5 columns

brochure-request/2021-trade-uk

brochure-request/artwork/2020-
sofa

brochure-requestnhb-emG916

brochure-request/nhb-emB954

brochure-request/nhb-emBOEE

travel-updates
trade
frade
trade
trade

TRADE_UKbrochure.hitm|

spirit-of-adventure-onboard-
artwork-...

aurcpe-and-the-mediterranean-
collect...

europe-and-the-meditarranean-
collect...

winter-sun-collection.htm|

traffic-light-zystem
managebooking
product-range
fags

incentives

brochure-request/2021-trade-uk

brechure-request/artwork/2020-
sofa

brochure-request/nhb-emG916

brochure-request/nhb-emBa54

brochure-request/nhb-em&3a68

traveltrade
travelitrade
travel/trade
travelftrade

travelftrade

More cleanup ensues to handle URL nodes that contain parameter characters such as “?” and “=". Then we
attempt to create columns showing their Parent and Child URL node folders based on the text position
within the overall URL string:

allocated draft =

allocated draft['node'] = np.where(allocated_draft['node'].str.contains('(\?

[=)"),

allocated draft['Parent']
allocated draft['Parent'] =

allocated draft['Child'] =
allocated_draft['new_branch'].str.split('/').str[l]

allocated draft['Child']

allocated draft

This results in the following:

allocated fillnb

allocated draft['node'])

)

= allocated draft['new branch']
allocated draft['Parent'].str.split('/"').str[0]

= np.where(allocated draft['Child'].isnull(),
allocated draft['node'],
allocated draft['Child']

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

current_url hitp_status_code old_branch node new_branch Parent Child

0 hitpsv/travel saga.co.uk/holid... 200 holidays/haliday-types singles-holidays holidays holidays ﬂg;

1 https:/travel.saga.co.uk/holid... 200 holidays/destinations BUMODE holid destinations

2 https:/itravel saga.co.uk/holid.... 200 holidays/destinations/europe spain holid inations/aurope holid destinations

; request-a- request-a-

3 hitps/travel saga.co.uk/forms... 200 forms ik forms forms broehiis:

4 httpsi/ftravel.saga.co.uk/cruis... 200 cruises holidays holidays Cruises

1135 hitps:/travel.saga.co.uk/holid... 200 hofidays/holiday-types/escorted. . N'mp::‘;l%; holidays/types/escorted-tours/s... holidays types

3 < Lo rocky-mountains- 5 i ; e

1136 hittps:/ftravel saga.co.uk/halid... 200 holidays/destinations/north ame... ol e holidays/destinations/north ame... holidays destinations
gilbert-and-

1137 hitps:/travel.saga.co.uk/halid... 200 holidays/destinations/europe/uk... sullivan-festival- holidays/destinati fi pesuk... holiday destinations
m...

1138 hitps:/ftravel saga co.uk/holid... 200 holidays/destinations/europesuk... wln;ne:::‘; holidays/destinations/europafuk... holidays destinations

1130 hitps/ravel. coukihalid... 200 holidays/destinations/north- holidays/destinati |.=nan;2h' hatl destinations

1140 rows x 7 columns

The preceding table now has the Parent and Child folders. At this stage, we’re looking to ensure the new URL
structure (new_branch) fall into one of the major sections of the new travel site before putting together the
migration URLs.

Convert the root parent folder names to lowercase:

target roots urled = [elem.lower () for elem in target roots]
target roots urled = [elem.replace(' ', '-') for elem in target roots urled]
print (target roots urled)

Sort out the branches:
sorted branches = []

def change urls(row):
data = row.values.tolist ()
#print (data)
if not data[-2] in target roots urled:
data[-3] = 'holidays/' + str(datal[-31])
sorted branches.append(data)

def apply cip(df):
return df.apply (lambda row: change urls(row), axis=1)

apply cip(allocated draft)

allocated drafted = pd.DataFrame (sorted branches,
columns=allocated draft.columns.tolist())

pd.set option('display.max colwidth', 35)
allocated drafted

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

['helidays', ‘eruises', ‘travel-updates', 'accessibility-and-support', ‘brochure-request', 'my-travel', ‘'trade']
current_url hitp_status_code old_branch node new_branch Parent Child
0 hitps:/ftravel.saga.co.uk/halid... 200 holidays/holiday-types singles-holidays holidays ~ holidays ki
1 https:/travel.saga.co.uk/holid... 200 holidays/destinations europe holidays/d i holiday destinations
2 htips:itravel.saga.co.uk/holid.... 200 holidays/destinations/europe spain holidays/ inations/europe y destinations
) request-a- request-a-
3 htipsy/travel saga.co.uk/forms... 200 forms Braahins holidaysfforms forms brochure
4 https:/itravel.saga.co.uk/cruls... 200 cruises holidays holidays crulses
1135 hitps+/travel.saga.co.uk/holid... 200 holidays/holiday-types/escorted... ”'";Z:‘;’E; holidays/typ ted-tours/s... holiday types
. . . rocky-mountains- F— " N
1186 hittps:/ftravel saga co.uk/holid... 200 holidays/destinations/north ame... ik lastians e, orth ame.... y destinations
gilbert-and-
1137 httpst/itravel.saga.co.uk/holid... 200 holidays/destinations/eurcpa/uk... sullivan-festival- holid inations/europa/uk. iday destinations
m..
= otk dnth 4 " chri lak e Pl " ropauk.. hol 1
1138 https:/ftravel saga.co.uk/halid... 200 t ¥ pasuk... windenmiera ' 1y P destinations
1139 hitps//travel saga.co.uk/halid... 200 halkdeys/destinatins/orh- holiday&fﬁeminaﬂonsmh- holidays destinations

1140 rows x 7 columns

Any folders that didn't have a parent node in the list printed earlier are allocated to holidays. This should be
right 90% of the time. Time to form the draft migration URL:

allocated drafted['Migration URL'] migration root url +
allocated drafted.new branch + '/' + allocated drafted.node

allocated drafted['Migration URL'] = np.where(allocated drafted['Migration
URL'].str.endswith('/"),

allocated drafted['Migration
URL'].str[:-1],

allocated drafted['Migration
URL'])

allocated drafted['Parent'] = allocated drafted['Parent'].str.replace('-"', '
")
allocated drafted['Parent'] = allocated drafted['Parent'].str.title()

allocated drafted['Child']
")
allocated drafted['Child'] = allocated drafted['Child'].str.title()

allocated drafted['Child'].str.replace('-"', '

Set to lowercase:

allocated drafted['Migration URL'] = allocated drafted['Migration
URL'] .str.lower ()
pd.set option('display.max colwidth', 25)

allocated drafted

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

current_url http_status_code old_branch node new_branch Parent Child Migration URL

0 hitpsi//travel saga.c... 200 holidays/holiday-types singles-holidays holidays Holidays Singles Holidays https://www.saga.co.u...

i https:ftravel.sagac... 200 holidays/destinations aurope holidays/destinations Holidays Destinations https:///www.saga.co.u...

2 htips:/ftravel.saga.c... 200 helidays/destinations. .. spain holidays/destinations... Holidays Destinations https:/fwww.saga.co.u...

. . Request & .

3 hitps:/travel.saga.c... 200 forms request-a-brochure holidaysfarms Forms Brookire https://www.saga.co.u...

4 hitpsi/travel.saga.c... 200 cruises holidays Holidays Cruises hitpsy/fwww.saga.co.u...
1135 https://travel.sagac... 200 holidaysfh::l;xy- pandaw idays/types ... Holidays Types hitps:/’www.saga.co.u...
1136 hitps:/ftravel.sagac... 200 holidays/destinations... '“”""'"‘““::“:12" holidays/destinations... Holidays Destinations https:/www.s3ga.co.u...
1137 https://travelsaga.c... 200 helidays/destinations... Q'mﬁ':n"_"' holidays/destinations... Holidays Destinations hitps:/www.5898.00.u...
1138 https /ftravel.saga.c... 200 holidays/destinations... christmas-on-ﬁl;a- holidays/destinations... Holidays Destinations httpsi/www.saga.co.u...
1139 hitps:/travel.saga.c... 200 holidays/destinations... holidays/destinations... Holidays Destinations hitps:///www.saga.co.u...

1140 rows x 8 columns

By concatenating the domain, new branch, and node, the migration URLs are now fully formed.:.

allocated drafted['migration url']
+ allocated drafted.node

'/'

allocated drafted['migration url']

= migration root url + allocated drafted.ne

np.where (allocated drafted['migration url'].str.endswith('/"),
allocated drafted['migration url':
allocated drafted['migration url"'’

allocated drafted['Parent']
allocated drafted['Parent'] =

allocated drafted['Child']
allocated drafted['Child'] =

Set to lowercase:

allocated drafted['migration url']

allocated drafted['migration url'].str.lower ()

allocated drafted.columns =
pd.set option('display.max colwidth',

allocated drafted

This results in the following:

25)

allocated drafted['Parent'].str.replace('-",
allocated drafted['Parent'].str.title()

= allocated drafted['Child'].str.replace('-"', '
allocated drafted['Child'].str.title()

allocated drafted.columns.str.lower ()

")

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

current_url http_status_code old_branch node new_branch parent child migration_url

0 hitpsi//travel saga.c... 200 holidays/holiday-types singles-holidays holidays Holidays Singles Holidays https://www.saga.co.u...

i https:ftravel.sagac... 200 holidays/destinations aurope holidays/destinations Holidays Destinations https:///www.saga.co.u...
2 https:ftravel sagac... 200 helidays/destinations. .. spain holidays/destinations... Holidays Destinations https://www.saga.co.u. ..

e " Request & .

3 hitps:/travel.saga.c... 200 forms request-a-brochure holidaysfarms Forms Brookire https://www.saga.co.u...

4 hitpsi/travel.saga.c... 200 cruises holidays Holidays Cruises hitpsy/fwww.saga.co.u...
1135 https://travel.sagac... 200 mmﬂ?yﬁc{:ﬂ:{j rv-mek pandaw lays/types/ ... Holidays Types hitps:/’www.saga.co.u...
1136 hitps:/ftravel.sagac... 200 holidays/destinations... mk"'mu‘;":‘;i:" holidays/destinations... Holidays Destinations https:/www.s3ga.co.u...
1137 https://travelsaga.c... 200 helidays/destinations... Q'ﬁmfn"_"' holidays/destinations... Holidays Destinations hitps:/www.5898.00.u...
1138 htipsi/travel.saga.c... 200 holidays/destinations... chrlstmas-on-ﬁl;a- holidays/destinations... Holidays Destinations https:/f'www.saga.co.u...
1139 hitps:/travel.saga.c... 200 holidays/destinations... holidays/destinations... Holidays Destinations hitps:///www.saga.co.u...

1140 rows x 8 columns

To prepare the combining of the remaining URLs to the original latest mapping, we need to add site levels
and some basic checks such as removing duplicate current URLs (after all, the same URL can’t be redirected
to two or more different URLs).

The site level is calculated by counting the number of slashes in the migration URL and subtracting one
from it. This means the home page is one, and all other pages are referenced from there.

allocated distinct
allocated distinct
'current url')
allocated distinct['migration url']
allocated distinct['migration url'].str.replace('/holidays/cruises/"',
'/cruises/")

allocated distinct['migration url']
allocated distinct['migration url'].str.replace(' ',
allocated level allocated distinct

allocated drafted
allocated distinct.drop duplicates (subset

-

allocated level['level'] = allocated level.migration url.str.count('/') -1
allocated level = allocated level[['parent',6 'child', 'level’,
'current url', 'migration url']]
pd.set option('display.max colwidth', 65)
allocated level
This results in the following:
parent child level current_url migration_url
0 Holidays Singles Holidays 3 hitps:i/travel. saga.co.uk/holidays/holiday-typ ingles-holi... https:/fwww.saga.co.uk/holidays/singles-holidays
1 Holidays Destinations 4 hittps://travel.saga.co.uk/holiday BUrope.aspx htips://www.saga.co.uk/holidays/destinations/europe
2 Holidays Destinations 5 httpsiftravel.saga.co.uk/holidays/destinations/europe/spain.... https://www.saga.co.uk/holidays/destinations/europe/spain
3 Forms Reguest A Brochure 4 https//tiravel.saga.co.uk/forms/request-a-brochure.aspx https:/www.saga.co.uk/holidays/forms/request-a-brochure
4 Holidays Cruises 3 https://travel saga.co.uk/cruises.aspx hittps://www.saga.co.uk/holidays/cruises
1135 Holidays Types 6 hitps:i/fravel saga.co.uk/holidays/oliday-types/escorted-tou... hittps:/fwww.saga.co.uk/holi e orted-tours/small-sh...
1136 Holidays Destinations & https:/ftravel saga co.uk/holidays/destinations/north america... hitps:/www.saga.co.uk/holidays/destinati /north icalca.
1137 Holidays Destinations 7 https:t l.saga.co.uk/holidays/d feuropafukieng... https:/fwww.saga.co.ukiholidays/destinatior ropal glan...
1138 Holidays Destinations 7 https:/ftravel.saga.co.L feurcpe/ukfeng... hitps://www.saga.co.uk/holidays/destinations/europe/uk/englan...
1139 Holidays Destinations 5 hitps://travel saga.co.uk/holiday /north https://www.saga.co.uk/holidays/destinations/north-america/me...

1140 rows = 5 columns

With the columns now matching the original imported travel mapping, we're ready to combine:

total mapping = pd.concat ([latest mapping raw, allocated level])

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

total mapping

This results in the following:

parent child level current_url migration_url

0 Homepage Holidays 0 https://travel.saga.co.uk/ hitpsifwww.saga.co.uk/holidays

1 Homepage Holidays 2 hitps://travel.saga.co.uk/holidays https://www.saga.co.uk/holidays

2 Holidays Destinations 3 https://travel.saga.co.uk/holidays/destinations.aspx https:/www.saga.co.uk/holidays/destinations
3 Destinations Africa 4 https:/ftravel saga.co.uk/holidays/destinations/africa.aspx https:/fwww.saga.co uk'holidays/dastinations/africa
4 Africa Egypt 5 hitps:/itravel.saga.co.uk/holidays/destinations/africa/egypt.... https:/Awww.saga.co.uk/holidays/destinations/africa/egypt
1135 Holidays Types & https:/fravel.saga.co.uk/holi holiday-types/ ted-tou... https://www.saga co.uk/holidays/types/escorted-tours/small-sh...

1136 Holidays Destinations 6 https://travel saga.co.uk/holidays/destinations/north america... https://www.saga.co.uk/holidays/destinations/north-america/ca. ..

1137 Holidays Destinations 7 https:/itravel.saga.co.uk/holic inati pe/ukfeng... https://www.saga.co.uk/holidays/destinations/europe/uk/englan. ..

1138 Holidays Destinations 7 hitps:/ftravel saga.co.uk/holid opefukieng... https://www.saga.co.uk/molidays/destinations/europe/uk

1139 Holidays Destinations 5 https:/fravel.saga.co.uk/holidays/destinations/north-america... hitps:/f'www.saga.co.uk/holidays/destinations/north-america/me. ...

1609 rows = 5 columns

The rows are now combined. Now we will drop duplicate rows and calculate the string similarity between
the current URL and the migration URL, which will help us in the manual review of the export file:

total mapping simi = total mapping.drop duplicates(subset = 'current url')
total mapping simi['simi'] = total mapping simi.loc|[
:, ['current url', 'migration url']].apply(

lambda x: sorensen dice(*x), axis=l)

total mapping simi.to csv('exports/' + target site search + ' ' +
target bu + ' total mapping simi.csv')

total mapping simi

This results in the following:

parent child level current_url migration_url simi
0 Homepage Holidays o https://travel.saga.co.uk/ https://www.saga.co.uk/holidays 0.771930
1 Homepage Holidays 2 hitps://travel.saga.co.uk/holidays https:/’'www.saga.co.uk/holidays 0.861538
2 Holidays Destinations 3 https://travel.saga.co. uk/holidays/destinations.aspx hitps:/www.saga.co.uk/holi inati 0.854167
3 Destinations Africa 4 hitps:/ftravel.saga.co.uk/holidays/destinations/africa.aspx https://www.saga.co.uk/holidays/destinations/africa 0.872727
4 Africa Egypt 5 hitps://iravel.saga.co.uk/holic inations/africale... hitps:/fwww.saga.co.uk/holid; lastinations/africa’egypt 0.8B5246

1135 Holidays Types 6 hitps:/ftravel saga co.uk/holidays/holiday-types/escorte... hitps:/fwww.saga co.uk/holidays/types/escorted-tours/sma... 0.838710

1138 Holidays Destinations 6 hitps:/travel saga.co.uk/holidays/destinations/north am... hittps://www.saga.co.uk/holidays/destinations/north-ameri... 0.887850
1137 Holidays Destinations 7 https:/iftravel saga.co.uk/holidays/destinations/europe/u... httpsi/f'www.saga.co.uk/holidays/destinations/europe/ulkde... 0.943088
1138 Holidays Destinations 7 https:/ftravel saga.co.uk/holidays/destinations/europe/u... hitpsi//www.saga co.uk/holidays/destinations/europe/uk/e... 0.926316

1139 Holidays Destinations 5 httpsi//travel.saga.co.uk/holidays/destinations/north-am... hitpsy//www.saga.co.. y inations/north-ameri.., 0.245283

1398 rows x 6 columns

We now have the migration mapping ready to review in Excel. Note the row number has reduced as
duplicate current URLs have been eliminated. We’ve also put a new column “simi” to help flag any URLs that
have “migration URLSs less than 75% similar to their current URL counterpart.” Although not foolproof, this
will help provide a quick way of finding and sorting any anomalies.

Migration planning can inspire challenge and dread for a lot of SEOs. Al and data science have yet to
advance far enough to fully automate, let alone semiautomate, most of the site migration planning process.

Much of the advance will depend on the NLP models at the Al level available to the SEO industry to
reliably understand, reduce, and map existing content URLs to new URLs.

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

The next section will now address troubleshooting traffic losses following a site migration.

Migration Forensics

At this point, we're here to work out what changed and which content was affected following a migration.
We’ll be taking the following steps:
1.

Traffic trends

2.
Determine the change point

Determine the winning and losing content
Gather a list of URLs before and after for crawling
Group and segment URLs

Diagnose

Road map of recommendations

As usual, we start importing our libraries. You'll notice that some of the packages include some string
distance functions from textdistance and timedelta to help us work with time series data:

import pandas as pd

import numpy as np

from textdistance import sorensen dice
from plotnine import *

import datetime

from datetime import timedelta

from textdistance import sorensen dice

root url = 'https://www.saasforecom.com'
root domain = 'saasforecom.com'
hostname = 'saasforecom'

Traffic Trends

With the libraries imported and the variables set, we’ll import the data from Google Analytics (GA). We use
GA because it gives us a breakdown by date that is not easily found in Google Search Console (GSC) without
substantial sampling.

ga_orgdatelp raw = pd.read csv('data/Analytics www.salesorder.com All
Traffic 20200901-20201231.csv', skiprows = 5)

Here, we're getting rid of the rows which are not part of the main table that is default in GA tabular
exports:

ga_orgdatelp raw
Page'].isnull ()]
ga_orgdatelp raw = ga orgdatelp raw[~ga orgdatelp raw['Sessions'].isnull ()]

ga_orgdatelp raw[~ga orgdatelp raw['Landing

To make the columns cleaner; we’ll perform a number of string operations:

ga_orgdatelp raw.columns = ga orgdatelp raw.columns.str.lower ()
ga_orgdatelp raw.columns = ga orgdatelp raw.columns.str.replace('/', '',
regex = False)

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

ga_orgdatelp raw.columns
regex = False)
ga_orgdatelp raw.columns = ga orgdatelp raw.columns.str.replace('s ', '',
regex = False)
ga_orgdatelp raw.columns
regex = False)
ga_orgdatelp raw.columns = ga_ orgdatelp raw.columns.str.replace(' ', ' ',
regex = False)

ga_orgdatelp raw = ga orgdatelp raw[ga orgdatelp raw['landing page'] !=
'/pages/login.aspx']

ga_orgdatelp raw

ga_orgdatelp raw.columns.str.replace('.', '',

ga_orgdatelp raw.columns.str.replace (' U,

This results in the following:

landing_page date sessions new_sessions new_ users bounce rate pages avg_! ion_i trar

2020-

0 ! lo.08 180 35.56 64 0.56 3.24 124.0
2020-

1 ! Y048 175 24.00 42 0.00 4.860 180.0
2020-

2 ! lo.07 168 23,67 40 0.00 4.15 283.0
2020-

3 ! Y130 163 23.31 38 0.00 4.85 2710

4 1 2020- 158 2722 43 0.63 3.86 152.0
12-15
. i 2020-

604 fsubmit-support-ticket/ {7 o 1] 0.00 0 0.00 50.00 31220
2 . 2020-

B05 fsubmit-support-ticket! 12.19 1 0.00] 0.00 2.00 0.0
% % 2 4y 2020-

606 ftrial-settings-2-set-admin-company-details/ 12.07 1 0.00 0 0.00 80.00 4516.0
2020-

BOT fzendesk-request-form-test/ 1 0.00 o 0.00 4.00 237.0

12-11

/zendesk-request-form-test/? 2020-

B0B o oview id=156968preview nonce=83bi02d08aspreview=true 12-10 | 900 U o 1200 &80

608 rows x 11 columns

With the data imported and the column names cleaned and nicely formatted, we’ll get to work on cleaning
the actual data inside the columns themselves.

This again will make use of string operations to remove special characters and cast the data type as a
number as opposed to a string.

Clean the GA data:

ga_clean = ga_orgdatelp raw

Format the dates:

ga_clean['date'] = pd.to_datetime(ga clean.date, format='3%Y%m%d')
ga_clean['bounce rate'] = ga clean.bounce rate.str.replace('3s', '')
ga_clean['bounce rate'] = ga clean.bounce rate.astype (float)
ga_clean['new sessions'] = ga clean.new_sessions.str.replace('s', ''")
ga_clean['new sessions'] = ga clean.new_sessions.astype (float)

ga_clean['ecommerce conversion rate'] =
ga_clean.ecommerce conversion rate.str.replace('s', ''")
ga_clean['ecommerce conversion rate'] =
ga_clean.ecommerce conversion rate.astype(float)
ga_clean['revenue'] = ga_clean.revenue.str.replace('$', '
ga_clean['revenue'] = ga clean.revenue.astype (float)

ga _clean['avg session duration'] =

ga clean.avg session duration.str.replace('<', '')

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

ga_clean['avg session duration'] =
pd.to timedelta(ga clean.avg session duration).astype(int) / 1le9
ga_clean

This results in the following:

landing_page date sessions new sessions new_users bounce rate pages i avg_ ion_duration
nEE 180 35.56 B4 056 3.24 1.240000e-07 00 0.0
! %‘F& 175 24.00 42 0.00 4.60 1.9000008-07 0.0 0.0
' fgf'g; 169 23.67 a0 0.00 415 2,8300006-07 0.0 0.0
e 163 23.31 38 0.00 485 2.7100006-07 0.0 0.0
72 158 27.22 43 063 288 1.5200008-07 0.0 0.0
2020-
Jsubrit-support-ticket/ 2901 1 0.00 0 0.00 50.00 3.122000-06 00 0.0
: : 2020-
fsubmit-support-ticket! 13-19 1 0.00 4] 0.00 2.00 0.000000e+00 0.0 oo
) o, 2020-
dmin-company-details’ 1297 1 0.00 ¥] 0.00 80.00 4.516000e-06 0.0 0.0
2000-
Jesk-request-form-test/ 19-11 1 0.00 1] 0.00 4.00 2.370000e-07 0.0 0.0
sk-request-form-test/7 2020~
Hoa0batprovcwetue 121 1 0.00 0 0.00 12.00 3.330000e-07 0.0 0.0
ga stats = ga clean

We select the columns we actually want. You may have noticed that some columns were cleaned up and
ended up not being used. This may seem like a waste of effort; however, you don’t always know what you
will need or for what purpose. So cleaning columns is a good standard practice so that the data is ready
should you discover that you need it later on.

ga_stats = ga stats[['landing page', 'date', 'new sessions',

'avg session duration']]

ga_stats = ga stats.rename (columns = {'landing page': 'subpath'})
ga stats

This results in the following:

subpath date new_: i avg_ ion_durati
1] [2020-12-08 35.56 1.240000e-07
1 / 2020-12-18 24.00 1.900000e-07
2 / 2020-12-07 23.67 2.830000e-07
3 / 2020-11-30 233 2.710000e-07
4 / 2020-12-15 2722 1.520000e-07
604 /submit-support-ticket/ 2020-12-15 0.00 3.122000e-06
605 fsubmit-support-ticket/ 2020-12-19 0.00 0.000000e+00
606 ftrial-settings-2-set-admin-company-details/ 2020-12-27 0.00 4.516000e-06
607 /zendesk-request-form-test/ 2020-12-11 0.00 2.370000e-07
608 /zendesk-request-form-test/?preview_id=15696&preview_nonce=83bf02d08a&preview=true 2020-12-10 0.00 3.330000e-07

609 rows x 4 columns
Import GSC Pages data to grab all of the unique URLSs for crawling:

all gsc_raw = pd.read csv('data/throughout Pages.csv')

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

all gsc raw.columns = all gsc raw.columns.str.lower ()

all gsc raw.columns = all gsc raw.columns.str.replace('/'
False)

all gsc raw.columns = all gsc raw.columns.str.replace('.'
False)

all gsc raw.columns = all gsc_raw.columns.str.replace('%
False)

all gsc raw.columns = all gsc raw.columns.str.replace ('
False)

all gsc raw.columns = all gsc raw.columns.str.replace(' '
False)

all gsc raw['ctr'] = all gsc raw.ctr.str.replace('s', '',

print (all gsc_raw.head())

all gsc urls = all gsc raw[['top pages']]

all gsc urls = all gsc urls.rename (columns = {'top pages'
'url'}) .drop duplicates()

all gsc urls

This results in the following:

4

4

'', regex =
'', regex =
, "', regex =
, ' ', regex =
' ', regex =

regex = False)

url

https://www.saasforecom.com/

1 https://www.saasforecom.com/documentation/products-services/working-with-items/non-stock-item/

2 https://www.saasforecom.com/documentation/sales/working-with-sales-orders/allocating-stock-to-saasforecoms/pick-pack-ship-process/

3 https://www.saasforecom.com/documentation/sales/working-with-sales-orders/allocating-stock-to-saasforecoms/

4 https://www.saasforecom.com/warehouse-management-system/
978 https://www.saasforecom.com/documentation/tag/contacts/
979 https://www.saasforecom.com/b2b-ecommerce-solution/#elementor-toc__heading-anchor-7
980 https://www.saasforecom.com/help/sales-accounting/using-sales-invoice/#elementor-toc__heading-anchor-54
981 https://www.saasforecom.com/help/start/setup-document-template/#elementor-toc__heading-anchor-5
982 https://www.saasforecom.com/documentation/tag/tax-codes/

983 rows x 1 columns
The GA URLs will also be extracted and joined to the domain ready for crawling:

ga_raw _urls = ga_raw_comb[['landing page']]

ga_raw urls = ga _raw_urls.rename(columns = {'landing page':

'url'}) .drop duplicates()
ga raw urls['url'] = root url + ga raw urls['url']
ga raw urls

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url

0 https://www.saasforecom.com/
26 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/
37 https://www.saasforecom.com/cloud-based-inventory-management/
39 https://www.saasforecom.com/help/
40 https://www.saasforecom.com/cloud-erp-solution/

588 https://www.saasforecom.com/saasforecom-pricing/? preview_id=8169&preview_nonce=2eff823a8f&preview=true
589 https://www.saasforecom.com/saasforecom/sohelp/help/prestashop.htm
606 https://www.saasforecom.com/trial-settings-2-set-admin-company-details/
607 https://www.saasforecom.com/zendesk-request-form-test/

608 https://www.saasforecom.com/zendesk-request-form-test/?preview_id=15696&preview_nonce=83bf02d08a&preview=true
203 rows x 1 columns
Combine the GA and GSC URLs, dropping duplicates, ready for crawling:
crawl urls = pd.concat([ga raw urls, all gsc urls]).drop duplicates()
crawl urls.to csv('data/urls to crawl.csv')

crawl urls

This results in the following:

url

0 https://www.saasforecom.com/
26 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/
37 https://www.saasforecom.com/cloud-based-inventory-management/
39 https://www.saasforecom.com/help/
40 https://www.saasforecom.com/cloud-erp-solution/
978 https://www.saasforecom.com/documentation/tag/contacts/
979 https://www.saasforecom.com/b2b-ecommerce-solution/#elementor-toc__heading-anchor-7

980 https://www.saasforecom.com/help/sales-accounting/using-sales-invoice/#elementor-toc__heading-anchor-54
981 https://www.saasforecom.com/help/start/setup-document-template/#elementor-toc__heading-anchor-5

282 https://www.saasforecom.com/documentation/tag/tax-codes/

1077 rows x 1 columns

With the crawl completed, we're ready to import the data, clean the columns, and view the raw data:

audit urls raw =

pd.read csv('data/all urls excluding uncrawled filtered 20210803163126.csv"')
audit urls raw.columns = audit urls raw.columns.str.lower ()

audit urls raw.columns = audit urls raw.columns.str.replace('/', '', regex =
False)

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

audit

False)

audit

False)

audit

False)

audit

False)

urls raw.columns =
urls raw.columns =
urls raw.columns =

urls raw.columns =

#audit urls raw['ctr']

False)

audit urls raw.columns.str.replace('.'

audit urls raw.columns.str.replace('$%

audit urls raw.columns.str.replace ('

audit urls raw.columns.str.replace ('

audit urls raw.ctr.str.replace('%', '

#audit urls raw.drop duplicates()

audit

This

urls raw

results in the following:

url crawl_depth crawl_status

host is_subdomain

scheme crawl_source

, , regex =

', "', regex

, , regex

, ' ', regex

, regex =

first_parent

1190

1191

1182

1183

1184

https:/'www.saasforecom.com/

https://www saasforecom.com/ecommerce-
order-management-system/

https:/iwww lsoft
for- house-inver y-IT

ttps:/ r.com/drop
shipping-automation-softwans/
https:/fwww.saasforecom.com/refer-and-

earn/

https:/www.saasforecom.com/help/order-
ft guide/using-drop-
ship-sales-orders/

hittps:/fwww.saasforecom.com/cloud-
Bdsat i b

https.//www.saasforecom.com/mhelp/crm-
fo i i les-quote/

g g

hitps:/fwww.saasforecom.com/crm-for-
distributors-wholesalers-ecommerce/

https:/fwww. saastorecom.com/bZb-
ecommerce-solution/

1184 rows x 21 columns

o

1

Mot Set

Not Set

Not Set

Not Set

Not Set

Success

Success

Success

Success

Success

WWW.saasiorecom.com

www.saasforecom.com

www.saasforecom.com

www.saasforecom.com

www.saasforecom.com

Redirect

Success

Redirect

Success

www.saasforecom.com

WWW.s5aasiorecom.com

www._saasforecom.com

WWwW.saasiorecom.com

Mo

No

Mo

Mo

Mo

Mo

MNo

Mo

MNo

Mo

hitps

htips

https.

https

https

https

hitps

hitps

https

Crawler

Crawler

Crawler

Crawler

Crawler

Uri List

Uri List

Uri List

Uri List

Ur List

Mo

https:/fwww.saasforecom.col

hitps://www.saasforecom.col

https://www.saasforecom.col

https://www.saasforecom.col

Mo

We can see that most of the server status has not been extracted. This is likely to be a bug in the crawling
software. The best thing to do is to take it up with the software vendor and recrawl with a longer timeout
setting and at a slower pace to improve the numbers.

audit urls raw.groupby('final redirect url status code') .size()

final redirect url status code

200 452
404 1
Not Set 731
dtype: intoc4

After our recrawl, 452 URLs is the best we could come up with. Next, we're ensuring any rows with
duplicate URLs are dropped:

audit urls map =

['url'

]) .reset index()

audit urls raw.drop duplicates (subset

audit urls map.to csv('exports/audit urls map.csv')
audit urls map

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

index url crawl_depth crawl_status host is_subdomain scheme crawl_source
o o https://fwww.saasforacom.com/ o W, com Mo https Crawler
1 1 Mttps:www.saasforecom.com/ o nar *:ysm: 5 1 5 www com No htips Crawler b
2 2 hitps:waw. In\rsntorj—r}\anagemenﬁ 1 Si W, com Mo hitps Crawler h
3 3 nnps:ffwww.saasforeoom.cumﬁdm-smmng—aut:or;ﬁ; 1 Success www.saasforecom.com Mo https Crawler F
4 4 hittps:/ifwww, f i) /ref d-garmn/ 1 W, f ITLCOM No hitps Crawler b
g17 11g3 tpsiwww LSS RIS DT TRORGREnt prftuars: NotSet Redirect wwiw.saasforacom.com No hiips Url List
918 1186 hitps:fwww. .comfdocumentatic prospects Mot Set Redirect www.saasforecom.com Mo https Url List
919 1187 hitps:/hwwwsaast comhelpiwms "a:‘;‘;‘;rn'fb‘l‘l‘::, NotSet NotFound www.saasforecom.com No ntips Url List
020 11gg NMPSwW.saaslorecom com/documentationbankingiwerking: notget Redirect wwwissastorecom.com No ntips Ul List
921 1189 hitps:iwww.saasferecom.com/documentation/banking/working- Mot Set Hbdeit N saanierassmienm No https Ul List

with-credit-cards/

922 rows x 22 columns

The row count has now dropped from 1122 to 922 rows. Next, we'll find the final redirect URL so we can see
where the URLs map to. Again, this seemingly unnecessary step is taken to overcome any glitches produced
by the audit software.

Prepare the columns for content evaluation:

audit urls = audit urls map[['url', 'redirect url', 'final redirect url']]
ult dest url = []

This function will take a row, turn it into a list, and take the last value that isn’t equal to “No Data” and
stick the URL in the list ult_dest_url created earlier:

def find ult dest url(row):
data = row.values.tolist ()
data = [e for e in data if str(e) not in ('No Data')]
data = data[-1]
#print (data)
ult dest url.append(data)

The preceding function is applied by calling the following function to take the dataframe row by row,
which is considered to be a less computationally intensive way to iterate over a dataframe, certainly faster
than iterrows:

def apply fudu (df) :
return df.apply(lambda row: find ult dest url(row), axis=l)

Call the apply_fudu function that calls the find_ult_dest_url function:
apply fudu(audit urls)
The resulting list is now converted into a dataframe:

ult dest url df = pd.DataFrame (ult dest url, columns=['ult dest url'])
ult dest url df

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

ult_dest_url

0 https://www.saasforecom.com/

1 https://www.saasforecom.com/ecommerce-order-management-system/

2 https://www.saasforecom.com/software-for-warehouse-inventory-management/

3 https://www.saasforecom.com/drop-shipping-automation-software/

4 https://www.saasforecom.com/refer-and-earn/
917 http://www.saasforecom.com/cloud-based-inventory-management/
918 https://www.saasforecom.com/help/
919 https://www.saasforecom.com/help/wms-console/wms-kits-assemblies/
920 https://www.saasforecom.com/help/
921 https://www.saasforecom.com/help/

922 rows x 1 columns

Append the dataframe to the audit dataframe:

audit urls map prep =

audit urls map prep

This results in the following:

audit urls map.join(ult dest url df)

index url crawl_depth crawl_status host is_subdomain scheme crawl_source
o 0 https:/fwww.saasforecom.com/ o www, com Mo https Crawler
1 1 Mttns:www, T tecim) Har-mae o mﬂ:! 1 s www com No hiips Crawler F
2 2 hitps:/Mw Invsntnryl‘-nr'nansgamanv 1 Si W, COMm Mo htips Crawler h
3 3 https:.-’.-’www,saasforemm.cornfdrop~shipping—aut:nr;1‘ilri;;;—{ 1 Success www.saasforecom.com Mo https Crawler F
4 4 https:/faw fer-and-eam/ 1 5 W, COMm Mo htips Crawler h
g17 1183 [HPS/www. A Bl el e Mot Sat Rediract www.saasforecom.com No ntips Url List
918 1186 hitpsyfwww.saasforecom.com/documentation/related/prospects’ Mot Set Redirect www.saasforecom.com Mo hitps Url List
919 1187 hittps:/fwww: om.com/help ﬁgd:;ssmb‘]’i:‘s{ MotSet MNotFound www.saasforecom.com No hiips Url List
920 1188 n“ps:ﬁww'saaammm'mwdmummwn‘:{;s_g::?":“;m:%; Not Set Redirect www.saasforecom.com No hitps Ur List
921 11sg MPsiwww.saasforecom.com/documentation/banking/working- Not Set Fadistt: - Wi saaaloNBcarsoHm No htips U List

with-credit-cards/

922 rows x 23 columns

With the ultimate destination URLs found, we need a simple way to test how similar they are. We can do this
by measuring the string distance between the URL and the redirect URL. We'll use Sorensen-Dice which is
fast and effective for SEO purposes:

audit urls map prep['content simi']

X3

sorensen_dice (*x),

axis=1)

= audit urls map prep.loc[:,

['url"',
'ult dest url']].apply (lar

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

audit urls map = audit urls map prep
audit urls map

This results in the following:

lus_code redirect url redirect url_status_code urls_with_similar_content unnamed: 20 ult_dest url content_simi

Mot Sat No Data Mot Sat 4] MaN hittps://www.saasforecom.com/ 1.000000

hitps://www.saasforecom.com/ecommerce-

Mot Set No Data Mot Set 1] NaM it s ant-systam/

1.000000

https:/fwww.saasforecom.com/software-

Mot Set No Data Mot Set a NaM for-warehouse-inventory-management/ 1.000000
https://www.saaslorecom.com/drop-

Mot Set Ne Data Not Set 0 NaN shipping-automation-software/ 1.000000

Not Set No Data Not Set 0 fany, Ptpsufisassiomcomcomftelstanc:. 1 bagoga

Notser P/ 3 Lo Not Set 0 Nay MR/ A Ll 0.788732

based-inventory-management/ inventory-management/ :

200 http/fwww.saasforecom.comdhelp/ am 1] NaM hitps:/fwww.saasforecom.com/heip/ 0.688172
httpay/www.saasforecom.com/help/wmsa-

Not Set No Data Mot Sat o MNaM consolawma-kite-assambijag/ 1.000000

200 http:/fwww.saasforecormn.comdhelpd am o MaN hitps:/fwww.saasforecom.com/help! 0.568807

200 http/fwww.saastforecom.com/help/ am o] MNaM hitps:/fwww.saasforecom.com/help/ 0.568807

Segmenting URLs

With all of these audit URLs, we’d want to make sense of them so we can discern trends by content type.
Since we don’t have a trained neural network at hand, we’re going to use a crude yet useful method of
grouping URLs by their URL address.

This method is not only fast, it’s also cheap in that you won't require a million content documents to
train an Al to categorize web documents by content type.

We'll start by extracting the URLs and ensuring they are unique before sticking them into a dataframe:

crawled urls ung = audit urls raw.url.drop duplicates().to frame ()
crawled urls ung

This results in the following:

url
0 https://www.saasforecom.com/
1 https://www.saasforecom.com/ecommerce-order-management-system/
2 https://www.saasforecom.com/software-for-warehouse-inventory-management/
3 https://www.saasforecom.com/drop-shipping-automation-software/
4 https://www.saasforecom.com/refer-and-earn/

1183 hitps://www.saasforecom.com/inventory-management-software-for-wichita-wholesalers/

1186 https://www.saasforecom.com/documentation/related/prospects/
1187 https://www.saasforecom.com/help/wms-console/wms-kits-assemblies/
1188 https://www.saasforecom.com/documentation/banking/working-with-bank-accounts
1189 https://www.saasforecom.com/documentation/banking/working-with-credit-cards/

922 rows x 1 columns

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

all urls = pd.concat([crawl urls, crawled urls ung])
all urls = all urls.drop duplicates()
all urls

This results in the following:

url

0 https://www.saasforecom.com/

26 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/
a7 https://www.saasforecom.com/cloud-based-inventory-management/
39 https://www.saasforecom.com/help/
40 hitps://www.saasforecom.com/cloud-erp-solution/
566 https://www.saasforecom.com/channel/UCIORkl_DituYZLciMtmNbiw
1084 https://www.saasforecom.com/cloud-erp-system-blog/?preview_id=14202&preview_nonce=73739bfaba&preview=true

1104 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/?preview_id=14202&preview_nonce=9d48a4694eipreview=true
1132 https://www.saasforecom.com/help-2-0/?preview_id=148188&preview_nonce=58c5969977&preview=true

1180 https://www.saasforecom.com/video-help-wall/?preview_id=14261&preview_nonce=fa80ab88ac&preview=true

1251 rows = 1 columns

This code cleans up the URLs ready for some text processing so we can start grouping the URLs. We’ll start
with removing the domain portion of the URL as that is constant throughout the URLs:

classified start = all urls[['url']]
classified start['slug'] = classified start.url.str.replace(root url, '',
regex = True)

The home page can be immediately classified:

classified start['slug'] = np.where(classified start.slug == "/", "home",
classified start.slug)

The following will deal with dates which won’t add value to the classification:
classified start['slug'] = classified start.slug.str.replace ("\\d{4}\\-(0[1-
9111[012])\\=-(0[1-9]|[12][0-9]|3[01])",

'', regex = True)

Remove excessive spaces between words:

classified start(['slug'] = classified start.slug.str.replace("["\w\s]", " ",
regex = True)

Remove spaces at the beginning and end:
classified start['slug'] = classified start.slug.str.strip()
classified start = classified start.reset index()
del classified start['index']

classified start.head(10)

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url slug

(i} hitps://www.saasforecom.com/ home
1 https:/fwww. i .com/cloud-arp-system p-guide-whelesalers! cloud arp system saas erp guide wholesalers
2 hitps:/iwww, forecom.com/cloud-based-inventory-manag f cloud based inventory management
3 https:/fwww.saasforecom.com/help’ help
4 https:/fwww.saasforecom.com/cloud-erp-solution/ cloud erp solution
5 hittpss/fwwwe, com/ece rder-management-systam/ ecammerce order management system
L https:/fwww., Vdrop-shipping i f drop shipping automation software
7 https:/fwwew.saasforecom.com/sof f i itony software for warehouse inventory managemant
8 hittps:/fwww. fi 'benefits-of-cloud-erp/ benefits of cloud erp
g hitps://www.saastoracom.comicrm i i f crm for wholesale distributors
10 https://fwww.saasforecom.com/cloud-erp-order-management-software-about-us/ cloud erp order management software about us

The result is the URL words without all of the characters, that is, the slug. We’ll want to apply some numbers
to get a sense of priority, so we'll use GSC traffic data to weight the slugs.

Get GSC traffic data:
url clicks gsc = all gsc raw[['top pages', 'clicks']]
url clicks gsc = url clicks gsc.rename (columns = {'top pages': 'url'})

url clicks gsc

This results in the following:

url clicks
0 https.//www.saasforecom.com/ 6911
1 https://www.saasforecom.com/documentation/products-services/working-with-items/non-stock-item/ 428

2 httpsi//www.saasforecom.com/documentation/sales/working-with-sales-orders/allocating-stock-to-saasforecoms/pick-pack-ship-process/ 417

3 https://www.saasforecom.com/documentation/sales/working-with-sales-orders/allocating-stock-to-saasforecoms/ 365

4 https://www.saasforecom.com/warehouse-management-system/ 336
a78 https://www.saasforecom.com/documentation/tag/contacts/ 0
979 https://www.saasforecom.com/b2b-ecommerce-solution/#elementor-toc__heading-anchor-7 0
980 https://www.saasforecom.com/help/sales-accounting/using-sales-invoice/#elementor-toc__heading-anchor-54 o]
981 httpsy//www.saasforecom.com/help/start/setup-document-template/#elementor-toc__heading-anchor-5 0
982 httpsy//www.saasforecom.com/documentation/tag/tax-codes/ o

983 rows x 2 columns
Then merge into the URL slug table earlier:

classified stats = classified start.merge(url clicks gsc, on = 'url', how =
'left!')

Remove URLs with no clicks. Choose your GSC date range wisely here. If you just went for 28 days, then
there’s the risk of seasonal bias as some content may not receive traffic at certain times of the year. Our
recommendation is to select 16 months, the maximum possible for extraction from GSC.

classified stats = classified stats[classified stats.clicks > 0]
classified stats

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

wrl slug clicks

1] https://www.saasforecom.com/ home 6311.0

1 hitps:/www. com/clous P-sysi P-guidi f cloud erp system saas erp guide wholesalers aro

2 hitps2//www.saasforecom.com/cloud-based-inventory-r / cloud based Inventory management 48.0

3 https://www.saasforecom.comvhelp/ help 4.0

4 https://www.saasforecom.com/cloud-erp-solution/ cloud erp solution 48.0

1246 hitps:/fw f /i AUCIORK_DituY ZLciMtmNbfw channel UCIORK_DituYZLciMtmNbfw 0.0

1247 . hﬂpsn’rwww.saasfpmn.cnnﬂclnudneup-systmbﬂngf? cloud erp system blog preview_id 14202 pra\risnf_ nonce 0.0
preview_id=14202&preview_nonce=73733bfabalpreview=true T3739bfaba praview true

1248 hnpszﬁwww.saasml:Zr:vclouﬂ-emjsyitm-saaf;erp-guide—xr?olgsale[&f? cloud Bf:;g‘:%ﬁﬁf:f;ﬁmﬁimeﬂi: oo

1249 . . hm:_:s:.n’Mww.saas[otscom.com.-’ha_lp—z—n.’? help 2 0 preview_id 14818 preview_nonce 5Bc5_96997? 0.0
preview_id=14818&preview_nonce=58c506007 7&preview=true preview true

1250 https:/www.saasforecom.com/videa-halp-wall/? video halp wall preview_id 14261 preview_nonce fa®lab8Bac 00

praview_id=14261&preview_nonce=fad0ab8Bac&previews=trua praview true

1251 rows = 3 columns

We’re going to explode the slug column into unigrams. That means taking the slug and expanding the
column into several rows such that each word in the slug has its own row as one column:

bigrams classified stats['slug']

bigrams bigrams.str.split (' ") .explode () .to frame ()
bigrams = bigrams.rename (columns = {'slug': 'ngram'})
bigrams.head (10)

This results in the following:

ngram
0 home
1 cloud
1 erp
1 system
1 saas
1 erp
1 guide

1 wholesalers

L]

cloud
2 based
With the slugs “exploded” into ngrams, this will be mapped to their original URL and traffic stats table:
bigrams df = classified stats.join(bigrams)
bigrams df.head(20)

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url slug clicks ngram
0 https://www.saasforecom.com/ home 6911.0 home
1 hitps://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers! cloud erp system saas erp guide wholesalers 37.0 cloud
1 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/ cloud erp system saas erp guide wholesalers 37.0 erp
1 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/ cloud erp system saas erp guide wholesalers 37.0 system
1 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/ cloud erp system saas erp guide wholesalers 37.0 saas
1 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/ cloud erp system saas erp guide wholesalers 37.0 erp
1 https://www.saasforecomn.com/cloud-erp-system-saas-erp-guide-wholesalers/ cloud erp system saas erp guide wholesalers 37.0 guide

1 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/ cloud erp system saas erp guide wholesalers 37.0 wholesalers

2 hittps:/fwww.saasforecom.com/cloud-based-inventory-management/ cloud based inventory management 49.0 cloud
2 https://www.saasforecom.com/cloud-based-inventory-management/ cloud based inventory management 49.0 based
2 https://www.saasforecom.com/cloud-based-inventory-management/ cloud based inventory management 49.0 inventory
2 hitps://www.saasforecom.com/cloud-based-inventory-management/ cloud based inventory management 49.0 manageament
3 httpsy//www.saasforecom.com/help/ help 4.0 help
4 https://www.saasforecom.com/cloud-erp-solution/ cloud erp solution 49.0 cloud
4 https://www.saasforecom.com/cloud-erp-solution/ cloud erp solution 49.0 erp
4 https://www.saasforecom.com/cloud-erp-solution/ cloud erp solution 49.0 solution
5 https://www.saasforecom.com/ecommerce-order-management-system/ ecommerce order management system 125.0 ecommerce
5 https://www.saasforecom.com/ecommerce-order-management-systern/ ecommerce order management system 125.0 order
&6 https://www.saasforecom.com/ecommaerce-order-management-systam/ ecommerce order management system 125.0 management
5 https://www.saasforecom.com/ecommerce-order-management-systermn/ ecommerce order management system 125.0 system

With the data merged, we’ll want to remove some rows containing some stop words and other unhelpful
words that could be used when creating group names.

Anote of warning: The code is a bit repetitive on purpose to give you practice and build your muscle
memory even if there are smarter ways to do the entire block in two lines - thinklist and ‘|join(list):

bigrams df = bigrams df[['url', 'ngram', 'clicks']]
bigrams df = bigrams df[~bigrams df.ngram.str.contains (r'\band\b', regex =

True)]

bigrams df = bigrams_ df[~bigrams_df.ngram.str.contains (r'\bfor\b', regex =
True)]

bigrams df = bigrams df[~bigrams df.ngram.str.contains(r'\bto\b', regex =
True)]

bigrams df = bigrams df[~bigrams_ df.ngram.str.contains(r'\ba\b', regex =
True)]

bigrams df = bigrams_ df[~bigrams_ df.ngram.str.contains(r'\ban\b', regex =
True)]

bigrams df = bigrams df[~bigrams df.ngram.str.contains(r'\bin\b', regex =
True)]

bigrams df = bigrams df[~bigrams_df.ngram.str.contains (r'\bcom\b', regex =
True)]

bigrams df = bigrams_ df[~bigrams_df.ngram.str.contains (r'\bwww\b', regex =
True)]

bigrams df = bigrams df[~bigrams df.ngram.str.contains(r'\bthe\b', regex =
True)]

bigrams df = bigrams_ df[~bigrams df.ngram.str.contains(r'\busing\b', regex =
True)]

bigrams df = bigrams_ df[~bigrams_df.ngram.str.contains (r'\bwith\b', regex =
True)]

bigrams df = bigrams df[~bigrams df.ngram.str.contains(r'\b(http|https)\b',
regex = True)]

bigrams df['ngram'] = bigrams_df.ngram.str.strip()

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

bigrams df = bigrams df[~bigrams df.ngram.isnull ()]
bigrams df

This results in the following:

url ngram clicks

0 https://www.saasforecom.com/ home 6911.0

] https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/ cloud 37.0

1 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/ erp 37.0

1 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/ system 37.0

1 https://www.saasforecom.com/cloud-erp-system-saas-erp-guide-wholesalers/ saas 37.0
1250 https://www.saasforecom.com/video-help-wall/?preview_id=14261&preview_nonce=fa90ab88ac&preview=true 14261 0.0

1250 https://www.saasforecom.com/video-help-wall/?preview_id=14261&preview_nonce=fa90ab88ac8preview=true preview_nonce 0.0
1250 https://www.saasforecom.com/video-help-wall/?preview_id=14261&preview_nonce=fa90ab88ac&preview=true fa90ab88ac 0.0
1250 https://www.saasforecom.com/video-help-wall/?preview_id=14261&preview_nonce=fa80ab8Bac&preview=true preview 0.0

1250 https.//www.saasforecom.com/video-help-wall/?preview_id=14261&preview_nonce=fa90ab8B8ac&preview=true true 0.0
8242 rows x 3 columns

The table has ngrams with more sensible labels which can now be sum aggregated to pick the most
common labels per URL:

bigram stats = bigrams df[['ngram', 'clicks']]
bigram stats bigram stats[bigram stats.ngram.str.contains(r'[\w\s]', regex

= True)]

ngram ins = pd.DataFrame (bigram stats.value counts (subset=['ngram']),
columns = ['count'])

bigram stats = bigram stats.merge (ngram ins, on = 'ngram', how = 'left')

The idea here is to create an index based on traffic and the amount of instances of the ngram label:

bigram stats['g score'] = bigram stats['clicks'] * bigram stats['count']
bigram stats = bigram stats.sort values('g score', ascending =

False) .reset index()

del bigram stats['index']

bigram stats.head(10)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

ngram clicks count g_score

0 management 336.0 331 111216.0
1 documentation 428.0 242 103576.0

2 documentation 417.0 242 100914.0

3 documentation 365.0 242 88330.0
4 sales 417.0 206 85902.0
5 sales 417.0 206 85902.0
6 management 233.0 331 77123.0
7 management 232.0 331 76792.0
8 documentation 311.0 242 75262.0
9 sales 365.0 206 75190.0
10 sales 365.0 206 75190.0

We now have a table with ngrams with their stats and their ultimate score. The following function will select
the highest score per ngram:

def filter highest stat(df, delcol, metric):
del df[delcol]
max count = df[metric].max()
daf df [df [metric] == max count]
df = df.iloc[0]
return df

ngram stats map = bigram stats.groupby('ngram') .apply (lambda x:
filter highest stat(x, 'ngram', 'g score')).reset index()

ngram stats map = ngram stats map.sort values('g score', ascending =
False) .reset index()

del ngram stats map['index']

ngram stats map.head(10)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

ngram clicks count g_score

0 management 336.0 331 111216.0

1 documentation 428.0 242 103576.0
2 sales 417.0 206 856902.0
3 working 428.0 146 62488.0
4 software 240.0 215 51600.0
5 inventory 233.0 165 38445.0
6 order 198.0 184 36432.0
T stock 428.0 82 35096.0
8 system 336.0 95 31920.0
9 warehouse 336.0 95 31920.0
10 item 428.0 52 22256.0

The result is a prioritized table showing the most common ngrams that can be used to categorize URLs as
segments.

Using the scores, we'll create two levels of segments, taking the most popular ngrams as labels while
classifying the rest as “other” We’re creating two levels so that we have a more high-level and a more
detailed view to hand.

ngram_segments = ngram stats map[['ngram', 'g score']]
ngram_segments['segment one'] = np.where(ngram segments.index < 11,
ngram_segments.ngram, 'other')

ngram segments['segment two'] = np.where(ngram segments.index < 21,
ngram segments.ngram, 'other')

ngram segments.head (10)

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

ngram g¢_score segment one segment_two

0 management 111216.0 management management

1 documentation 103576.0 documentation documentation
2 sales 85902.0 sales sales
3 working 62488.0 working working
4 software 51600.0 software software
5 inventory 38445.0 inventory inventory
6 order 36432.0 order order
7 stock 35096.0 stock stock
8 system 31920.0 system system
9 warehouse 31920.0 warehouse warehouse
10 item 22256.0 item item

We’ll join the segment labels to the dataset so that all URLs are now classified by segment label:

Join stats and then select highest

#bigram stats

urls grams_stats = bigrams_df.merge(ngram segments, on = 'ngram', how =
'left') .sort values(['url', 'g score'], ascending = False)

urls grams_ stats

This results in the following:

url ngram clicks g_score segment one segment two
hittpsy/fina request-form-test/?
1242 .pw_i il SR e e zendesk 0.0 00 ather other
1243 . mfps”‘;"ﬂ":fﬂffm‘f°m‘°°m"°[‘,‘:ﬁ’;,ﬁf,?f“?'f‘”.m""f‘w request 0.0 0.0 Stk other
hittps:i f ¥ desk- at-f test?
1244 _F’a i:’:‘:‘;’m, 2 ,..Lw:ﬁ, PRtz form 0.0 0.0 other other
https:/fwww saasforecom.com/zendesk-request-form-test/?
1245 5 D bty Pty e roviaamtiion test 0.0 0.0 ather other
https:/fwww.saasforecom.com/zendesk-request-form-test/? -~ _
1247 praview. id=156968praview. nence-B3bf02d08adpraview=true Povew-d 00 240 vl Ll
TE50 hitpi//www.saasforecom.com/mhelp/ 0.0 NaM NaM MNaN
7651 http:fwww.saasforecom.com/help’ 0.0 NaM NaN MNaMN
7567 http:/iwww saasforecom.com/ saasforecom 0.0 2760.0 other other
7565 http://www.saasforecom.com/ 0.0 NaM Mah MNaM
7566 https//www.saasforecom.com/ 0.0 NaN MNan MaM

There are multiple rows per URL; however, we only want the top result, so we’ll apply a function to filter for
the row with the highest g_score:

urls stats grams map = urls grams_ stats.groupby('url') .apply(lambda x:
filter highest stat(x, 'url', 'g score')).reset index()

pd.set option('display.max colwidth', None)

urls grams map = urls stats grams map

urls grams _map = urls grams map.drop duplicates ()
del urls grams map['clicks']

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

del urls grams map['g score']

#urls grams map.iloc[0, 'ngram'] = 'home'
urls grams map|['subpath'] =
urls grams map.url.str.replace(r' (httplhttps)://www.saasforecom.com', '',

regex = True)
urls grams map

This results in the following:

url ngram clicks g_score segment one segment two

a ittpediww L.comd 0.0 2760.0 other other

1 http:/fwww.saasforecom.com/help/ help 00 180380 other help

2 hittp:funmw. fi com/help/; ing/using ies-in-order-r Is| / 0.0 1112160 management management

3 http:/fwww.saasforecom /hal ting/using rencies’ halp 0.0 168038.0 ather help

4 httpe/fwww.saasforecom.c help/! fusing-p t-terms/ help 0.0 16038.0 ather help
1246 https://www.saasforacom.com/whats-in-saasforecom/ saasforacom 0.0 2760.0 other other
1247 https://www.saasforecom.com/woocommerce-inventory-management/ management 233.0 111216.0 management management
1248 hitps://www.saasforecom.com/wor omation-far-i tory-and-order-management/ management 64.0 111216.0 management management
1249 https:/fwww.saasforecom.com/zendesk-request-form-test/ zendesk 0.0 0.0 ather other
1250 https://www.saasforecom. com/zendesk-request-form-test/? S 00 o0 tiar oibar

preview_id=156965preview_nonce=83bi02d0Baspreview=true

1251 rows x 6 columns

All the preceding URLs have a unique row and are categorized by segment label. Let’s summarize the data
by segment to see the distribution of content:

urls grams map.groupby ('segment one').count () .reset index()
This results in the following:

segment_one url ngram segment_two subpath

0 documentation 242 242 242 242
1 home 3 3 3 3
2 inventory 7 7 7 7
3 item 12 12 12 12
4 management 319 319 319 319
5 order 8 8 8 8
6 other 483 483 483 483
7 sales 101 101 101 101
8 software 46 46 46 46
9 stock 17 17 17 17
10 system 13 13 13 13

Most of the traffic is in the other classification, followed by management, documentation, and sales.
The next step is merging the performance data from GA with the segment labels and dropping duplicate
URL combinations:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

ga_segmented = ga_ stats.merge(urls grams map, on = 'subpath', how = 'left')
ga_ segmented = ga segmented.drop duplicates (subset=['date',6 'url'],
keep="'last"')

ga_segmented = ga_ segmented.drop duplicates (subset=['subpath', 'date'],
keep="first"')

Clean up the data such that null sessions are zero and new_sessions are treated as whole numbers (i.e,,

integers):

ga_segmented['new sessions'] = np.where(ga segmented.new sessions.isnull (),
0, ga segmented.new sessions)

ga_segmented['new sessions'] = ga segmented['new sessions'].astype (int)

ga_segmented

This results in the following:

subpath date new i avg._ | i wrl
2020- .

/] ! 12.08 a5 1.240000e-07 hitps://www.saasforecom.com/
2020- :

1 '3 12.18 24 1.900000e-07 hitps:/fwww.saasforecom.com/
2020- .

2 ! 12.07 23 2.830000e-07 hitps://www.saasforecom.com/
2020- :

3 / 11-30 23 2.710000e-07 hitps:/fwww.saasforecom.com/
2020- .

4 L 27 1.520000e-07 https://www.saasforecom.com/

604 fsubmit-support-ticket/ 25°1 0 3.122000e-06 hittps:/fwww.saasforecom.com/submit-support-ticket/

605 fsubmit-support-ticket/ 25-1c 0 0.0000002+00 hittps://www.saasforecam.com/submit-suppart-ticket/

2020- https:/fwww.saasforecom.com/trial-settings-2-sst-admin-

606 ftrial-settings-2-set-admin-company-details/ 12.07 0 4.516000e-06 company-details/
2020- ;

607 fzendesk-request-form-test/ 12.11 o 2.370000e-07 hitpsfwww.: zom.comyzendesk-request-form-test/

{zendesk-request-form-test/? 2020- o 3.330000e-07 nttps:/iwww.saasforecom.com/zendesk-request-form-test/?

508 preview_id=15698&preview_nonce=83bf02d08adpreview=true 12-10 preview_id=15696&preview_nonce=830f02d08a&preview=true

608 rows x B columns
The result is a dataset ready for time series analysis that can be broken down by segment.

Time Trends and Change Point Analysis

Time trends use time series data to help us understand and demonstrate to our colleagues the changes in
search traffic over time. This includes

¢ Confirming the change point of traffic
e Seeing which types of content were impacted (thanks to the segmentation work done earlier)

There is a bit of a limitation in that it’s quite difficult (though not impossible) to get time series data
from Google Search Console (GSC). For Google Analytics (GA), getting time series data at a URL isolated to
organic search is also very difficult.

Time series data can also be quite noisy by nature due to the way it cycles over the week such that there
are peaks and troughs. To tease a trend, we’ll need to dampen the noise which we will achieve by computing
amoving average.

We start by grouping sessions by date:

time trends = ga_ segmented.groupby ('date')
['new sessions'].sum().to frame () .reset index()

Then apply the rolling function to compute a seven-day average:

sess_trends_roll = time trends.rolling(7, min periods=1)

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

sess trends mean = sess trends roll.mean ()
time trends['avg sess'] = sess trends mean
time trends

This results in the following:

date new_sessions avg_sess
7 2020-12-06 783 1103.625000
8 2020-12-07 1265 1121.555556
9 2020-12-08 1195 958.111111
10 2020-12-09 1201 996.555556
11 2020-12-10 1436 1012.777778
12 2020-12-11 671 937.777778
13 2020-12-12 2949 1199.666667
14 2020-12-13 583 1181.777778
15 2020-12-14 687 1196.666667
16 2020-12-15 1073 1228.888889
17 2020-12-16 432 1136.333333
18 2020-12-17 837 1096.555556
19 2020-12-18 1034 1078.000000
20 2020-12-19 750 1001.777778
Let’s visualize:
pre time trends plt = (

ggplot (time trends, aes(x = 'date', y = 'avg sess', group = 1)) +

geom line(alpha = 0.6, colour = 'blue', size = 3) +

labs(y = 'GA Sessions', x = 'Date') +

scale y continuous() +

scale x date() +

theme (legend position = 'right',

axis text x=element text (rotation=90, hjust=1)
))

Pre time trends plt

The shift is quite evident in Figure 9-1 with the better half of the traffic trend switching over to the
worse half at around the 20th of December 2020.

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

1200-
1100~
w
5
£ 1000-
wn
4]
U
<
C g00-
800-
700-
; :)) i | ! :
'3] (=11 ™M ™~ (= (T3] (=] —
(=] (=] — — rTe ~ ~ (=]
~ ~ ~ ~ ~ ~ ™~ —
i — — — - - ~ (=]
(=] o (=] f=) (=] o (=} =)
& = o ~ ~ ~ &~ o
o o o (=] (=1 (=] (=1 [=]
~ ~ ~ ~ ~ ~ ~ ™~
Date

Figure 9-1 Time series of analytics visits
Using change point analysis, let’s confirm this analytically using the ruptures package:

import ruptures as rpt
import matplotlib.pyplot as plt

points = np.array(overall trends['avg sess'])

model="rbf"

algo = rpt.Pelt (model=model) .fit (points)
result = algo.predict (pen=6)
rpt.display(points, result, figsize=(10, 6))
plt.title('Change Point Detection using Pelt')
plt.show ()

The change point analysis in Figure 9-2 confirms that on the 20th of December, there’s a shift downward
in traffic.

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

Change Point Detection using Pelt

1200 1

1100

1000 1

900

B00 1

700

T T T T T T

0 5 10 15 20 25

Figure 9-2 Time series of analytics visits with estimated change point between before (blue shaded area) and after (red)

Yes, it could be coinciding with the Christmas holidays, but unfortunately for this particular company, we
don’t have the data for the previous year to confirm how much of the downward change is attributable to
seasonality vs. the new site relaunch migration.

Segmented Time Trends

With the change point confirmed, let’s now see which content areas were affected. We’ll start by performing
a similar aggregation to calculate the rolling average:

segmented trends = postmortem df.groupby(['date', 'segment two'l])

['new sessions'].sum().to frame().reset index()#.rolling(7).
sessseg trends roll = segmented trends.rolling (8, min periods=1l)
sessseg trends mean = sessseg trends roll.mean ()

segmented trends['avg sess'] = sessseg trends mean

segmented trends

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

date segment_one new_sessions avg_sess

7 2020-11-30 home 23 374.714286

8 2020-11-30 management 132 379.285714

9 2020-11-30 other 600 365.000000
10 2020-11-30 sales 0 293.571429
11 2020-11-30 software 100 179.285714
197 2021-01-01 stock 100 167.714286
198 2021-01-02 home 50 174.857143
199 2021-01-02 management 300 213.000000
200 2021-01-02 other 100 125.000000
201 2021-01-02 software 100 110.714286

195 rows x 4 columns
The data is in long format with the rolling averages calculated ready for visualization:

ga_seg trends plt = (

ggplot (time trends segmented, aes(x = 'date', y = 'avg sess'’,
group = 'segment one', colour =

'segment one')) +

geom line(alpha = 0.7, size = 2) +

labs(y = 'GA Sessions', x = 'Date') +

scale y continuous () +

scale x date() +

theme (legend position = 'right',

axis text x=element text (rotation=90, hjust=1)

))

ga_seg trends plt.save(filename = 'images/l ga seg trends plt.png',
height=5, width=15, units = 'in', dpi=1000)
ga_seg trends plt

No obvious trends are apparent in Figure 9-3, as most (if not all) of the content appear to move in the
same direction over time. It’s not as if a couple of segments decreased while others increased or were
unchanged

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

segment_one
- horme

Inventory
item
management
order

ather

GA Sessions

- sales
— software
stock

system

(=13 — u (=] m P~ — u oy i
5] (=] Q o — — ~ r o~ =]
— ~ ™~ ~ ™ ~ ~ ™~ o~ ™
—t - — — — — — — — =
(=] [=] o L= o [=] o (=] (=] -
™ ™~ ™ ™ ™ ™~ ™ ™ ™ ™
{=3 (=3 o o o = o o o (=]
4 ~ i ~ ~ ~ ~ i ~ ~
Date

Figure 9-3 Time series of analytics visits segmented by content type

Analysis Impact

With the time trends dissected, we turn our attention to analyzing the before and after impact of the
migration to hopefully generate recommendations or areas for further research.
We’ll use GSC data at the page level which can be segmented by merging the map created earlier:

gsc_before = pd.read csv('data/gsc _before.csv')

Clean the column names as usual:

gsc_before.columns = gsc_before.columns.str.lower ()
gsc_before.columns = gsc before.columns.str.replace('/', '', regex = False)
gsc_before.columns = gsc before.columns.str.replace('.', '', regex = False)
gsc_before.columns = gsc_before.columns.str.replace('s ', '', regex = False)
gsc_before.columns = gsc_before.columns.str.replace(' ', ' ', regex =
False)
gsc_before.columns = gsc_before.columns.str.replace(' ', ' ', regex = False)
gsc_before['ctr'] = gsc before.ctr.str.replace('s', '', regex = False)

just so we know which phase of the migration this data refers to:
gsc_before(['phase'] = 'before'

Rename the top_pages column before we merge the segment labels:
gsc_before = gsc before.rename (columns = {'top pages': 'url'})
gsc_before = gsc before.merge (urls grams map, on = 'url', how = 'left')
gsc_before['count'] =1
gsc_before['ngram'] = np.where(gsc before['ngram'].isnull(), 'other',
gsc_before['ngram'])
gsc_before['segment one'] = np.where(gsc_before['segment one'].isnull(),
'other', gsc before['segment one'])
gsc_before['segment two'] = np.where(gsc before['segment two'].isnull(),

'other', gsc before['segment two'])
gsc_before

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url clicks impressions ctr position phase ngram segment one segment two
o httpsy//www.saasforecom.com/ 861 125888 0.53 3584 befors home home home
hittps:/iw .com/d tation/sal ing-with-
1 L ders/ ti tock-t /pick-pack-ship- 104 19510 0.53 30.08 before documentation documentation documentation
process’ s
2 htlpa:;'Mww.uaasfore?0n'|.Dg:!qofun-@ntilsifgzaﬂgslmr!ﬂng—wﬂh: 89 2918 3.05 10,66 before documentation documentation documentation
httpsyiwww. fi comyde ion/products- i . =
3 Services/working-with-items/stack-it ing-stock-mvailability! 50 3668 24 1362 before documentation documentation dacumentation
httpsdwaw. com/do tation/products- . . N
4 vk orking-with-1 Inon-stock-tam/ 83 arod4 224 B8.89 before documentation documentation documentation se
315 https:/iwww.saasforecom.com/d tion/ralatedt odes/ (4] 1 0 21300 before documentation documentation documentation
hitps://www.saasforecom.com/inventory-management-software-for-
316 S Jose wholesalars] 1 0 21900 before sgement g manag
ey A ! i . s working o 1 0 25400 before documentation documentation documentation i
with-sales- ing ions/ i
" 2 A . fc
https:fwww.saasforecom.com.de 1g-with- i . .
318 credit-cards/entering-paying-a-credit-card/ o 1 0 29200 before documentation documentation documentation (
319 Dttpsifiuw LA i i ARG 0 1 0 29400 before documentation documentation documentation
an/ 1g- group:

320 rows x 11 columns

So we have the before GSC data at the page level which is now segmented. The operations are repeated for
the phase post migration, known as “after”:

gsc_after = pd.read csv('data/gsc_after.csv')

gsc_after.columns = gsc after.columns.str.lower ()

gsc_after.columns = gsc_after.columns.str.replace('/', '', regex = False)
gsc_after.columns = gsc _after.columns.str.replace('.', '', regex = False)
gsc_after.columns = gsc after.columns.str.replace('s ', '', regex = False)
gsc_after.columns = gsc_after.columns.str.replace (' ', ' ', regex = False)
gsc_after.columns = gsc after.columns.str.replace(' ', ' ', regex = False)
gsc_after['ctr'] = gsc after.ctr.str.replace('%', '', regex = False)
gsc_after['phase'] = 'after'

gsc_after = gsc_after.rename (columns = {'top pages': 'url'})

gsc_after = gsc_after.merge (urls grams map, on = 'url', how = 'left')
gsc_after['count'] =1

gsc_after['ngram'] = np.where(gsc after['ngram'].isnull(), 'other',
gsc_after['ngram'])

gsc_after(['segment one'] = np.where(gsc after['segment one'].isnull(),
'other', gsc_after['segment one'])

gsc_after(['segment two'] = np.where(gsc after['segment two'].isnull(),

'other', gsc_after(['segment two'])
gsc_after

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url clicks impressions ctr position phase ngram segment one segment two

o hitps:/fwww. saasforecom.com/’ 681 126029 0.54 31.75 after home home home
1 Hitpaciviww sassiomcom comrdop-shipping: ¢ 10880 051 4407 after software software softwars Jdrp-
automation-software/ automation-
hitps:/fww o /marketp! Jmar
2 integration/atay’ 51 3083 1.65 37.38 after integration other other Wtsara

hitps:/fwaww i for-warehouse- /software-for-wz
3 invenlory-managerment! 37 131793 0.03 49.64 after management management management invantory-man
4 it/ / i 3t 30614 041 5551 after management management management acarmel
management-system/ 2 = a9 nag a9 managemen
- - Jdocumentation/|

https:/www.saasforecom v . A M > i
584 ioes/working-with-ems/ 0 1 0 13300 after documentation do 1 servicas/work
" forder-man
585 htlps..-’Mww.saasforEfom.c?m.-"c:rder-managemenl- a 1 0 13400 after management management management software-fc
wh
; Jorder-man
586 MpEwwwssplcICOmCom oidler-mansgsient: 0 1 0 13500 after management management management software-fc
for-omaha-wr s
forder-man
hittps e forder-management- :
587 softwars-for-poriand-wh g 1] 1 o 137.00 after management managemant management sor’mr.‘arﬁ—f‘:;I
/help/st
https:iwww, zom.cam/hel p- d
588 oo 1t #al tor-tac__h di -anchor-5 < ! QR -RrRO: Saliec hislp gikas haly template/de
toc__heading

588 rows x 11 columns

With both datasets imported and cleaned, we’re ready to start analyzing using aggregations, starting with
weighted average rank positions by phase.

The weighted average rank position function (wavg_rank imps) takes two arguments (position and
impressions) and returns the calculation result using the column name “wavg_rank”:

def wavg rank imps(x):

names = {'wavg rank': (x['position'] *
x['impressions']) .sum()/ (x['impressions']) .sum() }

return pd.Series (names, index=['wavg rank']).round(1l)

We’'ll make a copy of the “before” dataset before applying the function:
gsc_before agg = gsc before
gsc_before wavg =

gsc_before agg.groupby ('phase') .apply(wavg rank imps).reset index()

In addition to the weighted average ranking positions, we're also interested in the total number of URLs
and the total number of clicks (organic search traffic):

gsc_before sum = gsc before agg.groupby('phase').agg({'count': 'sum',
'clicks':

'sum'}) .reset index()

gsc_before stats = gsc _before wavg.merge (gsc before sum, on = ['phase'], how
= 'left")

The index is a ratio of clicks to count that forms our index to give us some sense of proportion:
gsc_before stats['index'] =
gsc_before stats['clicks']/gsc before stats['wavg rank']

gsc_before stats.sort values('index', ascending = False)

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

phase wavg rank count clicks index

0 before 44.8 375 600 13.392857

That'’s the stats before the migration. Now let’s look at the stats after the migration, applying the same
methods used earlier to data post migration:

gsc_after agg = gsc_after
gsc_after wavg =

gsc_after agg.groupby ('phase') .apply(wavg rank imps).reset index()
gsc_after sum = gsc_after agg.groupby('phase').agg({'count': 'sum',
'clicks':

'sum'}) .reset index()

gsc_after stats = gsc after wavg.merge(gsc after sum, on = ['phase'], how =
'left')

gsc_after stats['index'] =

gsc_after stats['clicks']/gsc after stats['wavg rank']

gsc_after stats.sort values('index', ascending = False)

This results in the following:

phase wavg_rank count clicks index

0 after 45.0 302 205 4.555556

With both datasets aggregated, we can concatenate them into a single table to compare directly:
pd.concat ([gsc_before stats, gsc after stats])

This results in the following:

phase wavg_rank count clicks index
0 before 448 375 600 13.392857
0 after 45.0 302 205 4.555556

So the average rank doesn’t appear to have changed that much, which implies the dramatic change could be
more seasonal. However, as we’ll see later, averages can often mask what'’s really happening.

The amount of pages receiving traffic has decreased by roughly -20%, which is telling as that appears to
be migration related.

We'll start visualizing some data to help us investigate deeper:

overall clicks plt = (
ggplot (pd.concat ([gsc_before stats, gsc_after stats]),

aes (x = 'reorder (phase, -clicks)', y = 'clicks' , fill =

'phase')) +

geom bar(stat = 'identity', alpha = 0.6, position = 'dodge') +
position=position stack(vjust=0.01)) +

labs(y = 'GSC Clicks', x = 'phase') +

theme (legend position = 'right',

)

)
overall clicks plt.save(filename = 'images/2 overall clicks plt.png',
height=5, width=10, units = 'in', dpi=1000)

overall clicks plt

>>>if tijackgoogleseo.com# I & 3 % 4 ki <<<

Clicks are down in Figure 9-4, which we obviously know, by about -67%.

600-

400-

GSC Clicks

200-

beflore aﬂluer
phase

Figure 9-4 Column chart of before and after Google Search Console (GSC) clicks

Let’s break it down at the segment level.

We'll start by computing segment rank averages and total clicks and derive an index of visibility based
on the ratio of clicks to rank

gsc_before seg agg = gsc_before

gsc_before seg wavg = gsc _before seg agg.groupby(['segment two',
'phase']) .apply(wavg _rank imps) .reset index()

gsc_before seg sum = gsc before seg agg.groupby (['segment two',

'phgse']).ggg(T'count': 'sum', 'clicks': 'sum'}).reset index()
gsc_before seg stats = gsc before seg wavg.merge (gsc _before seg sum, on =
['segment two', 'phase'], how = 'left')

gsc_before seg stats['index'] =
gsc_before seg stats['clicks']/gsc before seg stats['wavg rank']
gsc_before seg stats.sort values('index', ascending = False)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

segment_two phase wavg rank count clicks index

3 home before 31.3 1 364 11.629393
9 other before 37.5 51 55 1.466667
7 management before 51.2 107 71 1.386719
11 software before 43.6 38 50 1.146789
1 documentation before 34.3 96 36 1.049563
14 wholesalers before 10.4 1 6 0.576923
0 crm before 31.7 6 11 0.347003
12 stock before 51 5 1 0.196078
2 help before 19.3 36 2 0.103627
13 system before 69.3 2 3 0.043290
4 inventory before 67.6 1 1 0.014793
5 item before 13.4 2 0 0.000000
6 items before 5.3 2 0 0.000000
8 order before 22.8 2 0 0.000000
10 sales before 19.8 25 0 0.000000

The preceding segment breakdown shows much of the content is in the “management” classification,
followed by “documentation.” We'll repeat the aggregations for the postmigration data:

gsc_after seg agg = gsc_after
gsc_after seg wavg = gsc_after seg agg.groupby(['segment two',

'phase']) .apply(wavg _rank imps).reset index()
gsc_after seg sum = gsc_after seg agg.groupby(['segment two',
'phase']) .agg({'count': 'sum',
'clicks': 'sum'}) .reset index()
gsc_after seg stats = gsc_after seg wavg.merge (gsc after seg sum, on =
['segment two', 'phase'], how = 'left')

gsc_after seg stats['index'] =
gsc_after seg stats['clicks']/gsc after seg stats['wavg rank']
gsc_after seg stats.sort values('index', ascending = False)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

segment_two phase wavg_rank count clicks index

3 home after 31.6 2 140 4.430380
11 software after 44.8 37 29 0.647321
7 management after 51.5 111 17 0.330097
9 other after 38.7 33 10 0.258398
0 crm after 31.4 7 7 0.222930
12 stock after 8.0 2 1 0.125000
1 documentation after 331 50 1 0.030211
2 help after 13.1 31 0 0.000000
4 inventory after 721 3 0 0.000000
5 item after 171 2 0 0.000000
6 items after 5.0 1 0 0.000000
8 order after 7.7 2 0 0.000000
10 sales after 34.1 16 0 0.000000
13 system after 66.4 2 0 0.000000
14 wholesalers after 29.2 3 0 0.000000

Curiously, “management” has 10% more URLs ranking than premigration with no real change in ranking.
“Documentation” has lost virtually all of its clicks and half of its URLs.
To visualize this, the dataframes will need to be concatenated in long format to feed the graphics code:

gsc_long seg stats = pd.concat([gsc before seg stats, gsc after seg stats])
gsc_long seg stats['phase'] = gsc_long seg stats['phase'].astype('category"')
gsc_long seg stats['phase'].cat.reorder categories(['before', 'after'],
inplace=True)

segment clicks plt = (
ggplot (gsc_long seg stats,

aes (x = 'reorder (segment two, -clicks)', y = 'clicks' , fill =
'phase')) +
geom bar (stat = 'identity', alpha = 0.6, position = 'dodge') +
position=position stack(vjust=0.01)) +
labs(y = 'GSC Clicks', x = "'") +
theme (legend position = 'right',

axis text x=element text (rotation=90, hjust=1)
)
)

segment clicks plt.save(filename = 'images/2 segment clicks plt.png',
height=5, width=10, units = 'in', dpi=1000)
segment clicks plt

As shown in Figure 9-5, most of the click losses appear to have happened at the home page.

>>>4f #ijackgoogleseo.com# B & 3 2. fih<<<

300-
g 200- phase
[w] . before
U -
] after
L]
100-
D . l I . - — — — — =1
= 5 e P w 2 w s F
o g 5 % w >
§ £ £ =
£ <3
-
Figure 9-5 Column chart of before and after Google Search Console (GSC) clicks by content segment
What about the number of URLSs receiving traffic from Google?
segment urls plt = (
ggplot (gsc_long seg stats,
aes (x = 'reorder (segment two, -count)', y = 'count' , fill =
'phase')) +
geom bar(stat = 'identity', alpha = 0.6, position = 'dodge') +
position=position stack(vjust=0.01)) +
labs(y = 'GSC URL Count', x = "") +
theme (legend position = 'right',
axis_ text x=element text (rotation=90, hjust=1)
)
)
segment urls plt.save(filename = 'images/2 segment urls plt.png', height=5,

width=10, units = 'in', dpi=1000)
segment urls plt

So there are more management URLs receiving traffic post migration (Figure 9-6).

90-
phase

0 [besore
'_ after

) I I

o I . :

. v v] | ' v v
E

GSC URL Count

o

management
dorumentation
ather
software
help
sales
stock
inventary _
Rrem
order I
aystem _ I
wholesalers _ |
home I
Ipems I

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Figure 9-6 Column chart of before and after Google Search Console (GSC) URL counts by content segment

However, there is much less in “documentation” and “other” and a bit less in “help,” “sales,” and “stock.”
What about Google rank positions?

segment rank plt = (
ggplot (gsc_long seg stats,

aes (x = 'reorder (segment two, -wavg rank)', y = 'wavg rank' ,
fill = 'phase')) +
geom bar (stat = 'identity', alpha = 0.6, position = 'dodge') +
#geom text (dd factor df, aes(label = 'serps name'),
position=position stack(vjust=0.01)) +
labs(y = 'GSC Clicks', x = "") +

scale y reverse() +
#theme classic() +
theme (legend position = 'right',
axis text x=element text (rotation=90, hjust=l)
)
)

segment rank plt.save(filename = 'images/2 segment rank plt.png', height=5,
width=15, units = 'in', dpi=1000)
segment rank plt

Rankings fell for the inventory, sales, wholesalers, and stock classifications (Figure 9-7).

phase

before
a0

Google Rank

after

60«

inventary _

system

negement |
t

1
documentation
whalesalers

Figure 9-7 Column chart of before and after Google Search Console (GSC) rank position averages by content segment

So there is some correlation between the losses in traffic and rankings. As a general conclusion, some of
the downshift in organic performance, as initially suspected, is a mixture of seasonality and site migration.

Diagnostics
So we see that rankings fell for inventory and others, but why?

To understand what went wrong, we're now going to merge performance data with crawl data to help us
diagnose what went wrong. We'll also append the segment names so we can diagnose by content area.
Select the clicks and rank columns we want before merging:

gsc_before diag = gsc _before[['url', 'clicks', 'segment two', 'position']]
gsc_after diag = gsc_after([['url', 'clicks', 'segment two', 'position']]

Now merge to create a new dataframe gsc_ba_diag so we can compare performance at the URL level
before and after.

We use an outer join to capture all URLs before and after the migration. If we did a left join (equivalent of
a vlookup in Excel), Pandas would assume an inner join, which means we’d miss out on any URLs that had

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

no data post migration.

gsc_ba diag = gsc_before diag.merge(gsc _after diag, on = ['url',
'segment two'], how = 'outer')

Because the dataframes of the before and after share the same column names, Pandas interprets this as
unintended and correctly assumes these columns are different and therefore adds the suffixes _x and _y. So
we'’re renaming them to be more user-friendly:

gsc_ba diag = gsc_ba diag.rename(columns = {'segment two': 'segment',
'clicks _x': 'clicks before',
'clicks _y': 'clicks after', 'position x': 'rank before', 'position y':

'rank after' })

After joining, we’d expect to see some rows where they have null clicks before or (more likely) after the
migration. So we're cleaning up the data to replace “not a number” (NaNs) values with 100 for rankings and
0 for clicks:

gsc_ba diag['rank before'] = np.where(gsc ba diag['rank before'].isnull(),
100, gsc _ba diag['rank before'])

gsc_ba diag['rank after'] = np.where(gsc ba diag['rank after'].isnull(),
100,
gsc_ba diag['rank after'])

gsc_ba diag['clicks before'] =
np.where(gsc ba diag['clicks before'].isnull(),
0, gsc ba diag['clicks before'])

gsc_ba diag['clicks after'] = np.where(gsc_ba diag['clicks after'].isnull(),
0,
gsc_ba diag['clicks after'])

With the data in wide format and the null values cleaned up, we can compute the differences in clicks
and rankings before and after, which we will now do:

gsc_ba diag['rank delta'] = gsc ba diag['rank before'] -
gsc _ba diag['rank after']
gsc_ba diag['clicks delta'] = gsc ba diag['clicks after'] -

gsc_ba diag['clicks before']
gsc_ba diag

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url clicks_before segment rank_before clicks after rank_after rank_delta clicks_deita

o https:/fwww. saasforecom.com/ 364.0 home 31.29 140.0 3157 -0.28 -224.0

1 hitps://www.saasforecom.com/drop-shipping-automation-software/ 35.0 software 42,32 1.0 40.84 1.48 -24.0

https:/www. i om.com/sofh for-warahouse-inventory- i u

2 management/ 280 management 48.05 8.0 51.37 232 -20.0

3 https:/fwww.saasforecom.c I integration/etsy/ 26.0 other 34.04 0.0 100.00 -65.96 -26.0

4 https://www.saasforecom.com/ecommerce-order-manag, 21.0 ek 54.97 40 56.30 503 A47.0

system/ anage!

459 hitps:// i .com/d lon/related des/ 0.0 documentation 100.00 0.0 B4.00 16.00 0.0
hitps.//www.saasforecom vinventory-manag ftware-for-

480 san-jose-wholssalars/ 0.0 management 100.00 0.0 B87.00 13.00 0.0

461 https://www. com/docur ion/tag/special-orders/ 0.0 documentation 100.00 0.0 89.00 11.00 0.0
https:/fwww.saasforecom_com/help/accounts-receivable/using-

462 payment-terms/ 0.0 help 100,00 0.0 89.00 11.00 0.0

463 hitps:/fwww.saasforecom. com/inventory-management-software-for- S Ui et 100,00 0.0 93.00 7.00 0.0

8l-paso-wholesalers/

464 rows x 8 columns

The performance deltas are now in place, so we can merge the crawl data with performance data into a new
dataframe aptly named “perf_crawl”

Since we have all the URLs we want and there’s a lot of unwanted URLs in the crawl data, we'll take the
desired URLs (perf_crawl) and join the crawl data specified in the merge function, which will be set to “left”
This is equivalent to an Excel vlookup, which will only join the desired crawl URLs.

perf crawl = gsc ba diag.merge(audit urls map, on = 'url', how = 'left')

perf crawl = perf crawl[['url', 'segment', 'clicks after', 'clicks before',
'clicks _delta', 'crawl depth',

'host', 'crawl source', 'http status code',
'indexable status', 'canonical url',

'canonical status', 'redirect url',
'redirect url status_code’,

'final redirect url',
'final redirect url status code', 'urls with similar content',

'ult dest url', 'content simi']]

perf crawl

This results in the following:

url segment clicks_after clicks_before clicks_delta crawl_depth host crawl_sourn
(1] https://www.saasforecom.com/ home 140.0 364.0 -224.0 0 www.saasforecom.com Crawl
hittps://www.saasf ipping i }
1 ot software/ software 1.0 35.0 240 1 www.saasforecom.com Crawl
https:ffeww, fs fai house-
2 inventory-management/ management 2.0 28.0 -20.0 1 www.saasforecom.com Crawl
hittps./, forecom. ketplace- E
3 intagration/etsy/ other 0.0 26.0 26.0 Mot Set www.saasforecom.com Urd U
i mmjm.smrmum.cunn;;ua;mmsrs:;g:m management 4.0 21.0 70 1 www.saasforecom.com Crawl
4gp NHtpSHwww. ERET patc codge 05U 0.0 0.0 0.0 Mot Set www.saasforecom.com Url L
Pt Sae sforecom comyinyentory MANEgemerl s agaront 0o 0.0 0.0 NotSet www.saasforecom.com U
]
gy Ditpsifu d tionfiagispecial o, 2 0.0 0.0 0.0 Not Set www.saasforecom.com url U
orders/
462 hitps:/ o S 1pfac‘u?unta—r help 0.0 0.0 0.0 2 www.saasforecom.com Crawl
using-pay terms/
483 hiipais ! ik sl management 0.0 0.0 0.0 Mot Set www.saasforecom.com Url Li

for-el-paso-

464 rows x 19 columns

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

More fun awaits us as we now get to diagnose the URLSs. To do this, we’re going to use a set of conditions in
the data, such that when they are met, they will be given a diagnosis value. This is where your SEO
experience comes in, because your ability to spot patterns dictates the conditions you will set as follows:

perf diags = perf crawl.copy/()

Create a list of our conditions:

modifier conds = [

(perf crawl['http status code'] == '200"') & (perf crawl['crawl source']
!= '"Crawler'),

(perf crawl['redirect url status code'] == '301"),

(perf crawl['http status code'].isnull()),
perf crawl['http status code'].isin(['400', '403', '404'1),
(perf diags['canonical status'] != 'Missing') &
(perf diags['indexable status'] == 'Noindex'),
perf diags['content simi'] < 1

]
Create a list of the values we want to assign for each condition:

segment values = ['outside ia', 'redirect chain', 'lost content', 'error',
'robots conflict', 'lost content']

Create a new column and use np.select to assign values to it using our lists as arguments:

perf diags['diagnosis'] = np.select (modifier conds, segment values, default
= 'other'")
perf diags['diagnosis'] = np.where((perf diags['diagnosis'] ==

'redirect chain') & (perf diags['content simi'] < 1),
'lost content', perf diags['diagnosis'])

perf diags

This results in the following:

e final_redirect_url final_redirect_url_status_code urls_with_similar_content ult_dest url content_simi diagnosis

Set No Data Not Set 0.0 https://www.saasforecom.com/ 1.000000 other

https:/fwww.saasforecom.com/drop-shipping-

Set Mo Data Not Set 0.0 automation-softwars/ 1.000000 other
hittps:/fwww. c e

Sat No Data Not Sat 0.0 warehouse-Inventory-managsment/ 1.000000 othar

Set No Data Not Set api HEpUAW SeERrSCOmCE 1 0.613559 lost_content

’ order-management-system/ -

https://www.saasforecom.com/ecommerce-

Bat No Data Mot Set 0.0 T ianaGEmeaysta 1.000000 other

301 hittpsyfwww.saasforecom.com/help/ 200 0.0 https2/fwww.saasforecom.com/help/ D.666667 lost_content
http:/fwww.saastarecom.com/cloud-based-

Set Mo Data Not Sat 0.0 inventory-managemant/ 0.769231 lost_content

i1 hittpsywww.saasforecom.com/help’ 200 0.0 https:/fwww.saasforecom.com/help/ 0.880851 lost_contart

https:/'www.saasforecom /help.
Set No Data Not Sat 0.0 b il 1.000000 other
g-pay
Set No Data Not Set oo hpi/ivww.saastorecom.com/cloud-based- 0.774648 lost_contant

inventory-management/

A new column “diagnosis” has been added based on the rules we just created, helping us to make sense, at
the URL level, what has happened.
With each URL labeled, we can start to quantify the diagnosis:

diagnosis clicks = perf diags.groupby('diagnosis').agg({'clicks delta':

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

'sum'}) .reset index()

diagnosis urls = perf diags.groupby('diagnosis').agg({'url':

'count'}) .reset index()

diagnosis_stats = diagnosis_clicks.merge (diagnosis urls, on = 'diagnosis',
how = 'left')

diagnosis stats['clicks pURL'] = (diagnosis stats['clicks delta'] /
diagnosis_stats['url']) .round(2)

diagnosis_ stats
This results in the following:

diagnosis clicks_delta url clicks_pURL

0 error -140 34 -0.41
1 lost_content -84.0 373 -0.23
2 other -297.0 50 -5.94
3 outside_ia 0.0 7 0.00

According to the analysis, around 25% of the total loss of clicks is down to error codes (HTTP server status
4XX) and lost content (URLs redirected to a parent folder).

Most of the URLs affected are those 373 redirected which is most of the website.

Other (with no URLs) implies the traffic loss would be seasonal and/or an indirect effect of the
migration errors.

If you want to share what you found, you could visualize this for your colleagues using the following
code:

diagnosis plt = (
ggplot (diagnosis_stats,

aes (x = 'reorder (diagnosis, -clicks delta)', y = 'clicks delta'))
+
geom bar(stat = 'identity', alpha = 0.6, position = 'dodge', fill =
'"blue') +
position=position stack(vjust=0.01)) +
labs(y = 'GSC Clicks Impact', x = "'"'") +
coord flip() +
theme (legend position = 'right',
axis text x=element text (rotation=90, hjust=l)
)
)
diagnosis plt.save(filename = 'images/3 diagnosis plt.png', height=5,
width=10, units = 'in', dpi=1000)

diagnosis plt

“Other” (probably seasonality) was the major reason for the click losses (Figure 9-8), followed by
lost_content (i.e., URLs redirected).

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

other -

lost_content-

error -

outside_ia-

—-300
—-200
-100

GSC Clicks Impact

Figure 9-8 Bar chart of Google Search Console (GSC) click impact by tech SEO diagnosis
But what was the number of URLs impacted?

diagnosis count dat = perf diags.groupby('diagnosis').agg({'url':
'count'}) .reset index()
print (diagnosis_ count dat)

diagnosis_urlcount plt = (
ggplot (diagnosis_ count dat,
aes (x = 'reorder (diagnosis, url)', y = 'url')) +
geom bar(stat = 'identity', alpha = 0.6, position = 'dodge', fill =
'blue') +
position=position stack(vjust=0.01)) +
labs(y = '"URL Count', x = "") +
coord flip() +
theme (legend position = 'right',
axis text x=element text (rotation=90, hjust=l)
)
)

diagnosis urlcount plt.save(filename =
'images/3 diagnosis urlcount plt.png', height=5, width=15, units = 'in',
dpi=1000)

diagnosis urlcount plt

Despite “Other” losing the most clicks, it was “lost content” that impacted the most URLs (Figure 9-9).

>>>4f #ijackgoogleseo.com# B & 3 2 &4 fif<<<

lost_content-

other-

error -

outside_ja-

' 1 1

(=1
(=1

~
URLs Affected Count

100
300

Figure 9-9 Column chart of Google Search Console (GSC) URLs affected counts by tech SEO diagnosis

That’s the overview done; let’s break it down by content type. We'll use the content segment labels to get
clickimpact stats:

diagnosis seg clicks = perf diags.groupby(['diagnosis',

'segment']) .agg ({'clicks delta': 'sum'}).reset index()
diagnosis seg urls = perf diags.groupby(['diagnosis',
'segment']).agg({'url': 'count'}).reset index()
diagnosis seg stats = diagnosis_seg clicks.merge(diagnosis seg urls,

on = ['diagnosis',
'segment'], how = 'left')
diagnosis_ seg stats['clicks p url'] = (diagnosis_seg stats['clicks delta'] /
diagnosis _seg stats['url']).round(2)

diagnosis_seg stats.sort values('clicks p url')

This results in the following:

diagnosis segment clicks_delta wurl clicks_p_url

23 other home -224.0 1 -224.00
28 other software -22.0 2 -11.00
20 lost_content wholesalers -6.0 1 -6.00
21 other crm -4.0 1 -4.00
25 other = management -46.0 14 -3.29
30 other system -2.0 1 -2.00
3 error other -13.0 8 -1.62

So not only is “Other” the biggest reason for the click losses, most of it impacted the home page. This would
be consistent with the idea of seasonality, that is, a characteristically quiet December.
While tables are useful, we’ll make use of data visualization to see the overall picture more easily:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

diagnosis seg clicks plt = (
ggplot (diagnosis_seg stats,
aes (x = 'diagnosis', y = 'segment', fill = 'clicks delta')) +
geom tile(stat = 'identity', alpha = 0.6) +
position=position stack(vjust=0.00)) +
labs(y ="', x = "") +
theme classic() +
theme (legend position = 'right')
)

diagnosis seg clicks plt.save(filename =
'"images/5 diagnosis seg clicks plt.png',
height=5, width=10, units = 'in', dpi=1000)
diagnosis seg clicks plt

The home page followed by “management content” is the most affected within “other” (Figure 9-10).

whaolesalers 4

systerm 4
stock 4
software 4
sales r_lick%_deita
other 4
arder 4 S 50
management -100

tems 4
item: oy

Item 4

inventory -200

help 4
docurmentation 4

crm4

error lost_content other outside_ia

Figure 9-10 Heatmap chart of clicks delta by content type and SEO diagnosis

In terms of lost content, these are mostly “documentation” and “other” This is quite useful for deciding
where to focus our attention.

Although “other” as a reason isn’t overly helpful for fixing a site post migration, we can still explain
where some of the migration errors occurred, start labeling URLs for recommended actions, and visualize.
This is what we’re doing next.

Road Map

We'll start with our dataframe “perf_diags” and copy it into “perf_recs” before creating the
recommendations based on the errors found:

perf recs = perf diags

The aptly named diag_conds is a list of diagnoses based on the value of the diagnosis column in the
perf_recs dataframe. The np.select function (shortly later on) will draw from this list to assign a
recommendation.

diag conds = [
perf recs['diagnosis'] == 'outside ia',
perf recs['diagnosis'] 'redirect chain',
perf recs['diagnosis'] == 'error',
perf recs['diagnosis'] == 'robots conflict',
perf recs['diagnosis'] 'lost _content',
perf recs['diagnosis'] == 'other'

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

rec_values is a list of recommendations to go with the preceding diagnosis list. At this point, it’s
assumed that you have done the detective work to know what recommendations you're putting forward for
each of the preceding labels.

The recommendation list items are ordered to match the order of the diag_conds list. For example, if the
diagnosis cell value is “lost_content,” then the recommendation is to “create_integrate,” which means to
create the content redirected, unredirect, and reintegrate into the website.

rec_values = ['integrate', 'disintermediate', 'fix/remove links to error
URL', 'remove canonical', 'create integrate', 'no further action']

With the lists in place, we can now match them when we create a new column and use np.select to assign
values to it using our lists as arguments:

perf recs['recommendation'] = np.select(diag conds, rec_values, default =
'na')
perf recs = perf recs.sort values('clicks delta')

perf recs.to csv('exports/' + hostname + ' migration data l.csv')
perf recs

This results in the following:

final_redirect_url final_redirect_url_status_code uris_with_similar_content ult_dest_url _simi dati
No Data Not Set 0.0 hittps://www.saasforecom.com/ 1.000000 other nao further action
Mo Data Mot Set qo Dpswan CPIIFES 0813559 lost content create_intagrate

order-management-systam/

https:/fwww.saasforecom.com/drop-

No Data Mot Set 0.0 shipping-aut ierenaft - 1.000000 other no further action
https:/fwww.saasforecom.com/software-for- .
No Data Not Set 0.0 s Ji managsment/ 1.000000 other no further action
htipsz/fwaww. com/ece i
No Data Not Set 00 order-management-system/ 1.000000 other no further action
No Data Not Set 00 httpacitriw.SasstorecomEonVisb s yinoiingn other o further action

ecommerce-salution/

No Data Not Set 00 https://www.saasforecom.com/saasforecom- 1.000000 o fixfremowve links

pricing/ to error URL
sforecom.comy/custom- httpsy//www.saasforecom.com/custom-erp- i
erp-for-wholasalers/ 200 0.0 foiwHoleaslars/ 0.852458 lost_content create_integrate
hitpfwww.saasforecom.com/software-for- .
Mo Data Mot Set 0.0 warehousa-Inventory-management/ 0.844444 |ost_content create_integrate
No Data Not Set go httesAvww.sassforecom.com/accounting- 1.000000 other nofurther action

You'll now see the perf_recs dataframe updated with a new column to match the diagnosis.
Of course, we'll now want to quantify all of this for our presentation decks to our colleagues, using the
hopefully familiar groupby() function:

recs_clicksurl = perf recs.groupby('recommendation')
['clicks delta'].agg(['sum', 'count']).reset index()
recs clicksurl['recovery clicks url'] = np.abs(recs clicksurl['sum'] /
recs _clicksurl['count'])

We're taking the absolute as we want to put a positive slant on the presentation of the numbers:
recs clicksurl['sum'] = np.abs(recs clicksurl['sum'])

recs_clicksurl

This results in the following:

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

recommendation sum count recovery_clicks_url

0 create_integrate 84.0 373 0.225201
1 fix/remove links to error URL 14.0 34 0.411765
2 integrate 0.0 7 0.000000
3 no further action 297.0 50 5.940000

The preceding table shows the recommendation with clicks to be recovered (sum), URL count (count), and
the potential recovery clicks per URL. Although it may seem strange to recover 297 clicks per month
through “no further action,” some may well be recovered by fixing the other issues.

Time to visualize:

recs clicks plt = (
ggplot (recs clicksurl,

aes (x = 'reorder (recommendation, sum)', y = 'sum')) +
geom bar(stat = 'identity', alpha = 0.6, position = 'dodge', fill =
'blue') +
position=position stack(vjust=0.01)) +
labs(y = 'Recovery Clicks Available', x = ""'") +
coord flip() +
theme (legend position = 'right',
axis text x=element text (rotation=90, hjust=l)
)
)
recs clicks plt.save(filename = 'images/8 recs clicks plt.png',

height=5, width=10, units = 'in', dpi=1000)
recs clicks plt

Figure 9-11 visualizes the recommendations.

nao further action -

create_integrate -

fix/remove links to error URL-

integrate -

v ' '
i=1 (=1 o
o t=

300

Recovery Clicks Available

Figure 9-11 Bar chart of estimated recovery clicks available by tech SEO diagnosis

Summary

This chapter covered site migration mapping so that you could set the structure of your new site and
semiautomate the formation of your migration URLs. Some of the techniques used are as follows:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

¢ String manipulation
e Iterating through dataframe rows by converting these into a list
e Using NLP to compare URL strings

While these techniques were applied to speed up the processing of data for a site migration, they can
easily be applied to other use cases. In the next chapter, we will show how algorithm updates can be better

understood using data.

>>>4f fijackgoogleseo.com# B & $ 2. $ fif<<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A.Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_10

10. Google Updates

Andreas Voniatis?!

(1) Surrey, UK

Just as death and taxes are the certainties of life, algorithm updates are a certainty for any SEO career.
That’s right, Google frequently introduces changes to its ranking algorithm, which means your website (and
many others) may experience fluctuations in rankings and, by extension, traffic. These changes may be
positive or negative, and in some cases, you'll discern no impact at all.

To compound matters, Google in particular gives rather vague information as to what the algorithm
updates are about and how business and SEO professionals should respond. Naturally, the lack of
prescriptive advice from Google other than delivering “a great user experience” and “creating compelling
content” means SEOs must find answers using various analysis tools. Fortunately, for the SEO

¢ Google is a system of algorithms. That means that the changes in ranking factors are likely to be
consistent and predictable and not at the whim of a human. These changes are likely to have been tested
beforehand.

¢ The outcomes of Google’s algorithm changes are in the public domain by virtue of the Search Engine
Results Pages (SERPs), which means that there is data available for analysis, even if it is against the
Google Webmaster Guidelines.

e Even without the SERPs, Google Search Console is a valuable data source for understanding the nature of
Google’s updates.

In this chapter, we will cover algorithm updates analysis which is to analyze the difference in search
results before and after the algorithm update event at different levels:

e Domains

e Result types

e Cannibalization

e Keywords

e Within client tracked queries (target)
e Segmented SERPs

Algo Updates

The general approach here is to compare performance between the before and after phases of the Google
algorithm update. In this case, we’ll focus on a newly listed webinar company known as ON24. ON24
suffered from the December 2019 core update.

With some analysis and visualization, we can get an idea of what’s going on with the update. As well as
the usual libraries, we'll be importing SERPs data from getSTAT (an enterprise-level rank tracking platform,
available at getstat.com):

import re

import time

import random
import pandas as pd
import numpy as np
import datetime
import re

import time

https://doi.org/10.1007/978-1-4842-9175-7_10

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

import requests

import json

from datetime import timedelta

from glob import glob

import os

from textdistance import sorensen dice

from plotnine import *

import matplotlib.pyplot as plt

from pandas.api.types import is string dtype
from pandas.api.types import is numeric dtype
import uritools

pd.set option('display.max colwidth', None)
matplotlib inline

root domain = 'on24.com'

hostdomain = 'www.on24.com'

hostname = 'on24'

full domain = 'https://www.on24.com'
target name = 'ON24'

getstat raw.head()

The following is the printout of the getSTAT data:

Resuit Result
Global Regional Types Types
Protocol Protocol
Keyword Market Location Device “‘;"“‘“’ Womhly ' ik for = forNov Ranking URL on Nov 18, 2020 F iDac, TRVNIgURL on Deg 17
arch Search Nov 19, 2020 Dec 17, 20 2020
Volume Volume 19, > 17, =
2020 2020
(1] w&f;r:: US-en MNaM deskiop o o 1 organic https hub.Bsense.com/upcoming-events organic https hub.ﬁsense,wmfwccgrm
1 w:::::r: US-en NaN desktop o o 2 organic https Mb'ﬁsa"sa'c:”“gnng;‘:;";rw"dé arganic htips hunﬁ:;;i’:ﬁﬁi
2 wx;’:; US-en NaM deskiop] il 3 organic https hub.Bsense.com/webinars! organic hitps dm:::;::e"s"'”’"i‘:;’r‘!
3 \.,2:;1:: US-en NaMN - desktop 0 0 4 organic https huh.Bsensa.:um;‘nn-daemM:ﬁl; organic hitps Gsense.com/prg-in-action
4 w:;i’:r: US-en NaM desktop 0 0 5 organic https "”b'ﬁsanse'cnmehi"a’ﬁ;ﬁmf; organic https Bsense.com/breakthrough
To make the column names more data-friendly, we’ll do some cleaning:
getstat cleancols = getstat raw
Convert to lowercase:
getstat cleancols.columns = [x.lower() for x in getstat cleancols.columns]

Given ON24 is a global brand and using a single website to capture all English language searches
worldwide, we're using the global monthly search volume instead of the usual regional (country level)
numbers. Hence, we’re renaming the global volumes as the search volume:

getstat cleancols = getstat cleancols.rename (columns = {'global monthly
search volume': 'search volume'})

We filter out rows for brand searches as we would expect ON24 to rank well for its own brand and we’re
more interested in the general core update:

getstat cleancols =
getstat cleancols[~getstat cleancols|['keyword'].str.contains('24"')]
getstat cleancols

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

The columns are now in lowercase with some columns renamed:

result res
regional types v
keyword market location device search_volume wonthiy rank bt for nov ranking url on nov 18, 2020
search nov t
18, 2020
volume 18,
2020 a
Lo T MaN deskio 0 0 i tt hub.6 m/ ing-event :
wekiiars en a p organic ps JBsense.com/upcoming-events orge
Bsanszs ; 4 N
1 b US-en MNaMN deskiop (1]] 2 organic https hub.Bsense.com/on-demand-events/webinars orgs
2 BS8MSE o MaN deskiop (i 0 3 omganic https hub Gssnse. com/webinars/ orge
webinars 3 g
g Banes ;o NaN deskio 0 b 4 i it hub.6 Jon-demand-event
webinars en El P organic ps LLsense.com/on-demand-events orges
g Omense 0 i h |
Webbiare US-en Mah desktop 0 5 organic hitps ub.Bsense.com/webinars/analyst-webinars orgs
s00m image mu
27635 e ey US-en MaM smartphone 135000 40500 16 £ https impact.extension.org/zoom/
arganic orge
image " " o iy n " ims
ZOOMm its.umich. meetings
27636 : US-en NaM smartphone 135000 40500 17 / hitps i
wehbinars arganic vs-webinars orge
z00m image ims
27637 o e US-en NaM smartphone 135000 40500 18 / https www.owllabs.com/blog/zoom-webinar
organic orge
jr—— image ims
27638 bi US-en MaM smartphone 135000 40800 19 / https s adu/z 3 inar-license:
wetnas organic orge
- image imu
27639 abkrars Us-en MaN smartphone 135000 40500 20 / https www.sandiego.edui pp webinar.php
organic orgs

27560 rows = 13 columns

To make the calculations easier, we’ll split the dataframe column-wise into before and after. The splits will
be aggregated and then compared to each other.
We'll start with the before dataframe, selecting the before columns:

getstat before = getstat cleancols[['keyword', 'market', 'location',
'device', 'search volume', 'rank',

'result types for nov 19, 2020',
'protocol for nov 19, 2020',

'ranking url on nov 19, 2020']]

We build the full URL:

getstat before['url'] = getstat before['protocol for nov 19, 2020'] + '://'
+ getstat before['ranking url on nov 19, 2020']

Change the values of the URL column such that if there are any blanks (null values), then replace it with
' ' as opposed to a NaN (not a number). This helps avoid any errors when aggregating later on.

getstat before['url'] = np.where(getstat before['url'].isnull(), '',
getstat before['url'])

We’ll derive site names using the urisplit function (embedded inside a list comprehension) to extract
the domain name. This will be useful to summarize performance at the site level.

getstat before['site'] = [uritools.urisplit (x).authority if
uritools.isuri(x) else x for x in getstat before['url']]

We initialize a list named strip_subdomains to help strip out string components of the URL:

strip subdomains = ['hub\.', 'blog\.', 'www\.', 'impact\.', 'harvard\.',
"its\.', 'is\.', 'support\.']

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

We change the site field to replace any strip_subdomains strings found in the site column and replace
with nothing:

getstat before['site'] =
getstat before['site'].str.replace('|'.join(strip subdomains), '")

We set a new column phase to “before”:
getstat before['phase'] = 'before'
Stratifying the ranking position data helps us perform more detailed aggregations so that we can break

down performance into Google’s top 3, page 1, etc. This uses np.where which is the Python equivalent of
Excel’s if function:

getstat before['rank profile']
'page 1', 'page 2'")
getstat before['rank profile'] = np.where(getstat before['rank'] < 3,
'"top 3",

getstat before['rank profile'])

np.where (getstat before['rank'] < 11,

Here, we’'ll rename some columns as we don’t need the month year in the column title:

getstat before = getstat before.rename (columns = {'result types for nov 19,
2020': '"snippets'})

Column selection is not absolutely necessary, but it does help clean up the dataframe and remind us of
what we’re working with:

getstat before = getstat before[['keyword', 'market', 'phase', 'device',
'search volume', 'rank',

'url', 'site', 'snippets', 'rank profile']]

We'll set zero search volumes to one so that we don’t get “divide by zero errors” later on when deriving
calculations:

getstat before['search volume'] = np.where(getstat before['search volume']
== 0, 1, getstat before['search volume'])

Initialize a new column count which also comes in handy for aggregations:
getstat before['count'] =1

Sometimes, you'll want to dissect the SERPs by head, middle, and long tail. To make this possible, we'll
initialize a column called “token_count” which counts the amount of gaps between the words (and add 1) to
extract the query word count in the “keyword” column:

getstat before['token count'] = getstat before['keyword'].str.count (' ') + 1
Thanks to the word count, we use the np.select() function to classify the query length:
before length conds = [

getstat before['token count'] ==

getstat before['token count'] =
getstat before['token count'] > 2

1,
2,
]
length vals = ['head', 'middle', 'long']

getstat before['token size'] = np.select(before length conds, length vals)

getstat before

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

Here are the before dataset with additional features to make the analysis more useful.

:¢ search_volume rank url site snippets rank_profile count token_count token_size

P 1 1 https://hub.Gsense.com/upcoming-events GBsense.com organic top 3 1 2 middle

p 1 2 hitps://hub Gsense.com/on-demand-events/webinars Gsense.com organic top_3 1 2 middle

p 1 3 https:/hub.Gsense.com/webinars/ Bsanse.com omganic page_1 1 2 middle

p 1 4 https://hub.6sense.com/on-demand-avents Bsense.com organic page_1 1 2 middie

p 1 5 hittps://hub.Gsense.cc bl binars Gsensecom organic page_1 1 2 middle

e 135000 16 https: extonsion.argizoamy jon.or. E_;gfl; page.2 1 2 middle
https:/fits.umich.edu/comm ion/videoconferencing/. y image / .

w 135000 17 vs~wsb|n:.rs umich.edu organic page_2 1 2 middle

i f

1 135000 18 hitps://www.owllabs.com/blogizoom-webinar owliabs.com E;g:’ic page 2 1 2 miclcile
: PR i ! ’

® 135000 19 https:/is.c edu/zoar I edu ;"g"’gfic page_2 1 2 middla

1 135000 20 hitps://www.sandiego.edufits/suppert/softwara/zoom-webinar,php go.edu ;"Dag:: pags_2 1 2 middle

Let’s repeat the data transformation steps for the after dataset:

getstat after = getstat cleancols[['keyword', 'market', 'location',
'device', 'search volume', 'rank',

'result types for dec 17, 2020',
'protocol for dec 17, 2020°',

'ranking url on dec 17, 2020']]

getstat after['url'] = getstat after['protocol for dec 17, 2020'] + '://' +
getstat after['ranking url on dec 17, 2020']
getstat after['url'] = np.where(getstat after['url'].isnull(), '',

getstat after['url'])

getstat after['site'] = [uritools.urisplit(x).authority if uritools.isuri (x)
else x for x in getstat after['url']]

strip subdomains = ['hub\.', 'blog\.', 'www\.',6 'impact\.', ‘'harvard\.',
'its\.', 'is\.', ‘'support\.']

getstat after['site'] =

getstat after['site'].str.replace('|'.Jjoin(strip subdomains), '')

getstat after['phase'] = 'after'

getstat after = getstat after.rename(columns = {'result types for dec 17,
2020': '"snippets'})

getstat after = getstat after[['keyword', 'market',6 'phase', 'device',
'search volume', 'rank', 'url', 'site', 'snippets']]

getstat after(['search volume'] = np.where(getstat after(['search volume'] ==
0, 1, getstat after['search volume'])

getstat after['count'] =1

getstat after['rank profile'] = np.where(getstat after['rank'] < 11,
'page 1', 'page 2')

getstat after['rank profile']
getstat after['rank profile'])

np.where(getstat after['rank'] < 3, 'top 3',

getstat after['token count'] = getstat after['keyword'].str.count(' ") + 1

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

after length conds = [
getstat after['token count'] == 1
getstat after['token count'] == 2,
getstat after['token count'] > 2,
]

getstat after['token size'] = np.select(after length conds, length vals)
getstat after

getstat_after is the after dataset transformation which is now complete, allowing us to proceed to the
next step of deduplicating our data:

:¢ search_volume rank url site snippets count rank_profile token_count token_size
] 1 | httpsi/hub.Bsense.comfupcoming-events Bsense.com organic | top_3 2 middle
n 1 2 hitps:ihub,.Gsense.com/on-demand-events Gsense.com organic 1 top_3 2 rricldle
| 1 3 httpsi//hub.6sense.com/on-demand-events/webinars Gsense.com organic) page_1 2 middle
i) 1 4 https:/fEsense.com/prg-in-action/ Bsense.com organic 1 page_1 2 middle
P 1 5 hitps://Bsense.com/breakthroughy Gsense.com organic 1 page_1 2 middle
R 2 image / %
® 135000 18 hitps:/fwww.owllabs.com/bleg/zoom-webinar owllabs.com erganic 1 page_2 2 middle
= 135000 17 !121ps:.n’.f'lts.urnich.adu.n’wmmunicaﬁonf\ridsocunferancing.n’zoomfmaeli_ngs- G A irnags_.l’ 1 page_2 2 rrikicls
vs-webinars onganic
e 135000 18 https:/fis.oreg edu/zoor inar-li g edu Sgagz; 1 page._2 2 middle
o 135000 10 httpszfwww bu.ed h, vices/co Jumm*zocm&_onm- ke Image_.l’ 1 page_2 2 middla
webinars/ organic
https:/fharvard.service-now.com/ithelp? sanvice- image /
B HebiCh el id=kb_article&sys_id=a996d6dddbe78c1406ab5682ca0619¢ now.com organic . page 2 = driclcie

Dedupe

The reason for deduplication is that the search engines often rank multiple URLs from the same SERPs. This
is fine if you want to evaluate SERPs share or rates of cannibalization (i.e., multiple URLs from the same
domain competing for the same ranking and ultimately constraining the maximum ranking achieved).
However, in our use case of just seeing which sites come first, in what rank order, and how often,
deduplication is key.

Using the transformed datasets, we will group by site, selecting and keeping the highest ranked URL in
the unique (deduplicated) dataset:

getstat bef unique = getstat before.sort values('rank').groupby(['site',
'device', 'keyword']).first()
getstat bef unique = getstat bef unique.reset index()

getstat bef unique = getstat bef unique[getstat bef unique['site'] != '']
getstat bef unique = getstat bef unique.sort values (['keyword',K 'device',
'rank'])

getstat bef unique getstat bef unique[['keyword', 'market', 'phase',
'device', 'search volume',

'rank', 'url', 'site', 'snippets', 'rank profile', 'count',
'token count', 'token size']]

getstat bef unique

This results in the following:

>>>4f fi.jackgoogleseo.com# B & $ 2. $ fif<<<

keyword market phase device search_volume rank url site
Bsanse . 3
177 bl US-en before desklop 1 1 https:/ub.Bsense.com/upcoming-events Gsense.com
Bzensa . i - 5
5647 f US-en befare dasktop 1 16 https:Awww.drift.comfwebinars/not-abm/ drift.com
wehinars
Bsense https/fwww.playbigger.com/media’coffee-talk-webinar-w/play-bigger-)
16455 | hinars US-en before dasktop 1 17 Ahch R playbigger.com
Bsense https://resources pedowitzgroup.com/webinar-slides/techtalk-slides- .
17496 |, pinare US-en before desktop 1 18 s i ing-6 resources Qroup.com
Bsense https:fww gl 12753/270461 inar-feat: 5
2447 | binars US-en before desktop 1 19 formester-taking-the- pulse-of-bab-predich keting-analyti brighttalk.com
6994 webﬁ:r"; US-en before smartphone 135000 16 hitps:/fimpact.extension.orm/zoom/ axtension.om
zoom https://its.umich.edu/ i fvidh erencing/ mestings: i
21418 webinars US-en before smartphone 135000 17 Va-wahinare umich.edu
18027 oo US-en before smartphone 135000 18 hitps://www.owliabs.cam/blog/zoom-webinar owllabs.com
15635 Béﬁiﬂ US-en before smartphone 135000 19 https://i aduf; webinar-| oregonstate.edu
Zoom 3 i i e i i
18023 Webhars. US-en before smartphone 135000 20 hittps:iiww q PR web php sandiego.edu

23677 rows = 13 columns

The dataset has been reduced noticeably from 27,000 to 23,600 rows. We'll repeat the same operation for
the after dataset:

getstat aft unique = getstat after.sort values('rank').groupby(['site',
'device', 'keyword']).first()

getstat aft unique = getstat aft unique.reset index()

getstat aft unique =
getstat aft unique =

getstat aft unique[getstat aft unique['site'] ']
getstat aft unique.sort values (['keyword',K 'device',

'rank'])
getstat aft unique = getstat aft unique[['keyword', 'market',6 'phase',
'device', 'search volume',
'rank', 'url', 'site', 'snippets', 'rank profile', 'count',
'"token count', 'token size']]
getstat aft unique
This results in the following:
keyword market phase device search_volume rank url site snippets
117 w:;en;‘: US-en after deskiop 1 1 https:/hub.Bsense.com/upcoming-events Bsense.com organic
120 w:;;"; US-en after smartphone 1 1 https:/fhub.Gsense.com/upcoming-events Bsense.com organic
Bsansa N related
9276 e US-en after smartphone 1 7 4 hitp:/fwww.google.com/ google.com Bl
160 abm US-en after desktop 110000 1 hitps:/fwww.abm.com/ abrn.com DS'E:F;;
. people
8818 abm US-en after desktop 110000 2 hittpz/fwww.google.com/ google.com P
16806 wg;f;g;‘; US-en after smartphone 135000 16 https://www.owllabs.com/blog/zoom-webinar owllabs.com m:
zoom https:ifits.umich.edu/communication/videoconferencing/zoom/mestings- . image /
22606 wehinars US-en after smartphone 135000 17 e it umich.edu organic
16717 wmz‘;gr"; US-en after smartphone 135000 18 https:/fis.oreg edu/zoom/webinar-li g edu ‘{';':;a?;é
2541 2007 US-en after smartphone 135000 19 https:/Awww.bu.eduftech/services/oocs/cont ol bu.adu 'L':;‘!f'ag;:
zoom 5 https://harvard. service-now.com/ithelp? service- image /[
19971 opinars US-8n after smartphone 135000 20 id=Kkb_article&sys. id sccddbeTBc 1 496ab568 180f nowcom organic

24972 rows = 13 columns

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

With both datasets deduplicated, we can start performing aggregations from different viewpoints and
generate insights.

Domains

One of the most common questions of any algo update is which sites gained and which ones lost. We will
start by filtering for those in the top 10 to calculate the “reach” and sum these by site:

before ung reach = getstat bef unique

before ung reach = before ung reach[before ung reach['rank'] < 11]
before ung reach = before ung reach.groupby(['site']).agg({'count':
'sum'}) .reset index()

Rename count as reach:

before ung reach
before ung reach

before ung reach.rename (columns = {'count': 'reach'})
before ung reach[['site', 'reach']]

Swap null values for zero:

before ung reach['reach'] = np.where(before unq reach['reach'].isnull(), O,
before ung reach['reach'])
before ung reach.sort values('reach', ascending = False).head(10)

Unsurprisingly, Google has the most keyword presence of any site. After that, it's HubSpot, then ON24,
our site of interest. Note that this is before the Google update.

site reach

879 google.com 914
962 hubspot.com 323
1429 on24.com 221

881 gotomeeting.com 153
334 capterra.com 148
822 g2.com 135
2224 wordstream.com 114
1294 medium.com 92
1217 m.youtube.com 88
1253 marketo.com 88
We’ll repeat the domain reach aggregation for after the update:

after ung reach = getstat aft unique
after ung reach = after ung reachlafter ung reach['rank'] < 11]

after ung reach = after ung reach.groupby(['site']).agg({'count':

'sum'}) .reset index()

after ung reach = after ung reach.rename (columns = {'count': 'reach'})
after ung reach['reach'] = np.where(after ung reach['reach'].isnull(), O,

after ung reach['reach'])

after ung reach = after ung reach[['site', 'reach']]

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

after ung reach.sort values('reach', ascending = False).head(10)

This results in the following:

site reach

879 google.com 1011
969 hubspot.com 304

1437 on24.com 222
318 capterra.com 156
826 g2.com 148

881 gotomeeting.com 148
1302 medium.com 118
2264 wordstream.com 110
1231 m.youtube.com 96
2313 zoom.us 95

Google is an even bigger winner post its own update. HubSpot has lost out slightly, and ON24 is virtually
unchanged. Or so it appears on the surface as we’ll see later on when we get deeper into the analysis.
Rather than eyeballing two separate dataframes, we’ll join them together for a side-by-side comparison:

compare reach loser = before ung reach.merge (after ung reach, on = ['site'],
how = 'outer')

Rename the columns to be more user-friendly:

compare reach loser = compare reach loser.rename (columns = {'reach x':
'before reach', 'reach y': 'after reach'})

compare reach loser|['before reach'] =

np.where (compare reach loser['before reach'].isnull(),

0, compare reach loser['before reach'])
Swap null values with zero to prevent errors for the next step:

compare reach loser['after reach'] =
np.where (compare reach loser['after reach'].isnull(),
0, compare reach loser['after reach'])

Create new columns to quantify the difference in reach between before and after:

compare reach loser['delta reach'] = compare reach loser['after reach'] -
compare reach loser['before reach']

compare reach loser = compare reach loser.sort values('delta reach')
compare reach loser = compare reach loser[['site', 'before reach',

'after reach', 'delta reach']]

compare reach loser.head(10)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

site before_reach after reach delta_reach

2227 workcast.com 49.0 0.0 -49.0

962 hubspot.com 323.0 304.0 -19.0
1538 podcastinsights.com 41.0 28.0 -13.0
1253 marketo.com 88.0 76.0 -12.0

730 eventbrite.com 36.0 25.0 -11.0
1504 pega.com 13.0 3.0 -10.0
1649 resources.engagio.com 7.0 0.0 -7.0

408 clickmeeting.com 58.0 51.0 -7.0
1007 inc.com 27.0 20.0 =7.0
1059 inxpo.com 23.0 16.0 -7.0

The biggest loser by far appears to be WorkCast, a major player in the webinar software space, followed by
HubSpot. As you'll realize, having the tables aggregated separately and then joined makes the comparison
much easier. Let’s repeat to find the winners:

compare reach winners = compare reach loser.sort values('delta reach',

ascending = False)
compare reach winners.head(10)

This results in the following:

site before_reach after_reach delta_reach

879 google.com 914.0 1011.0 97.0
1023 info.workcast.com 34.0 74.0 40.0
1171 liferay.com 19.0 46.0 27.0
1294 medium.com 92.0 118.0 26.0
1607 qualtrics.com 47.0 70.0 23.0
1910 superoffice.com 38.0 61.0 23.0
1785 sitecore.com 17.0 38.0 21.0

424 cmswire.com 25.0 45.0 20.0

794 forbes.com 48.0 67.0 19.0

536 cvent.com 12.0 28.0 16.0

Interesting, so WorkCast lost, yet its subdomain gained. A few publishers like Medium and blogs from
indirect B2B software competitors also gain. Intuitively, this looks like blogs and guides have been favored.

Time to visualize. We’ll convert to long format which is the data structure of choice for data visualization
graphing packages (think pivot tables):

compare reach losers long = compare reach loser[['site',

'before reach', 'after reach']].head(28)

compare reach losers long = compare reach losers long.melt(id vars =
['site'], var_name='Phase', value name='Reach')

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

compare reach losers long['Phase'
compare reach losers long['Phase
compare reach losers long['Phase
compare reach losers long['Phase
compare reach losers long['Phase
compare reach losers long['Phase'
'after'])

str.replace (' reach', '')

]

1.

]

] .astype ('category')

]

] .cat.reorder categories(['before',
stop doms = ['en.wikipedia.org', 'google.com', 'youtube.com',
'lexisnexis.com']

compare reach losers long =

compare reach losers long[~compare reach losers long['site'].isin(stop doms)]
compare reach losers long.head(10)

This results in the following:

site Phase Reach

0 workcast.com before 49.0
1 hubspot.com before 323.0

2 podcastinsights.com before 41.0

3 marketo.com before 88.0
4 eventbrite.com before 36.0
5 pega.com before 13.0
6 resources.engagio.com before 7.0
7 clickmeeting.com before 58.0
8 inc.com before 27.0
9 inxpo.com before 23.0
#VIz
compare reach losers plt = (
ggplot (compare reach losers long, aes(x = 'reorder(site, Reach)', y =
'Reach', fill = 'Phase')) +
geom bar (stat = 'identity', position = 'dodge', alpha = 0.8) +
#geom text (dd factor df, aes(label = 'market name'),
position=position stack(vjust=0.01)) +
labs(y = 'Reach', x =" ") +
#scale y reverse() +
coord flip() +
theme (legend position = 'right', axis text x=element text (rotation=0,

hjust=1, size = 12)) +
facet wrap('device')

)

compare reach plt.save(filename = 'images/l compare reach losers plt.png',
height=5, width=10, units = 'in', dpi=1000)

compare reach plt

It seems not all websites had a consistent presence across both device search result types (Figure 10-1).

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

desktop smartphone
hubspot.com -

wordstream.com -
marketo.com -
neilpatel.com -
clickmeeting.com -
podcastinsights.com -
eventbrite.com -
workcast.com -
inc.com-
codeinwp.com -
aha.io-

Phase

- after

’ before
In¥po.com-

fsco.gov.on.ca-
contactmonkey.com -
martechseries.com -
vainu.coms=
DEQE.Com -

COpper.com -
closa.com-
resources.engagic.com -

o
w
o.

100 150 0 50 100 150
Reach

Figure 10-1 Website top 10 ranking counts (reach) before and after by browser device

Reach Stratified

Reach is helpful, but as always the devil is in the detail, and no doubt you and your colleagues will want to
drill down further by rank strata, that is, rankings in the top 3 positions or perhaps only rankings on page 1
of Google, etc. Let’s aggregate only this time with reach strata starting with the before dataset:

before ung reachstrata = getstat bef unique
before ung reachstrata = before ung reachstrata.groupby(['site',

'rank profile']).agg({'count': 'sum'}).reset index()
before ung reachstrata = before ung reachstrata.rename (columns = {'count':
'reach'})

before ung reachstrata = before ung reachstrata[['site', 'rank profile’,
'reach']]

before ung reachstrata.sort values('reach', ascending = False).head(10)

This results in the following:

site rank_profile reach

2426 google.com page_1 475
2428 google.com top_3 439
2651 hubspot.com page_1 243
3950 on24.com page_1 170

938 capterra.com page_1 117
3951 on24.com page_2 114
2433 gotomeeting.com page_1 113
3543 medium.com page_2 110
2652 hubspot.com page_2 105
2434 gotomeeting.com page_2 101

Now we have an ordered dataframe by reach, this time split by rank_profile, thus stratifying the reach
metric. For example, we see HubSpot has twice as many keywords on page 1 of Google search results

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

compared to page 2, whereas with ON24, it's more or less equal.
Repeat the operation for the after dataset:

after ung reachstrata getstat aft unique

after ung_reachstrata = after ung reachstrata.groupby(['site',

'rank profile']).agg({'count': 'sum'}).reset index()

after ung reachstrata = after ung reachstrata.rename (columns = {'count':
'reach'})

after ung reachstrata = after ung reachstrata[['site', 'rank profile',
'reach']]

after ung_reachstrata.sort values('reach', ascending = False).head(10)
This results in the following:

site rank_profile reach

2465 google.com page_1 518
2467 google.com top_3 493
2714 hubspot.com page_1 240
4005 on24.com page_1 149
2715 hubspot.com page_2 125

916 capterra.com page_1 124
3602 medium.com page_2 108
2471 gotomeeting.com page_1 108
4006 on24.com page_2 105
3601 medium.com page_1 101

As you can imagine, it’s less easy to see who won and lost by eyeballing the separate dataframes, so we will
merge as usual:

compare strata loser = before ung reachstrata.merge (after ung reachstrata,

on = ['site', 'rank profile'], how = 'outer')
compare strata loser = compare strata loser.rename(columns = {'reach x':
'before reach', 'reach y': 'after reach'})

compare strata loser['before reach'] =

np.where (compare strata loser['before reach'].isnull(), O,
compare strata loser['before reach'])

compare strata loser['after reach'] =

np.where (compare strata loser['after reach'].isnull(), O,
compare strata loser['after reach'])
compare strata loser['delta reach'] = compare strata loser['after reach'] -

compare strata loser['before reach']

compare strata loser = compare strata loser.sort values('delta reach')
compare strata loser.head(10)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

site rank_profile before_reach after_reach delta_reach

6083 workcast.com page_1 30.0 0.0 -30.0
3950 on24.com page_1 170.0 149.0 -21.0
6084 workcast.com page_2 21.0 1.0 -20.0
6085 workcast.com top_3 19.0 0.0 -19.0

688 bloggingwizard.com page_2 27.0 9.0 -18.0
2653 hubspot.com top_3 80.0 64.0 -16.0
3443 marketo.com page_2 87.0 74.0 -13.0
2434 gotomeeting.com page_2 101.0 90.0 -11.0
6184 youtube.com page_2 85.0 74.0 -11.0
2776 inc.com page_2 26.0 16.0 -10.0

This dataframe merge makes things much clearer as we can now see ON24 lost most of its rankings on page
1, whereas WorkCast has lost everywhere.
We'll turn our attention to the reach winners stratified by rank profile:

compare strata winners = before ung reachstrata.merge(after ung reachstrata,

on = ['site', 'rank profile'], how = 'outer')
compare strata winners = compare strata winners.rename(columns = {'reach x':
'before reach', 'reach y': 'after reach'})

compare strata winners['before reach'] =
np.where (compare strata winners['before reach'].isnull(),
0, compare strata winners['before reach'])

compare strata winners['after reach'] =

np.where (compare strata winners['after reach'].isnull(),
0, compare strata winners['after reach'])

compare strata winners['delta reach'] =

compare strata winners['after reach'] -

compare strata winners['before reach']

compare strata winners = compare strata winners.sort values('delta reach',
ascending = False)

compare strata winners = compare strata winners[['site',

'rank profile', 'before reach', 'after reach', 'delta reach']]
compare strata winners =

compare strata winners[compare strata winners['delta reach'] > 0]

compare strata winners.head(10)

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

site rank_profile before_reach after_reach delta_reach

2428 google.com top_3 439.0 493.0 54.0
2426 google.com page_1 475.0 518.0 43.0
2813 info.workcast.com page_2 30.0 59.0 29.0
4415 qualtrics.com page_1 36.0 63.0 27.0
3237 liferay.com page_1 14.0 39.0 25.0
1631 digital.com page_2 6.0 31.0 25.0
3952 on24.com top_3 51.0 73.0 22.0
3542 medium.com page_1 80.0 101.0 21.0
1170 cmswire.com page_1 19.0 40.0 21.0
2814 info.workcast.com top_3 2.0 23.0 21.0

Although WorkCast’s info subdomain gained 40 positions overall, their main site lost 69 positions, so it’s a
net loss. Time to visualize, we’ll take the top 28 sites using the head() function:

compare strata losers long = compare strata loser[['site', 'rank profile',
'before reach', 'after reach']].head(28)

The melt() function helps reshape the data from wide format (as per the preceding dataframe) to long
format (where the column names are now in a single column as rows):

compare strata losers long = compare strata losers long.melt (id vars =
['site', 'rank profile'], var name='Phase', value name='Reach')
compare strata losers long['Phase'] =

compare strata losers long['Phase'].str.replace(' reach', '")

The astype() function allows us to instruct Pandas to treat a data column as a different data type. In this
case, we're asking Pandas to treat Phase as a category as this is a discrete variable which then allows us to
order these categories:

compare strata losers long['Phase'] =
compare strata losers long['Phase'].astype('category')

With Phase now set as a category, we can now set the order:

compare strata losers long['Phase'] =
compare strata losers long['Phase'].cat.reorder categories(['before',
'after'])

The same applies to rank profile. Top 3 is obviously better than page 1, which is better than page 2.

compare strata losers long['rank profile'] =
compare strata losers long['rank profile'].astype('category')

compare strata losers long['rank profile'] =

compare strata losers long['rank profile'].cat.reorder categories(['top 3',
'page_1', 'page_ 2'])

The stop_doms list is used to weed out domains from our analysis that the audience wouldn’t be
interested in:

stop_doms = ['en.wikipedia.org', 'google.com', 'youtube.com']

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

With the stop_doms list, we can filter the dataframe of these undesirable domain names by negating any
sites that are in (using the isin() function) the stop_doms list:

compare strata losers long =
compare strata losers long[~compare strata losers long['site'].isin(stop_ doms)

compare strata losers long.head(10)
This results in the following:

site rank_profile Phase Reach

0 workcast.com page_1 before 30.0
9 on24.com page_1 before 170.0
2 workcast.com page_2 before 21.0
3 workcast.com top_3 before 19.0
4 bloggingwizard.com page_2 before 27.0
5 hubspot.com top_3 before 80.0
6 marketo.com page_2 before 87.0
7 gotomeeting.com page_2 before 101.0
9 inc.com page_2 before 26.0
10 founderjar.com page_2 before 10.0

The data is now in long format with the Phase extracted from the before_reach and after_reach columns and
pushed into a column called Phase. The values of the two columns sit under a new single column Reach.
Let's visualize:

compare strata losers plt = (

ggplot (compare strata losers long, aes(x = 'reorder(site, Reach)', y =
'Reach', fill = 'rank profile')) +

geom bar (stat = 'identity', position = 'fill', alpha = 0.8) +
position=position stack(vjust=0.00)) +

labs(y = 'Reach', x =" ") +

coord flip() +

theme (legend position = 'right', axis text x=element text (rotation=0,

hjust=1l, size = 12)) +
facet wrap('Phase')

)

compare strata losers plt.save(filename =

'images/1l compare strata losers plt.png', height=5, width=10, units = 'in',
dpi=1000)

compare strata losers plt

We see the proportions of keywords in their rank profile, which are much easier to see thanks to the
fixed lengths (Figure 10-2).

>>>4f {ijackgoogleseo.com# M & 3 2. $ hif<<<

before

onZd.com-

gotomesting.com -
hubspet.com -

marketo.com =
clickmeeting.com -
facebook.com -
softwareadvice.com -
contentmarketinginstitute. com -
eventbrite.com-

rank_profile
Myownconference, com -
demandbase.com - . top_3
Inc,con = .page_l
bloggingwizard.com -
e close.com - . page 2
growthmarketingpro.com -
ubedlip.com-
ala.org-

instapage.com -
leadforensics.com -
workcast.com-
podeastinsights.com -
founderjar.com =

o
=
[}
wn
(=]
w
(=]
-
a0
=
5}
i
=
u
(=%
=
-l
(5,1
=

0.75
Reach

Figure 10-2 Website Google rank proportions (reach) by top 3, page 1, and page 2 before and after

For example, WorkCast had a mixture of top 3 and page 1 rankings which are now all on page 2.
Founder]ar had page 2 listings, which are now nowhere to be found.

The fixed lengths are set in the geom_bar() function using the parameter position set to “fill.” Despite
following best practice data visualization as shown earlier, you may have to acquiesce to your business
audience who may want multilength bars as well as proportions (even if it's much harder to infer from the
chart). So instead of the position set to fill, we will set it to “stack”:

compare strata losers plt = (
ggplot (compare strata losers long, aes(x = 'reorder(site, Reach)', y =
'Reach', fill = 'rank profile')) +
geom bar (stat = 'identity', position = 'stack', alpha = 0.8)
+ position=position stack(vjust=0.01))
labs(y = 'Reach', x =" ") +
coord flip()
theme (legend position = 'right', axis text x=element text (rotation=0,
hjust=1, size = 12)) +
facet wrap ('Phase')

+

+

)

compare strata losers plt.save(filename =

'images/1l compare strata losers stack plt.png', height=5, width=10, units =
'in', dpi=1000)

compare strata losers plt

Admittedly, in cases like ON24 where in the fixed bar length chart above (Figure 10-2), the differences
were not as obvious (Figure 10-3).

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

before after

oR24.com -) |
gotomeeting.com -
hubspot.com -
marketo.com -
clickmeeating.com -
facebook.com -
softwareadvice.com-
conlentmarketinginstitule.com -
eventbrite.com -
myawnconference.com -
demandbase.com -
inc.com -
bloggingwizard.com -
close.com-
growthmarketingpro.com -
uberflip.com -
ala.org =
instapage.com-
leadforensics.com -
workcast com -
podcastinsights.com -
founderjar.com -

0

L

L |

rank_profile
. top_3

|_ page_1
. page 2

|

'-Tnln““
- =emmmm=gy) IlIIlII

-
o}
o

100 200

(=]

200
Reach

Figure 10-3 Website Google rank counts (reach) by top 3, page 1, and page 2 before and after
In contrast, with the free length bars, we can see that ON24 lost at least 10% of their reach.

Rankings

While reach is nice, as a single metric on its own it is not enough. If you consider the overall value of your

organic presence as a function of price and volume, then reach is the volume (which we have just

addressed). And now we must come to the price, which in the organic value paradigm is ranking positions.
We'll aggregate rankings by site for both before and after the core update, starting with the before

dataset:

before ung ranks = getstat bef unique

Unlike reach where we took the sum of keyword search results, in this case, we’re taking the average
(also known as the mean):

before ung ranks = before ung ranks.groupby(['site']).agg({'rank':
'mean'}) .reset index()

before ung ranks = before ung ranks[['site', 'rank']]

before ung ranks.sort values('rank').head(10)

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

site rank
3156 glik.com 1.0
2154 jungleworks.com 1.0

3280 revenuegrowthsolutions.com 1.0

2148 journals.elsevier.com 1.0
3705 strategyassociation.org 1.0

928 convene.com 1.0
3761 talentlyft.com 1.0

3882 themarketingmentors.com 1.0
2759 nngroup.com 1.0

2094 it.rutgers.edu 1.0

The table shows the average rank by site. As you may infer, the rank per se is quite meaningless because

¢ Some keywords have higher search volumes than others.
e The average rank is not zero inflated for keywords the sites don’t rank for. For example, qlik.com’s average
rank of 1 may be just on one keyword.

Instead of going through the motions, repeating code to calculate and visualize the rankings for the after
dataset and then comparing, we'll move on to a search volume weighted average ranking.

WAVG Search Volume

This time, we will weight the average ranking position by search volume:

before ung svranks = getstat bef unique

Define the function that takes the dataframe and uses the rank column. The weighted average is
calculated by multiplying the rank by the search volume and then dividing by the total weight (being the
search volume sum):

def wavg rank sv(x):

names = {'wavg rank': (x['rank'] *
x['search_volume']).sum()/(x['search_volume']).sum()}
return pd.Series (names, index=['wavg rank']).round (1)

With the function in place, we’ll now use the apply() function to apply the wavg _rank() function just
defined earlier:

before ung svranks =
before ung svranks.groupby(['site']) .apply(wavg rank sv).reset index()

before ung svranks.sort values('wavg rank') .head (10)

This results in the following:

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

site wavg_rank

2506 mediamotiononline.com 1.0
2508 mediapost.com 1.0
4357 www-356.ibm.com 1.0
3246 resources.gitcom 1.0
2479 masterpositioning.com 1.0
1201 docs.chorus.ai 1.0
2437 marketingoutfield.com 1.0
664 casecoach.com 1.0
84 acrpnet.org 1.0
3882 themarketingmentors.com 1.0

We can see already that the list of sites have changed due to the search volume weighting. Even though the
weighted average rankings don’t add much value from a business insight perspective, this is an
improvement. However, what we really need is the full picture being the overall visibility.

Visibility
The visibility will be our index metric for evaluating the value of a site’s organic search presence taking
both reach and ranking into account.

Merge the search volume weighted rank data with reach:

before ung visi = before ung svranks.merge (before ung reach, on = 'site',
how = 'left')

Clean the columns of null values:

before ung visi['reach'] = np.where(before ung visi['reach'].isnull(), O,
before ung visi['reach'])

before ung visi['wavg rank'] =

np.where (before ung visi['wavg rank'].isnull(), 100,

before ung visi['wavg rank'])

Computing the visibility index is derived by dividing the reach by the weighted average rank. That’s
because the smaller the weighted average rank number, the more visible the site is, hence why rank s the
divisor. In contrast, the reach is the numerator because the higher the number, the higher your visibility.

before ung visi['visibility'] = before ung visi['reach'] /

before ung visi['wavg rank']

before ung visi = before ung visi.sort values('visibility', ascending =
False)

before ung visi

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

site wavg_rank reach visibility

1707 google.com 1.8 914.0 507.777778
1864 hubspot.com 6.6 323.0 48.939394
3388 scholar.google.com 1.0 33.0 33.000000
1710 gotomeeting.com 6.4 153.0 23.206250
2822 on24.com 11.9 221.0 18.571429
2005 ing.dk 20.0 0.0 0.000000
2006 inreachce.com 16.5 0.0 0.000000
2007 inriver.com 19.0 0.0 0.000000
2009 insideview.com 12.2 0.0 0.000000
4431 Zuora.com 18.0 0.0 0.000000

4432 rows x 4 columns

The results are looking a lot more sensible and reflect what we would expect to see in the webinar software

space. We can also see that gotomeeting.com, despite having less reach, has a higher visibility score by

virtue of ranking higher on more sought-after search terms. We can thus conclude the visibility score works.
Compute the same for the after dataset:

after ung visi = after ung svranks.merge (after ung reach, on = 'site', how =
'left'")

after ung visi['reach'] = np.where(after ung visi['reach'].isnull(), O,
after ung visi['reach'])

after ung visi['wavg rank'] = np.where(after ung visi['wavg rank'].isnull(),

100, after ung visi['wavg rank'])

after ung visi['visibility'] = after ung visi['reach'] /
after ung visi['wavg rank']
after ung visi = after ung visi.sort values('visibility', ascending = False)

after ung visi

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

site wavg_rank reach visibility

1741 google.com 1.6 1011.0 631.875000
1912 hubspot.com 6.0 304.0 50.666667
3425 scholar.google.com 1.0 31.0 31.000000
1743 gotomeeting.com 5.1 148.0 29.019608
653 capterra.com 8.2 156.0 19.024390

2013 infinitee.com 16.0 0.0 0.000000
2014 infinitiresearch.com 14.0 0.0 0.000000
2015 influence.bloglovin.com 17.5 0.0 0.000000
2018 info.at-event.com 17.3 0.0 0.000000
4519 Zuora.com 18.0 0.0 0.000000

4520 rows x 4 columns

GoToMeeting has gained in visibility, and ON24 is no longer in the top 5.
Join the tables to compare before and after directly in a single dataframe:

compare visi losers = before ung visi.merge (after ung visi, on = ['site'],
how = 'outer')
compare visi losers = compare visi losers.rename (columns = {'wavg rank x':
'before rank', 'wavg rank y': 'after rank',
'reach x': 'before reach', 'reach y': 'after reach',
'visibility x': 'before visi', 'visibility y':

'after visi'

b

compare visi losers|['before visi'] =

np.where (compare visi losers['before visi'].isnull(), O,
compare visi losers|['before visi'])

compare visi losers['after visi'] =

np.where (compare visi losers['after visi'].isnull(), O,
compare visi losers(['after visi'])
compare visi losers(['delta visi'] = compare visi losers['after visi'] -

compare visi losers(['before visi']
compare visi losers = compare visi losers.sort values('delta visi')
compare visi losers.head(10)

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

site before_rank before_reach before visi after_rank after_reach after_visi delta_visi

25 workcast.com 7l 49.0 6.901408 20.0 0.0 0.000000 -6.901408
4 on24.com 1.9 221.0 18.571429 17.8 222.0 12.471910 -6.099518

12 entrepreneur.com 14 15.0 10.714286 32 15.0 4.687500 -6.026786
16 podcastinsights.com 4.3 41.0 9.534884 7.6 28.0 3.684211 -5.850673
15 eventbrite.com 3.6 36.0 10.000000 4.1 25.0 6.097561 -3.902439
57 trainingcheck.com 1.0 40 4.000000 6.5 3.0 0.461538 -3.538462
22 en.rockcontent.com 5.3 40.0 7.547170 12.0 49.0 4.083333 -3.463836
64 mysqgl.com 1.1 4.0 3.636364 16.7 4.0 0.239521 -3.396843
56 heinemann.com 1.0 4.0 4,000000 6.0 4.0 0.666667 -3.333333
8 wordstream.com 8.7 114.0 13.103448 11.0 110.0 10.000000 -3.103448

The comparison view is much clearer, and ON24 and WorkCast are the biggest losers of the 2019 core
update from Google.
Let’s see the winners:

compare visi winners =

how = 'outer

")

compare visi winners =

'beforeirankT, 'wavg

'after visi'

before ung visi.merge (after ung visi,

on =

['site'],

compare visi winners.rename (columns = {'wavg rank x':

rank y':
'reach x':
'visibility x':

})

compare visi winners['before visi']

np.where (compare visi winners|['before visi'].isnull(),

compare visi winners['before visi'])
compare visi winners['after visi'] =

np.where (compare visi winners['after visi'].isnull(),

compare visi winners['after visi'])
compare visi winners['delta visi'] =
compare visi winners['before visi']

compare visi winners =

ascending =

compare visi winners.head(10)

This results in the following:

False)

'after rank',
'before reach',

'before visi',

'reach y':
'visibility y':

0,

'after reach',

compare visi winners['after visi'] -

compare visi winners.sort values('delta visi',

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

site before_rank before reach before_visi after_rank after_reach after_visi delta_visi

0 google.com 1.8 914.0 507.777778 1.6 1011.0 631.875000 124.097222
28 liferay.com 29 19.0 6.551724 3.6 46.0 12777778 6.226054
60 pcmag.com 9.6 37.0 3.854167 3.3 33.0 10.000000 6.145833
457 tallyfy.com 6.1 5.0 0.819672 1.2 8.0 6.666667 5.846995
7 toolshero.com 21 7.0 3.333333 1.0 9.0 9.000000 5.666667
784 netsuite.com 12.4 6.0 0.483871 1.0 6.0 6.000000 5.516129
3 gotomeeting.com 6.4 153.0 23.906250 51 148.0 29.019608 5.113358
18 medium.com 10.9 92.0 8.440367 9.4 118.0 12.55319N1 4112825
26 qualtrics.com 7.0 47.0 6.714286 6.5 70.0 10.769231 4.054945
66 info.workcast.com 9.6 34.0 3.541667 101 74.0 7.326733 3.785066

The biggest winners are publishers which include nonindustry players like PCMag and Medium.
Here’s some code to convert to long format for visualization:

compare visi losers long = compare visi losers[['site',

'before visi', 'after visi']].head(12)

compare visi losers long = compare visi losers long.melt (id vars =
var name='Phase', value name='Visi')

compare visi losers long['Phase'] =

compare visi losers long['Phase'].str.replace(' visi', ''")

['site'],

compare visi losers long['Phase'] =
compare visi losers long['Phase'].astype('category')

compare visi losers long['Phase'] =

compare visi losers long['Phase'].cat.reorder categories(['before',
'after'])

stop _doms = ['en.wikipedia.org',
compare visi losers long =
compare visi losers long[~compare visi losers long['site'].isin(stop_ doms)]

'google.com', 'youtube.com']

compare visi losers long.head(10)

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

site Phase Visi
0 workcast.com before 6.901408
1 on24.com before 18.571429

2 entrepreneur.com before 10.714286
3 podcastinsights.com before 9.534884
4 eventbrite.com before 10.000000
5 trainingcheck.com before 4.000000
6

en.rockcontent.com before 7.547170

7 mysqgl.com before 3.636364
8 heinemann.com before 4.000000
] wordstream.com before 13.103448

The preceding data is in long format. This will now feed the following graphics code:

compare visi losers plt = (

ggplot (compare visi losers long, aes(x = 'reorder (site, Visi)', y =
'Visi', fill = 'Phase')) +

geom bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
position=position stack(vjust=0.01)) +

labs(y = 'Visiblity', x ="' ") +

coord flip() +

theme (legend position = 'right', axis text x=element text (rotation=0,

hjust=1, size = 12)) +
facet wrap('Phase')

)

compare visi losers plt.save(filename =

'images/1l compare visi losers plt.png', height=5, width=10, units = 'in',
dpi=1000)

compare visi losers plt

The separate panels are achieved by using the facet_wrap() function where we instruct plotnine (the
graphics package) to separate panels by Phase as a parameter (Figure 10-4).

>>>4f #ijackgoogleseo.com# B & 3 2. fih<<<

on2d.com-

wordstream.com -

eventbrite.com -

II?

entrepreneur.com-

odcastinsights.com -
p g Phase

[vefore
. after

en rockcantent.com -
workcast.com -
smartsheet.com -
heinemann.com -

trainingcheck.com -

IIIIIIIIIII
:

mysal.com -
0 5 10 15 0 5 10 15
Visiblity
Figure 10-4 Website Google visibility scores before and after
Let’s see the winners:
compare visi winners long = compare visi winners[['site',

'before visi', 'after visi']].head(12)

compare visi winners long = compare visi winners long.melt (id vars =
['site'], var_ name='Phase', value name='Visi')

compare visi winners long['Phase'] =

compare visi winners long['Phase'].str.replace(' visi', ''")

compare visi winners long['Phase'] =

compare visi winners long['Phase'].astype('category')

compare visi winners long['Phase'] =

compare visi winners long['Phase'].cat.reorder categories(['before',
'after'])

stop_doms = ['en.wikipedia.org', 'google.com', 'youtube.com',
'lexisnexis.com']

compare visi winners long =

compare visi winners long[~compare visi winners long['site'].isin(stop_ doms)]

compare visi winners_ long.head(10)

This results in the following:

>>>4f #ijackgoogleseo.com# B & 3 2 &4 fif<<<

site Phase Visi
1 liferay.com before 6.551724
2 pcmag.com before 3.854167
3 tallyfy.com before 0.819672
4 toolshero.com before 3.333333
5 netsuite.com before 0.483871
6 gotomeeting.com before 23.906250
7 medium.com before 8.440367
8 qualtrics.com before 6.714286
9 info.workcast.com before 3.541667

10 marketinginsidergroup.com before 3.939394

compare visi winners plt = (

ggplot (compare visi winners long, aes(x = 'reorder(site, Visi)', y =
'Visi', £ill = 'Phase')) +

geom bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
position=position stack(vjust=0.01)) +

labs(y = 'Rank', x =" ") +

coord flip() +

theme (legend position = 'right', axis text x=element text (rotation=0,

hjust=1, size = 12)) +
facet wrap('Phase')

)

compare visi winners plt.save(filename =
'images/1l compare visi winners plt.png', height=5, width=10, units = 'in',

dpi=1000)
compare visi winners plt

This time, we're not using the facet_wrap() function which puts both before and after bars on the same
panel (Figure 10-5).

gotomesting.com-
rmedium.com =
liferay.com-=
qualtrics.com-

PEMAag.com=
Phase

. before
a

toolshero.com=
marketinginsidergroup.com -

info.workcast.com-

tallyfy.com -

enterprisetraining, com- [
netsuite.com- .
0 10 20 30
Rank

Figure 10-5 Website Google rank average before and after

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

This makes it easier to compare directly and even get a better sense of the difference for each site
before and after.

Result Types

With the overall performance in hand, we’ll drill down further;, starting with result types. By result types, we
mean the format in which the ranking is displayed. This could be

e Regular organic (think the usual ten blue links)
e Video

e Image

e News

e People Also Ask

As usual, we'll perform aggregations on both before and after datasets. Only this time, we’ll group by the
snippets column:

before ung_snippets = getstat bef unique

We're aggregating by counting the number of keyword search results the snippet appears in, which is a
form of reach. Most snippets rank in the top 5 positions of the Search Engine Results Pages, so we won't
bother with snippet rankings.

before ung_snippets =

before ung_snippets.groupby (['snippets']) .agg({'count':

'sum'}) .reset index()

before ung snippets = before ung snippets[['snippets', 'count']]
before ung snippets = before ung snippets.rename (columns = {'count':
'reach'})

before ung_snippets.sort values ('reach', ascending = False) .head(10)

This results in the following:

snippets reach

30 organic 14221
23 image / organic 5612

8 amp / organic 1062
32 people also ask 760
27 interesting finds 478
19 carousel / videos 278
21 faq / organic 276

13 answers / paragraph 197
1 answers / list 158
6 amp /interesting finds 146

Organic predictably has the most reach followed by images and AMP (accelerated mobile pages).
Repeat the process for the after dataset:

after ung_ snippets = getstat aft unique

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

after ung_snippets =
'sum'}) .reset index()
after ung snippets = after ung snippets[['snippets', 'count']]
after ung snippets = after ung snippets.rename(columns = {'count': 'reach'})
after ung_snippets.sort values('reach', ascending = False).head(10)

after ung_snippets.groupby (['snippets']).agg({'count':

This results in the following:

snippets reach

31 organic 14606
24 image / organic 6129

6 amp /organic 1122
33 people also ask 862
28 interesting finds 564
22 faq / organic 352
20 carousel / videos 303

11 answers / paragraph 206
9 answers / list 178

4 amp / interesting finds 150

Organic has gone down implying that there could be more diversification of search results. Join the datasets
to facilitate an easier comparison:

compare snippets = before ung snippets.merge (after ung snippets, on =

['"snippets'], how = 'outer')

compare snippets = compare snippets losers.rename (columns = {'reach x':
'before reach', 'reach y': 'after reach'})

compare snippets['before reach'] =

np.where (compare snippets['before reach'].isnull(), O,

compare snippets|['before reach'])
compare snippets['after reach'] =

np.where (compare snippets['after reach'].isnull(), O,
compare snippets['after reach'])
compare snippets['delta reach'] = compare snippets['after reach'] -

compare snippets['before reach']

compare snippets losers = compare snippets.sort values('delta reach')
compare_ snippets losers.head(10)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

snippets before_reach after_reach delta_reach

31 organic / sitelinks 33.0 18.0 -15.0
33 placesv3 / ratings 30.0 17.0 -13.0
38 videos 44.0 38.0 -6.0
35 related searches 98.0 93.0 -5.0

1 accordion / answers / knowledge graph / paragraph 6.0 2.0 -4.0

4 amp / carousel / news 2.0 0.0 -2.0
12 answers / list / related searches 4.0 2.0 -2.0
15 carousel / knowledge graph / videos 26.0 240 -2.0

3 accordion / answers / paragraph 1.0 0.0 -1.0
20 events 22.0 21.0 -1.0

The table confirms that organic sitelinks’ listings have fallen, followed by places, videos, and related
searches. What does this mean? It means that Google is diversifying its results but not in the way of videos
or local business results. Also, the fall in sitelinks implies the searches are less navigational, which possibly
means more opportunity to rank for search phrases that were previously the preserve of certain brands.

compare snippets winners = compare snippets.sort values('delta reach',
ascending = False)
compare snippets winners.head(10)

This results in the following:

snippets before_reach after_reach delta_reach

23 image / organic 5612.0 6129.0 517.0
30 organic 14259.0 14636.0 377.0
32 people also ask 762.0 865.0 103.0
27 interesting finds 478.0 564.0 86.0
21 faq / organic 276.0 353.0 77.0

8 amp / organic 1062.0 1122.0 60.0
19 carousel / videos 278.0 303.0 25.0
11 answers / list 158.0 178.0 20.0
37 unknown 2.0 19.0 17.0
24 image / ratings / organic 41.0 56.0 15.0

Comparing the winners, we see that images and pure organic have increased as has People Also Ask. So the
high-level takeaway here is that the content should be more FAQ driven and tagged with schema markup.
There should also be more use of images in the content. Let’s visualize by reformatting the data and feeding
it into plotnine:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

each']] .head (10)

compare snippets losers long = compare snippets losers long.melt (id vars =
['snippets'], var name='Phase', value name='Reach')

compare snippets losers long['Phase'] =

compare snippets losers long['Phase'].str.replace(' reach', ''")

compare snippets losers long['Phase
compare snippets losers long['Phase
compare snippets losers long['Phase
compare snippets losers long['Phase'
'before'])

compare snippets losers long =
compare snippets losers long[compare snippets losers long['snippets'] !=
'organic']

astype ('category')

"]
'].
l] .
1.

cat.reorder categories(['after',

compare snippets losers long.head(10)
This results in the following:

snippets Phase Reach

0 organic / sitelinks before 33.0
1 placesv3 / ratings before 30.0
2 videos before 44.0
3 related searches before 98.0
4 accordion / answers / knowledge graph / paragraph before 6.0
5 amp / carousel / news before 2.0
6 answers / list / related searches before 4.0
7 carousel / knowledge graph / videos before 26.0
8 accordion / answers / paragraph before 1.0
9 events before 22.0
compare snippets losers plt = (
ggplot (compare snippets losers long, aes(x = 'reorder (snippets, Reach)',
y = 'Reach', fill = 'Phase')) +
geom bar (stat = 'identity', position = 'dodge', alpha = 0.8) +
#geom text (dd factor df, aes(label = 'market name'),
position=position stack(vjust=0.01)) +
labs(y = 'Visiblity', x =" ") +
#scale y reverse() +
coord flip() +
theme (legend position = 'right', axis text x=element text (rotation=0,

hjust=1, size = 12))
)

compare snippets losers plt.save (filename =

'"images/2 compare snippets losers plt.png', height=5, width=10, units =
'in', dpi=1000)

compare snippets losers plt

The great thing about charts like Figure 10-6 is that you get an instant sense of proportion.

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

related searches -

videos -

carousel | knowledoe graph / videos - _
placesyd J ratings - _ Phase
. after
events - _ before
accordion / answers / knowledge graph | paragraph - .
answers / fist { related searches - .
amp [carousel f news -
accordion / answers | paragraph -
'] | . '
0 25 50 75 100

Visiblity

Figure 10-6 Google visibility by result type before and after
It’s much easier to spot that there are more carousel videos than organic sitelinks post update.

compare snippets winners long = compare snippets winners|[['snippets',
'before reach','after reach']].head(10)

compare snippets winners long = compare snippets winners long.melt (id vars =
['snippets'], var name='Phase', value name='Reach')

compare snippets winners long['Phase'] =

compare snippets winners long['Phase'].str.replace(' reach', '')

compare snippets winners long['Phase'] =
compare snippets winners long['Phase'].astype ('category')

compare snippets winners long['Phase'] =

compare snippets winners long['Phase'].cat.reorder categories(['after',
'before'])

compare snippets winners long =

compare snippets winners long[compare snippets winners long['snippets'] !=
'organic']

compare snippets winners long.head(10)
This results in the following:

snippets Phase Reach

0 image / organic before 5612.0
2 people also ask before 762.0
3 interesting finds before 478.0
4 fag / organic before 276.0
5 amp / organic before 1062.0
6 carousel /videos before 278.0
7 answers / list before 158.0
8 unknown before 2.0
9 image / ratings / organic before 41.0
10 image / organic after 6129.0

>>>4f fi.jackgoogleseo.com# B & $ 2. $ fif<<<

compare snippets winners plt = (

ggplot (compare snippets winners long, aes(x = 'reorder (snippets,
Reach)', y = '"Reach', fill = 'Phase')) +

geom bar(stat = 'identity', position = 'dodge', alpha = 0.8)
+position=position stack(vjust=0.01)) +

labs(y = 'Rank', x ="' ") +

coord flip() +

theme (legend position = 'right', axis text x=element text (rotation=0,

hjust=1, size = 12))
)

compare snippets winners plt.save(filename =

'images/1l compare snippets winners plt.png', height=5, width=10, units =
'in', dpi=1000)

compare snippets winners plt

Other than more of each snippet or result type, the increases across all types look relatively the same
(Figure 10-7).

Image / organic-

amp [organic=-

people also ask -

interesting finds-

[I———————————————
A
==
_ Phase
fag f organic- . after
- hefore
carousel (videos= -
answers [list- .
image / ratings / organic=- I
unknown - |
0 2000 4000 6000
Rank
Figure 10-7 Google’s top 10 count reach by result type before and after
Cannibalization
With performance determined, our attention turns to the potential drivers of performance, such as
cannibals.
Cannibals occur when there are instances of sites with multiple URLs ranking in the search results for a
single keyword.

We'll start by using the duplicated SERPs datasets and counting the number of URLs from the same site
per keyword. This will involve a groupby() function on the keyword and site:

cannibals before agg = getstat before.groupby (['keyword',
'site']) .agg({'count': 'sum'}).reset index()

At this stage, we want to isolate the SERPs rows that are cannibalized. That means URLs that have other
URLs from the same site appearing in the same keyword results.

cannibals before agg = cannibals before agg[cannibals before agg['count'] >
1]

We reset the count to 1 so we can perform further sum aggregations:

cannibals before agg['count'] =1

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Next, we aggregate by keyword to count the number of cannibalized URLs in the SERPs data:

cannibals before agg = getstat before[getstat before['device'] == 'desktop']
cannibals before agg =

cannibals before agg.groupby (['keyword']) .agg({'count':

'sum'}) .reset index()

cannibals before agg = cannibals before agg.rename (columns = {'count':

'cannibals'})
cannibals before agg

This results in the following:

keyword cannibals

0 Bsense webinars 1
1 abm 3
2 abm benchmarks 3
3 abm best practices 1
4 abm case studies 2
435 why is digital customer experience important 1
436 why user experience matters in digital marketing 1
437 zapier webinar integration 1
438 zapier webinars 1
439 zoom webinars 1

440 rows x 2 columns

You could argue that these numbers contain one URL per site that are not strictly cannibals. However, this
looser calculation is simple and does a robust enough job to get a sense of the cannibalization trend.
Let’s see how cannibalized the SERPs were following the update:

cannibals after agg = getstat after.groupby(['keyword',

'site']) .agg({'count': 'sum'}).reset index()

cannibals after agg = cannibals after agg[cannibals after agg['count'] > 1]
cannibals after agg['count'] =1

cannibals after agg = cannibals after agg.groupby(['keyword']) .agg({'count':
'sum'}) .reset index()

cannibals after agg = cannibals after agg.rename(columns = {'count':

'cannibals'})
cannibals after agg

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword cannibals

0 6sense webinars 1
1 abm 3
2 abm benchmarks 3
3 abm best practices 1
4 abm case studies 2
432 webinars for dummies 1
433 what is a webinar 1
434 zapier webinar integration 1
435 zapier webinars 1
436 zoom webinars 1

437 rows x 2 columns

The preceding preview hints that not much has changed; however, this is hard to tell by looking at one table.
So let’s merge them together and get a side-by-side comparison:

compare cannibals = cannibals before agg.merge (cannibals after agg, on =
'keyword', how = 'left')

compare cannibals = compare cannibals.rename (columns = {'cannibals x':
'before cannibals', 'cannibals y': 'after cannibals',

P

compare cannibals['before cannibals'] =

np.where (compare cannibals['before cannibals'].isnull(),
0, compare cannibals['before cannibals'])

compare cannibals['after cannibals'] =

np.where (compare cannibals['after cannibals'].isnull(),
0, compare cannibals['after cannibals'])

compare cannibals['delta cannibals'] = compare cannibals['after cannibals']
- compare cannibals['before cannibals']

compare cannibals = compare cannibals.sort values('delta cannibals')
compare cannibals

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword before_cannibals after_cannibals delta_cannibals

255 live streaming software 4 1.0 -3.0
336 recorded webinars 3 0.0 -3.0
396 web conferencing attendance 2 0.0 -2.0
41 webcast guidelines 2 0.0 -2.0
353 salesforce webinar integration 3 1.0 -2.0
214 hubspot webinar integration 3 5.0 2.0
386 training tools 2 4.0 2.0
184 enterprise training platform 2 4.0 2.0

37 always on experiences software 1 3.0 2.0

78 cmoqanda 1 4.0 3.0

440 rows x 4 columns

The table shows at the keyword level that there are less cannibals for “webcast guidelines” but more for
“enterprise training platform.” But what was the overall trend?

cannibals trend = compare cannibals

cannibals trend['project'] = target name

cannibals trend =

cannibals trend.groupby ('project') .agg({'before cannibals': 'sum',
'after cannibals': 'sum',
'delta cannibals': 'sum'}).reset index()

cannibals trend
This results in the following:

project before_cannibals after_cannibals delta_cannibals

0 ON24 664 575.0 -89.0

So there were less cannibals overall by just over 13%, following the core update, as we would expect.
Let’s convert to format before graphing the top cannibals for both SERPs that gained and lost cannibals:

compare cannibals less = compare cannibals[['keyword', 'before cannibals',

'after cannibals']].head(10)

compare cannibals less = compare cannibals less.melt (id vars = ['keyword'],
var name = 'Phase', value name = 'cannibals')

compare cannibals less['Phase'] =
compare cannibals less['Phase'].str.replace(' cannibals', ''")
compare cannibals less['Phase'] =
compare cannibals less['Phase'].astype('category')
]] —
1.

compare cannibals less|['Phase
compare cannibals less|['Phase'

cat.reorder categories(['after', 'before'])

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

compare cannibals less

This results in the following:

keyword Phase cannibals
0 live streaming software before 4.0
1 recorded webinars before 3.0
2 web conferencing attendance before 2.0
3 webcast guidelines before 2.0
4 salesforce webinar integration before 3.0
5 salesforce webinars before 3.0
6 certification platform before 2.0
7 brand leadership guide before 4.0
8 act on webinars before 4.0
9 enterprise certification benchmarks before 3.0
10 live streaming software after 1.0
11 recorded webinars after 0.0
compare cannibals less plt = (
ggplot (compare cannibals less, aes(x = 'keyword', y = 'cannibals',
fill = 'Phase')) +
geom bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
#geom text (dd factor df, aes(label = 'market name'),
position=position stack(vjust=0.01)) +
labs(y = '"# Cannibals in SERP', x = "' ') +
#scale y reverse() +
coord flip() +
theme (legend position = 'right', axis text x=element text (rotation=0,

hjust=1, size = 12))
)

compare cannibals less plt.save(filename =

'images/5 compare cannibals less plt.png', height=5, width=10, units

dpi=1000)
compare cannibals less plt

Figure 10-8 shows keywords that lost their cannibalizing URLs or had less cannibals.

in

>>>4f #ijackgoogleseo.com# B & 3 2. fih<<<

webcast guidelines -
web conferencing attendance -
salestorce webinars-

salesforce webinar integration -

Phase

" before

recorded webinars -

live streaming software -

enterprise certification benchmarks -
certification platform -
brand leadership guide -

act on webinars -

i

2
Cannibals in SERP

o
=
w
-3

Figure 10-8 Cannibalized SERP result instance counts by keyword

The most dramatic loss appears to be “live streaming software” going from 4 to 1. All of the phrases
appear to be quite generic apart from the term “act on webinars” which appears to be a brand term for act-
on.com.

compare cannibals more = compare cannibals[['keyword', 'before cannibals’,

'after cannibals']].tail(10)

compare cannibals more = compare cannibals more.melt (id vars = ['keyword'],
var name = 'Phase', value name = 'cannibals')

compare cannibals more['Phase'] =
compare cannibals more['Phase'].str.replace(' cannibals', '')

compare cannibals more['Phase'] =

compare cannibals more['Phase'].astype('category')

compare cannibals more['Phase'] =

compare cannibals more['Phase'].cat.reorder categories(['after', 'before'])

compare cannibals more

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

keyword Phase cannibals

0 sugarcrm webinars before 1.0
1 continuing education platform before 1.0
2 web conferencing registrations before 1.0
3 brand leadership case studies before 1.0
4 certification strategy before 2.0
5 hubspot webinar integration before 3.0
6 training tools before 2.0
7 enterprise training platform before 2.0
8 always on experiences software before 1.0
9 cmoganda before 1.0
10 sugarcrm webinars after 3.0
11 continuing education platform after 3.0
12 web conferencing registrations after 3.0

compare cannibals more plt = (

ggplot (compare cannibals more, aes(x = 'keyword', y = 'cannibals',
fill = 'Phase')) +

geom bar(stat = 'identity', position = 'dodge', alpha = 0.8) +

labs(y = '"# Cannibals in SERP', x = "' ') +

coord flip() +

theme (legend position = 'right', axis text x=element text (rotation=0,

hjust=1l, size = 12))
)

compare cannibals more plt.save(filename =

'images/5 compare cannibals more plt.png', height=5, width=10, units =
dpi=1000)

compare cannibals more plt

'in',

Nothing obvious appears as to why these keywords received more cannibals when compared with the
keywords that lost their cannibals, as both had a mixture of generic and brand hybrid keywords (Figure 10-
9).

>>>4f {ijackgoogleseo.com# M & 3 2. $ hif<<<

web conferencing registrations -
training Lools -
sugarcrm webinars -

hubspot webinar integration =

enterprise training platform - Phase
. after
cantinuing education platform - iﬁ befare

cma g and a-
certification strategy -
brand leadership case studies-

always on experiences software -

m

o
=
%]
w
=
w

Cannibals in SERP

Figure 10-9 Cannibalized SERP result instance counts by keyword, before and after

Keywords

Let’s establish a general trend before moving the analysis toward the site in question.

Token Length

Perhaps there are keyword patterns such as token length that could explain the gains and losses following
the core update. We'll try token length which measures the number of keywords in a search query.

Metrics such as search volume before and after are not available in the getSTAT before and after the
update. We're interested to see how many unique sites were present for each token length for a general
trend view.

We’ll analyze the SERPs for desktop devices; however, the code can easily be adapted for other devices
such as mobiles:

tokensite before = getstat bef unique[getstat bef unique['device'] ==

'desktop']
tokensite after = getstat aft unique[getstat aft unique['device'] ==
'desktop']
tokensite after.sort values(['keyword', 'rank'])
keyword market phase device search_volume rank url site snip
17 WE‘.""” US-en after deskiop i1 hitps:/fhub.Bsense. g-event Ssensecom o
160 abm US-en after desktop 110000 1 hitps:tfwww.abm.com/ abm.com ﬁ
8818 abm US-en after desktop 110000 2 http://www.google.com/ google.com dﬁ
13591 abm US-en after desktop 110000 3 nttps:/flocations.abm.com/ck/tulsafacility-services-tulsa-ok-1334.ntml locations.abm.com ':,'::
6685 abm US-en after desktop 110000 L] tp dii P ki A enwikipedia.org on
8360 %% s on after desktop 135000 16 ps gend gendco or
246 Z00M yo en after desktop 135000 17 dufits/ser hitmi brandesdu orc
8126 %M Usen after desktop 135000 18 https:/fwww.g2.comip fide g2.com on
23714 wsﬂ:}‘; US-en after desktop 135000 19 https://webinar ars/ com o
12258 | 00" US-en after desktop 135000 20 https://it.comell.ad Wwhats-zo ting-what nar ft.comell.edu o

12909 rows x 13 columns

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

The first step is to aggregate both datasets by token size and phase for both before and after. We only want
the top 10 sites; hence, the filter rankis less than 11. We start by aggregating at the keyword level within the
token size and phase to sum the number of sites. Then aggregate again by token size and phase to get the
overall number of sites ranking in the top 10 for the token size.

The two-step aggregation was made necessary because of the filtering for the top 10 sites within the
keyword; otherwise, we would have aggregated within the phase and token size in one line.

tokensite before reach = tokensite before[tokensite before['rank'] <
11] .groupby (['token size', 'keyword', 'phase']).agg({'count':
'sum'}) .reset index()

tokensite before reach = tokensite before reach.groupby (['token size',
'phase']) .agg({'count': 'sum'}).reset index()

tokensite before agg = tokensite before reach.rename(columns = {'count':
'site count'})

tokensite before agg
This results in the following:

token_size phase site_count

0 head before 35
1 long before 4552
2 middle before 1460

The two-step aggregation approach is repeated for the after dataset:

targetsite after token = targetsite after.groupby(['token size',

'phase']) .agg({'count': 'sum'}).reset index()

targetsite after sv = targetsite after.groupby(['token size',

'phase']) .agg({'search volume': 'sum'}).reset index()

targetsite after agg = targetsite after token.merge (targetsite after sv, on
= ['token size', 'phase'], how = 'left')

targetsite after agg = targetsite after agg.rename(columns = {'count':
'reach'})

targetsite after agg
This results in the following:

token_size phase site_count

0 head after 35
1 long after 4848
2 middle after 1521

With both phases aggregated by site count, we'll merge these for a side-by-side comparison:

tokensite token deltas = tokensite before agg.merge (tokensite after agg, on
= ['token size'], how = 'left')
tokensite token deltas['sites delta'] =
(tokensite token deltas['site count y'] -
tokensite token deltas['site count x'])

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

Cast the token size as a category data type so that we can order these for the table and the graphs later:

tokensite token deltas['token size'] =

tokensite token deltas['token size'].astype('category')
tokensite token deltas['token size']
tokensite token deltas['token size']
'middle', 'long'l])

.cat.reorder categories(['head’,
tokensite token deltas = tokensite token deltas.sort values('token size')
tokensite token deltas

This results in the following:

token_size phase_x site_count_x phase_y site_count_y sites_delta

0 head before 35 after 35 0
2 middle before 1460 after 1521 61
1 long before 4552 after 4848 296

So the table is sorted by token_size rather than in alphabetical order thanks to converting the data type
from a string to category. Most of the changes have been in the long tail and middle body in that there are
more sites in the top 10 than before, whereas the head terms didn’t change much by volume. This may be a
push by Google to diversify the search results and cut down on site dominance and cannibals.

Let’s visualize:

targetsite token viz = pd.concat([targetsite before agg,
targetsite after agg])

targetsite token viz
This results in the following:

token_size phase reach search_volume

0 head before 187 107595000
1 long before 17624 8081056
2 middle before 5866 50344090
0 head after 182 105454500
1 long after 18718 8311735
2 middle after 6072 51223382

targetsite token sites plt = (

ggplot (tokensite token viz,

aes(x = 'token size', y = 'site count', fill = 'phase')) +
geom bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
position=position stack(vjust=0.01)) +
labs(y = 'Unique Site Count', x = 'Query Length') +
coord flip() +
theme (legend position = 'right',

axis text y =element text (rotation=0, hjust=1l, size = 12),

>>>4f #ijackgoogleseo.com# B & 3 2. fih<<<

legend title = element blank()
)
)

targetsite token sites plt.save(filename =

'images/8 targetsite token sites plt.png', height=5, width=10, units = 'in',
dpi=1000)

targetsite token sites plt

So that’s the general trend graphed for our PowerPoint deck (Figure 10-10). The question is which sites
gained and lost?

long-
&
§ =
g after
> middle- I berore
g
o
head-
0 1000 2000 3000 4000 5000
Unique Site Count
Figure 10-10 Count of unique sites by query length
Token Length Deep Dive
With the sense of the general trend in hand, we’ll get into the details to see how sites were affected within
the long tail.
As before, we'll focus on desktop results, in addition to filtering for the long tail:
longs before = tokensite before[tokensite before['token size'] == 'long']
longs after = tokensite after([tokensite after['token size'] == 'long']

longs:after

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

keyword market phase device search_volume rank url site snippets rank_profile
abm best 5 hitps://blog.topohg.com/account-basad- answers
23905 practices Y AT o g marketing-11-tactics-to-drive-your-abm-process/ Iogot: { list top.3
abm best httpa://adage. farticle/btob cti answers
ae practices dirbe: afar deskan 20 2 account-based-marketing-b-b/300361 Ao cod { list top 3
abm best - : g
19685 Practices US-en after desktop 20 3 https://skaled com/abm-best-practices/ skaled.com organic page_1
abm best https://www. lsadspace com/anterprise-lavel- X
12895 praciee US-en after deskiop 20 4 Roscuntbesad-markating/ leadspace.com organic page_1
abm best : https://blog.hubspot.com/marketing/account-
10843 practies US-en after desktop 90 g based.marksting-guids hubspot.com organic page_1
why user
experience https:/idigi inginsti com/blog/why-
5675 mattersin US-en after desktop 10 20 user-experience-is-key-to-digital-m ing: iggil inginstitute.com organic page_2
digital SUCCESS
marketing
zapler
24638 webinar US-en after desktop 10 1 hitps:/fzapier.com/apps/ i grations zaplercom organic top_3
integration
zapier
13450 webinar US-en after desktop 10 18 https:/livestorm. 1ar-i s/ zapier/ livestorm.co organic page_2
integration
zapier
16283 webinar US-en after desktop 10 19 hitps://www.on24.com/zapier/ on2d.com organic page_2
integration
zapier hitps:/fwww.livewebinar.com/integrations/zapier-
13540 webinar US-en after desktop 10 20 2 5 4 : i livewebinarcom organic page_2
integration e sa

9704 rows x 13 columns
The data is now filtered for the desktop and long tail, making it ready for analysis using aggregation:

longs before reach = longs before.groupby('site') .agg({'count':
'sum'}) .reset index()

longs before rank =
longs_before.groupby('site') .apply(wavg rank sv).reset index()

longs _before agg = longs before reach.merge(longs before rank, on = 'site',
how = 'left'")

longs before agg['visi'] = longs before agg['count'] /

longs before agg['wavg rank']

longs before agg['phase'] = 'before'

longs_before agg = longs before agg.sort values('count', ascending = False)

longs before agg.head()

This results in the following:

site count wavg_rank visi phase
1239 google.com 298 3.1 96.129032 before
2319 qualtrics.com 42 1.2 35.000000 before
1365 hubspot.com 179 5.7 31.403509 before
3257 youtube.com 100 7.2 13.888889 before
1859 medium.com 84 7.3 11.506849 before

So far, we see that Qualtrics ranked around 1.2 (on average) on 112 long-tail keywords on desktop searches.
We’ll repeat the aggregation for the after data:

longs_after reach = longs after.groupby('site').agg({'count':
'sum'}) .reset index()

longs after rank =
longs_after.groupby('site') .apply(wavg rank sv).reset index()

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

longs _after agg = longs after reach.merge(longs after rank, on = 'site', how
= 'left')

longs _after agg['visi'] = longs after agg['count'] /

longs after agg['wavg rank']

longs after agg['phase'] = 'after'

longs_after agg = longs_after agg.sort values('visi', ascending = False)

longs after agg.head()

This results in the following:

site count wavg_rank visi phase
1271 google.com 349 2.5 139.600000 after
1408 hubspot.com 180 4.5 40.000000 after
2600 sitecore.com 33 1.9 17.368421 after
2344 qualtrics.com 58 41 14.146341 after
3336 youtube.com 91 7.3 12.465753 after

Following the core update, HubSpot and Sitecore have moved ahead of Qualtrics within the top 5 in the long
tail. Medium has moved out of the top 5. Let’s make this comparison easier:

compare longs
'outer')
compare longs = compare longs.rename (columns = {'count x': 'before reach',
'count y': 'after reach',
'wavg rank x': 'before rank', 'wavg rank y': 'after rank',
'visi x': 'before visi', 'visi y': 'after visi',

})

longs_before agg.merge (longs_after agg, on = ['site'], how =

compare longs|['before reach'] =

np.where (compare longs['before reach'].isnull(),
0, compare longs['before reach'])

compare longs['after reach'] =

np.where (compare longs['after reach'].isnull(),
0, compare longs['after reach'])

compare longs|['before rank'] =

np.where (compare longs['before rank'].isnull(),
100, compare longs|['before rank'])

compare longs['after rank'] = np.where(compare longs['after rank'].isnull(),
100, compare longs['after rank'])

compare longs|['before visi'] =

np.where (compare longs|['before visi'].isnull(),
0, compare longs|['before visi'])
compare longs['after visi'] = np.where(compare longs|['after visi'].isnull(),

0, compare longs|['after visi'])

compare longs['delta reach'] = compare longs['after reach'] -
compare longs|['before reach']

compare longs['delta rank'] = compare longs['before rank'] -
compare longs['after rank']

compare longs['delta visi'] = compare longs['after visi'] -

compare longs|['before visi']

compare longs.sort values('delta visi').head(12)

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

This results in the following:

site before reach before rank before visi phase x after reach after_rank after visi phase y delta_reach delta_rank delta_visi

1 qualtrics.com 420 1.2 35.000000 before 58.0 4.1 14146341 after 16.0 -2.9 -20.853659
15 podcastinsights.com 19.0 29 6.551724 before 17.0 45 3777778 after -2.0 1.6 -2.773946
59 workcast.com 220 85 2588235 before 1.0 20.0 0.050000 after -21.0 -11.5 -2.538235

¥ gotomeeting.com 76.0 80 9500000 before 72.0 10.0 7.200000 after -4.0 -20 -2.300000
32 profitwell.com 6.0 1.4 4285714 before 3.0 1.4 2142857 after -3.0 00 -2.142857
33 fsco.gov.on.ca 16.0 39 4102564 befors 120 56 2.142857 after -4.0 -1.7 -1.959707
57 mightynetworks.com 6.0 23 2 608696 before 5.0 6.1 0819672 after -1.0 -3.8 -1.789024
54 glisser.com 5.0 18 2.631579 before 7.0 7.6 0821053 after 2.0 -57 -1.710526
86 zestis 2.0 1.0 2.000000 before 2.0 5.5 0363636 after 0.0 -4.5 -1.636364
13 ventureharbour.com 350 4.8 7.291667 before 35.0 8.1 5.737705 after 0.0 -1.3 -1.553962
19 trainingmag.com 8.0 1.5 5333333 before 10.0 26 3.846154 after 2.0 11 -1.487179

3 youtube.com 100.0 7.2 13.888889 before 891.0 7.3 12.465753 after -8.0 <041 -1.423135

As confirmed, Qualtrics lost the most in the long tail. Let’s visualize, starting with the losers:

longs reach losers long compare longs.sort values('delta visi')

longs reach losers long = longs reach losers long[['site', 'before visi',
'after visi']]

longs reach losers long
longs_reach losers long[~longs_reach losers long['site'].isin(['google.co.uk',
'youtube.com'])]

longs_reach losers long = longs reach losers long.head(10)
longs_reach losers long = longs reach losers long.melt (id vars = 'site',
var name = 'phase', value name = 'visi')

longs reach losers long['phase'
longs reach losers long['phase'

]
].str.replace(' visi', '")
longs reach losers long

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

site phase visi

0 qualtrics.com before 35.000000
1 podcastinsights.com before 6.551724
workcast.com before 2.588235
gotomeeting.com before 9.500000
profitwell.com before 4.285714

fsco.gov.on.ca before 4.102564

2

3

4

5

6 mightynetworks.com before 2.608696

F glissercom before 2.631579

8 zestis before 2.000000

9 ventureharbour.com before 7.291667
10 qualtrics.com after 14.146341
11 podcastinsights.com after 3.777778

12 workcast.com after 0.050000

longs reach losers plt = (
ggplot (longs reach losers long,

aes(x = 'reorder (site, visi)', y = 'visi', £ill = 'phase')) +
geom bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
#geom text (dd factor df, aes(label = 'market name'),
position=position stack(vjust=0.01)) +
labs(y = 'Visibility', x = ""'") +

#scale y loglO() +
coord flip() +
theme (legend position = 'right',
axis text y =element text (rotation=0, hjust=1l, size = 12),
legend title = element blank()
)
)

longs_reach losers plt.save (filename =
'"images/10 longs visi losers plt.png', height=5, width=10, units = 'in',
dpi=1000)

longs reach losers plt

Qualtrics and major competing brand GoToMeeting (Figure 10-11) were notably among the top losers
following the Google update.

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

gualtrics.com-
gotomeeting.com-
ventureharbour.com-
podcastinsights.com -

profitwell.com-

. after

bef
fsco.gov.on.ca- efore

glisser.com -

mightynetworks.com-
workcast.com-

zest.is-

o
-
=]
g
(=]
[
=

Visibility

Figure 10-11 Visibility by website before and after
For the winners

longs reach winners long = compare longs.sort values('delta visi')

longs:reach_winners_long = longs_reach_winnerg_long[['site', 'before visi',
'after visi']]

We’ll also remove Google and YouTube as Google may have biased their owned properties in search
results following the algorithm update:

longs reach winners long =
longs reach winners long[~longs reach winners long['site'].isin(['google.co.ul
'google.com', 'youtube.com'])]

Taking the tail as opposed to the head allows us to select the winners as the table was ordered in
ascending order of importance from lost visibility all the way down to sites that gained the most visibility:

longs_reach winners long = longs_reach winners long.tail (10)

longs reach winners long = longs reach winners long.melt (id vars = 'site',
var name = 'phase', value name = 'visi')

longs_reach winners long['phase'] =

longs_reach winners long['phase'].str.replace(' visi', ''")

longs reach winners plt = (
ggplot (longs_ reach winners long,

aes(x = 'reorder (site, visi)', y = 'visi', f£ill = 'phase')) +
geom bar (stat = 'identity', position = 'dodge', alpha = 0.8) +
labs(y = 'Google Visibility', x = "'"'") +
coord flip() +
theme (legend position = 'right',

axis text y =element text (rotation=0, hjust=1l, size = 12),
legend title = element blank()
)

)

longs reach winners plt.save(filename =
'images/10 longs visi winners plt.png', height=5, width=10, units = 'in',
dpi=1000)

longs_reach winners plt

In the long-tail space, HubSpot and Sitecore are the clear winners (Figure 10-12).

>>>4f ijackgoogleseo.com# B & 3 2. $ fif<<<

hubspot.com-
sitecore.com-
en.wikipedia.org -
liferay.com-

cmswire.com-

. after

before
gartner.com-

pipedrive.com-
docs.microsoft.com-
decibel.com-

enterprisetraining.com-

b
[=3
B
=]

20
Google Visibility

[~
o

Figure 10-12 Website Google visibility gainers, before and after

This may be as a result of their numerous, well-produced, content-rich guides.

Target Level

With the general trends established, it’s time to get into the details. Naturally, SEO practitioners and
marketers want to know the performance by keywords and pages in terms of top gainers and losers. We'll
split the analysis between keywords and pages.

Keywords
To achieve this, we'll filter for the target site “ON24” for both before and after the core update:

before site = getstat bef unique[getstat bef unique['site'] == root domain]

The weighted average rank doesn’'t apply here because we're aggregating at a keyword level where there
is only value for a given keyword:

before site ranks = before site.groupby(['keyword',

'search volume']) .agg({'rank': 'mean'}).reset index()

before site ranks = before site ranks.sort values('search volume', ascending
= False) .head(10)

after site = getstat aft unique[getstat aft unique['site'] == root domain]
after site ranks = after site.groupby(['keyword',
'search volume']).agg({'rank': 'mean'}).reset index()

after_sIte_ranks = after site ranks.sort values('search volume', ascending =
False) .head (10)
after site ranks

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

keyword search_volume wavg_rank

152 webinar 1000000 20.0
165 what is a webinar 60500 14.0
140 webcast 40500 9.0
100 live webinar 18100 18.0
102 live webinars 18100 14.0
161 webinar registrations 5400 9.0

93 live demo 4400 2.5
160 webinar marketing 2900 9.0
158 webinar events 2900 14.0

78 how do webinars work 2400 3.5

With the two datasets in hand, we’ll merge them to get a side-by-side comparison:

compare site ranks = before site ranks. merge(after site ranks, on =

['keyword', 'search volume'],
how = 'outer')
compare site ranks = compare site ranks.rename(columns = {'rank x':
'before rank', 'rank y': 'after rank'})
compare site ranks['before rank'] =
np.where (compare site ranks['before rank'].isnull(), 100,

compare site ranks['before rank'])

compare site ranks['after rank'] =

np.where (compare site ranks['after rank'].isnull(), 100,
compare site ranks['after rank'])

compare site ranks['delta rank'] = compare site ranks['before rank'] -
compare site ranks['after rank']

compare site ranks

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

keyword search_volume before rank after_rank delta_rank

0 webinar 1000000 12.0 20.0 -8.0
1 what is a webinar 60500 9.5 14,0 -4.5
2 webcast 40500 15.0 9.0 6.0
3 online webinar 14800 17.0 100.0 -83.0
4 webinar registrations 5400 7.5 9.0 -1.5
5 live demo 4400 5.0 25 2.5
6 webinar marketing 2900 9.0 9.0 0.0
7 how do webinars work 2400 4.0 3.5 0.5
8 how does a webinar work 2400 2.5 100.0 -97.5
9 salesforce webinars 1900 15.0 100.0 -85.0
10 live webinar 18100 100.0 18.0 82.0
11 live webinars 18100 100.0 14.0 86.0
12 webinar events 2900 100.0 14.0 86.0

The biggest losing keyword was webinar, followed by “what is a webinar”
Let’s visualize:

compare site ranks long = compare site ranks[['keyword',K ‘'before rank',
'after rank']]

compare site ranks long = compare site ranks long.melt (id vars = 'keyword',
var name = 'Phase', value name 'rank')

compare site ranks long['Phase'] =
"]

compare site ranks long['Phase'].str.replace(' rank', ''")
compare_ site ranks long
compare keywords rank plt = (

ggplot (compare site ranks long, aes(x = 'keyword', y = 'rank',

fill = 'Phase')) +

geom bar(stat = 'identity', position = 'dodge', alpha = 0.8) +

labs(y = 'Google Rank', x ="' ") +

scale y reverse() +

coord flip() +

theme (legend position = 'right', axis text x=element text (rotation=0,

hjust=1, size = 12))
)

compare keywords rank plt.save(filename =
'images/6 compare keywords rank plt.png', height=5, width=10, units = 'in',

dpi=1000)
compare keywords rank plt

“Salesforce webinars” and “online webinars” really fell by the wayside going from the top 10 to nowhere
(Figure 10-13).

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

what is a webinar-
weblnar registrations -
webinar marketing -
webinar events -
webinar-

webcast - Phase

. after
b

efore

salesforce webinars -
online webinar-

live webinars -

live webinar -

live demo -

how does a webinar work -

how do webinars work -

50
Google Rank

—
o
L=
~J
wu
N
w
)

Figure 10-13 Average rank positions by keyword for ON24 before and after

By contrast, “webinar events” and “live webinar” gained. Knowing this information would help us
prioritize keywords to analyze further to recover traffic back. For example, the SEO in charge of ON24 might
want to analyze the top 20 ranking competitors for “webinar” to generate recovery recommendations.

Pages
Use the target keyword dataset which has been prefiltered to include the target site ON24:

targetURLs before reach = before site.groupby(['url',

'phase']) .agg({'count': 'sum'}).reset index()

targetURLs before sv = before site.groupby(['url’,
'phase']) .agg ({'search volume': 'mean'}).reset index()

targetURLs before rank = before site.groupby(['url’,

'phase']) .apply (wavg_rank sv).reset index()

targetURLs before agg = targetURLs before reach.merge (targetURLs before sv,
on = ['url', 'phase'], how = 'left')

targetURLs before agg = targetURLs before agg.merge (targetURLs before rank,
on = ['url', 'phase'], how = 'left')

targetURLs before agg = targetURLs before agg.rename (columns = {'count':
'reach'})

targetURLs before agg['visi'] = (targetURLs before agg['search volume'] /
targetURLs before aggl['wavg rank']) .round(2)

targetURLs before agg

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

url

phase reach

search_volume wavg_rank visi

https://www.on24.com/

https://www.on24.com/act-on/

hitps://www.on24.com/always-on-engagement-hub/
https://www.on24.com/blog/12-amazing-tips-to-boost-webinar-registration-and-attendance/

https://www.on24.com/blog/4-quick-and-easy-webinar-formats-you-can-use-right-now/

https://www.on24.com/sql-server/
https://www.on24.com/sugarcrm/
hitps.//www.on24.com/tableau-3/
https://www.on24.com/webinar-benchmarks/
https://www.on24.com/zapier/

94 rows x 6 columns

before
before
before
before
befare

before
before
before

before

targetURLs after reach = after site.groupby(['url',
'sum'}) .reset index()
targetURLs after sv = after site.groupby(['url',

'phase']) .agg ({'search volume':

targetURLs after rank = after_site.groupby(['uzl',
'phase']) .apply(wavg_rank sv).reset index()
targetURLs after agg = targetURLs after reach.merge (targetURLs after sv, on

12
4

'mean'}) .reset index ()

125.750000
10.500000
1.000000
772.285714

40.000000

10.500000
5.500000
240.500000
1.000000

30.400000

148 8.50
9.7 1.08
32 031
8.0 96.54

17.0 235

13.0 081
49 112

17.0 1415
856 012
9.3 327

'phase']) .agg ({'count':

= ['url', 'phase'], how = 'left')

targetURLs after agg = targetURLs after agg.merge (targetURLs after rank, on
= ['url', 'phase'], how = 'left')

targetURLs after agg = targetURLs after agg.rename(columns = {'count':
'reach'})

targetURLs_after agg['visi'] = (targetURLs after agg['search volume'] /

targetURLs _after agg['wavg rank']) .round(2)
targetURLs _after agg

This results in the following:

url phase reach search_volume wavg_rank visi

0 hitps://www.on24.com/ after 17 4692.235294 12,9 363.74
1 hitps://www.on24.com/act-on/ after 2 1.000000 6.0 0a7
2 https://www.on24.com/always-on-engagement-hub/ after 12 1.000000 22 0.31
3 hitps:fwww.on24.com/blog/1 2-amazing-tips-to-boost-webinar-registration-and-attendance/ after 2 5400.000000 9.0 800.00
4 https:/fwww.on24.com/blog/4-quick-and-easy-webinar-formats-you-can-use-right-now/ after 2 40.000000 18.0 2.22
92 https:/fwww.on24.com/sugarcrmy after 4 5.500000 40 138
a3 https:/fwww.on24.com/tableau-3/ after 4 240.500000 100 2405
94 https://www.on24.com/webinar-benchmarks/ after a 1.000000 7.3 0.14
95 https://www.on24.com/wp-content/uploads/2020/06/on24_case-study-Ingram-Micro_20200521.pdf after 2 1.000000 9.5 011
96 hitps:/fwww.on24.com/zapier/ after 5 30.400000 10.7 2.84

97 rows x B columns

target urls deltas = targetURLs before agg.merge (targetURLs after agg, on =
['url'], how = 'left')

target urls deltas = target urls deltas.rename (columns

'before reach', 'reach y': 'after reach',
'search volume x': 'before sv',

'after sv',

{'reach x':

'search volume y':

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

'wavg rank x': 'before rank', 'wavg rank y':
'after rank',

'visi x': 'before visi', 'visi y': 'after visi'})
target urls deltas = target urls deltas[['url', 'before reach', 'before sv',

'before rank', 'before visi',
'after reach', 'after sv', 'after rank', 'after visi']]

target urls deltas['after reach'] =

np.where (target urls deltas['after reach'].isnull(),
0, target urls deltas['after reach'])

target urls deltas(['after sv'] =

np.where (target urls deltas['after sv'].isnull(),
target urls deltas['before sv'], target urls deltas['after sv'])

target urls deltas['after rank'] =

np.where (target urls deltas['after rank'].isnull(),
100, target urls deltas['after rank'])

target urls deltas['after visi'] =

np.where (target urls deltas['after visi'].isnull(),
0, target urls deltas['after visi'])

target urls deltas['sv_delta'] = (target urls deltas['after sv'] -
target urls deltas|['before sv'])

target urls deltas['rank delta'] = (target urls deltas['before rank'] -
target urls deltas['after rank'])

target urls deltas['reach delta'] = (target urls deltas['after reach'] -
target urls deltas|['before reach'])

target urls deltas['visi delta'] = (target urls deltas['after visi'] -
target urls deltas|['before visi'])

target urls deltas = target urls deltas.sort values(['visi delta'],
ascending = False)

target urls deltas

This results in the following:

url before_reach before_sv before_rank before visi after_
45 https:/fwww.on24 com/ive-webcast-alite/ 5 16968.000000 15.1 11237
44 https:/fwww.on24 com/iive-demo/ 4 2700,000000 5.0 540.00
3 hitps://www.on24.com/blog/12-amazing-tips-to-boost-webinar-regi ion-and ! 7 772.285714 B.O 96.54
0 https:'www.on24.com/ 12 125.750000 14.8 8.50
hittpsi/fwww.on24.com/blog ow-webinars-
17 work/#:~:text=Let's%20start %6 20with%20a % 20simple,using ¥ 20other¥:20avail 420interactive¥o20tools. 2 30.000000 1.0 80.00
39 https:fwww.on24. com/fage/weblnar-marketing-strategy-guidea/ 4 1450.500000 9.0 161.17
N https:/fwww.on24.com/blog/on-demand-webinars-rules-everyone/ B8 ‘B60.000000 B.1 108.20
5 hitps://www.on24,com/blog/5-ways-to-drive-webinar-registrations-at-speed/ 1 5400.000000 7.0 771.43
79 https/fwww.on24. com/ p ing-webinars/ 2 1900.000000 1.0 1900.00
15 hitps:/www.on24_com/blog/how-webinars-waork/ 38 57057.631579 11.9 4794.76
94 rows x 13 columns
winning urls = target urls deltas['url'].head(10).tolist()

target url winners = pd.concat ([targetURLs before agg,

targetURLs _after agg])

target url winners =

target url winners[target url winners['url'].isin(winning urls)]

target url winners['phase'] = target url winners['phase'].astype('category"')

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

target url winners['phase'] =
target url winners['phase'].cat.reorder categories(['after', 'before'])
target url winners

This results in the following:

url phase reach search_volume wavg_rank visi
(1] hittps:'www.on24.com! before 12 125.750000 14.8 8.50
3 hitps://www.on24.com/blog/ 12 ing-tips-to-boost-webinar-regi -and ce/ before 7 772.285714 80 9654
LS world#:-:tem=!.et's%20ﬁan%20wlm%EDa%ZOSlmple.ushg%Qoz;P;d‘jﬂf‘ Ry, Dk < S0 ¢ e00d
29 https:/fwww.on24.com/customer-stories/hubspot! before 2 1000.000000 15.6 64.52
44 https://www.on24.comflive-demo/ before 4 2700.000000 5.0 54000
45 https://www.on24.com/live-webcast-elite/ before B 16968000000 151 1123.71
57 hitps:/iwww.on24. /asset/on24-webinar-benchmarks-report-special-edition-post-covid-trends/ before 2 10.000000 1.5 057
65 hittps:/fwww.on24.com/ / / potlig fi before 2 1900.000000 15.0 12667
82 hitps://www.on24.com/skype/ before 2 1.000000 1.0 009
91 hitps://www.on24.com/tableau-3/ before 4 240.500000 17.0 14.15
0 https:/fwww.on24.com/ after 17 4692235204 12.9 36374
3 https:www.on24. com/blog/12: tips-to-boost-webi 1=and: after 2 5400.000000 8.0 80000

target url winners plt = (
ggplot (target url winners,
aes(x = 'reorder (url, visi)', y = 'visi', fill = 'phase')) +

geom bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
labs(y = 'Visi', x = "") +
coord flip() +
theme (legend position = 'right',

axis text y =element text (rotation=0, hjust=1l, size = 12),
legend title = element blank()
)

)

target url winners plt.save(filename =

'"images/8 target url winners plt.png', height=5, width=10, units = 'in',
dpi=1000)

target url winners plt

The Live Webcast Elite is the page that gained the most impressions, which is due to gaining positions
on searches for “webcast” as seen earlier (Figure 10-14).

Mo

fuenm

Bt w024 comitlog o webiners-mor i — et Lot s 9 200 et 2 Dnith ' 2 00 % 2 00l mpre.us ing S 2 Dother s,

Nisps v Ona4 comyTesuTEsassEL N2 S webinar benchimarks repor spr

Figure 10-14 URL visibility gainers for ON24 before and after

If we had website analytics data such as Google, we could merge it with the URLs to get an idea of how
much traffic the rankings were worth and how closely it correlates with search volumes.
Let’s take a look at the losing URLSs:

losing urls = target urls deltas['url'].tail (10).tolist()
print (losing urls)

target url losers = pd.concat([targetURLs before agg, targetURLs after agg])

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

target url losers =
target url losers[target url losers['url'].isin(losing urls)]

target url losers['visi'] = (target url losers['search volume'] /
target url losers['wavg rank']) .round(3)

target url losers|['phase']
target url losers|['phase']

target url losers['phase'].cat.reorder categories(['after', 'before'])
target url losers

This results in the following:

target url losers['phase'].astype('category')

url phase reach search_volume wavg rank wvisi
https/fwww.on24.com/ before 12 125.750000 14.8 B.50
3 https/fwww.on24.com/blog/12- ing-tips-to-boost-webinar i ion-and { before 7 772.285714 B0 96.54
.18 ww#,-:taxt:Le:'s%zostart%zowi:h%2ua%20sirnp|e.wing%zogpgé?nmﬁf&:mtwmm: betors 2 20000000 o 000
29 https:/fwww.on24.com/custo tones) F before 2 1000, 000000 185 64.52
44 htips/www.on24.com/live-demo/ before 4 2700.000000 50 540.00
45 hitpss/fwww.on24.com/live-webcast-elite’ before 5 16968, 000000 151 112371
57 hitps:/fwww.on24.cor bl k port-special-edition-post-covid-trends/ before 2 10.000000 17.5 0.57
65 https:/fwww.on24.com /i ligh i ! before 2 1800, 000000 160 128.67
82 https:/fwww.an24.com/skype/ before 2 1.000000 1.0 0.08
o https/www.on24.comitableau-3/ before 4 240.500000 17.0 14.15
0 httpsz/fwww.on2d.com/ after 17 46092,235294 129 38374
3 https=/fwww.on24.com/blog/12 ing-tips-to-boost-webinar-regk an-and / after 2 5400.000000 9.0 600.00
16 \-\romf#:~:tut:Lel's%2Ustan%zwnh%203%2DsImple.uslng%znﬂgup:fmlorealmm{bm?m:zgonm: ater 4 /IAGH00000 10 14000
30 https:/fwww.on24 com/custo spot after 2 1000.000000 20 11114
44 hhpa:.’.l’www.un2d.r.umf|iva-dsmm’ after 4 2700.000000 2.5 1080.00
45 https/fwww.on24.com/flive-webcast-alite/ after 2 20270,000000 80 2533.75
60 hitps:/fwww.on24., I n24-webinar report-special-edition-post-covid-trends/ after 2 50.000000 2.0 25.00
68 https:/fwww.on24.com/ ‘ potligh lesf ! after 2 1900, 000000 9.0 21111
84 hitps:/fwww.on24.com/skype/ after 4 800.500000 14.5 B5.21
a3 httpsiwww.on24.comdtableau-3/ after 4 240.500000 10.0 24.05
target url losers plt = (
ggplot (target url losers, aes(x = 'reorder(url, visi)', y = 'visi', fill
= 'phase')) +
geom bar (stat = 'identity', position = 'dodge', alpha = 0.8) +
position=position stack(vjust=0.01)) +
labs(y = 'Visi', x = '') +
coord flip() +
theme (legend position = 'right',
axis text y =element text (rotation=0, hjust=1l, size = 12),
legend title = element blank()
)
)
target url losers plt.save(filename = 'images/8 target url losers plt.png',
height=5, width=10, units = 'in', dpi=1000)

target url losers plt

“How webinars work” and “upcoming webinars” were the biggest losing URLs (Figure 10-15).

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Figure 10-15 URL visibility losers for ON24 before and after

The https://www.on24.com/blog/how-webinars-
work/#:~:text=Let's%20start%20with%20a%20simple,using%20other%20available%20
interactive%20tools URL seems like it wasn’t canonicalized (i.e., there was no defined rel="canonical”
URL to consolidate any URL variant or duplicate to).

To all of this, one possible follow-up would be to use Google Search Console data to extract the search
queries for each URL and see

e Whether the search intent is shared within the URL
e Ifthe URLs have the content to satisfy the queries generating the impressions

Another possible follow-up would be to segment the URLs and keywords according to their content type.
This could help determine if there were any general patterns that could explain and speed up the recovery
process.

Segments

We return back to the SERPs to analyze how different site types fared in the Google update. The general
approach will be to work out the most visible sites, before using the np.select() function to categorize and
label these sites.

Top Competitors

To find the top competitor sites, we’ll aggregate both before and after datasets to work out the visibility
index derived from the reach and search volume weighted rank average:

players before = getstat bef unique
print (players before.columns)

players before rank =

players before.groupby('site') .apply(wavg rank sv).reset index ()
players before reach = players before.groupby('site').agg({'count':
'sum'}) .sort values('count', ascending = False).reset index()

players before agg = players before rank.merge(players before reach, on =
'site', how = 'left')

players before agg['visi'] = players before agg['count'] /

players before agg['wavg rank']

players before agg = players before agg.sort values('visi', ascending =
False)

players before agg

This results in the following:

https://www.on24.com/blog/how-webinars-work/#:~:text=Let's%2520start%2520with%2520a%2520simple,using%2520other%2520available%2520interactive%2520tools

>>>4f fijackgoogleseo.com#E R & $ 2. F ik <<<

site wavg_rank count visi
1707 google.com 1.8 927 515.000000
1864 hubspot.com 6.6 428 64.848485
1710 gotomeeting.com 6.4 254 39.687500
1488 facebook.com 1.8 60 33.333333
3388 scholar.google.com 1.0 33 33.000000
1374 enquiresolutions.com 20.0 1 0.050000
2924 paperpicks.com 20.0 1 0.050000
2948 pcisecuritystandards.org 20.0 1 0.050000
1344 emergencyreporting.com 20.0 1 0.050000
2083 isixsigma.com 20.0 1 0.050000

4432 rows x 4 columns

players after = getstat aft unique
print (players before.columns)

players after rank =

players after.groupby('site') .apply (wavg rank sv).reset index()

players after reach = players after.groupby('site').agg({'count':

'sum'}) .sort values('count', ascending = False).reset index()

players after agg = players after rank.merge (players after reach, on =
'site', how = 'left')

players after agg['visi'] = players after agg['count'] /

players after aggl['wavg rank']

players after agg = players after agg.sort values('visi', ascending = False)
players after agg

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

site wavg_rank count visi
1741 google.com 1.6 1027 641.875000
1912 hubspot.com 6.0 429 71.500000
1743 gotomeeting.com 5.1 238 46.666667
3425 scholar.google.com 1.0 31 31.000000
1520 facebook.com 2.0 57 28.500000
3519 shiftelearning.com 20.0 1 0.050000
2573 messinagroupinc.com 20.0 1 0.050000
1429 esker.com 20.0 1 0.050000
4397 wilsonce.edu 20.0 1 0.050000
2072 integrations.clickmeeting.com 20.0 1 0.050000

4520 rows x 4 columns

To put the data aggregation together, we take the before dataset and exclude any sites appearing in the after
dataset. The purpose is to perform an outer join with the after dataset, to capture every single site possible.

players agg =

players before aggl[~players before agg['site'].isin(players after agg['site'])
players agg = players_agg.merge (players after agg, how='outer', indicator=True
players agg = players_agg.sort values('visi', ascending = False)

players agg.head(50)

This results in the following:

site wavg_rank count visi _merge
875 google.com 1.6 1027 641.875000 right_only
876 hubspot.com 6.0 429 71.500000 right_only
877 gotomeeting.com a4 238 46.666667 right_only
878 scholar.google.com 1.0 31 31.000000 right_only
879 facebook.com 2.0 57 28.500000 right_only
880 en.m.wikipedia.org 2.8 79 28.214286 right_only
881 m.youtube.com 6.4 180 28.125000 right_only
882 capterra.com 8.2 199 24.268293 right_only
883 medium.com 9.4 226 24.042553 right_only

884 ventureharbour.com 5.4 103 19.074074 right_only

>>>4f fijackgoogleseo.com# B & 3 2 4 f i <<<

Now that we have all of the sites in descending order of priority, we can start categorizing the domains by
site type. Using the hopefully now familiar np.select() function, we will categorize the sites manually,
creating a list of our conditions that create lists of sites and then mapping these to a separate list of
category names:

site conds = |

players agg['site'].str.contains('|'.join(['google.com',
'youtube.com'])),

players aggl['site'].str.contains('|'.join(['wikipedia.org'])),

players agg['site'].str.contains('|'.join(['medium.com', 'forbes.com',
'hbr.org', 'smartinsights.com', 'mckinsey.com',

'techradar.com', 'searchenginejournal.com',
'cmswire.com', 'entrepreneur.com',
'pcmag.com', 'elearningindustry.com',
'businessnewsdaily.com'])),
players agg['site'].isin(['on24.com', 'gotomeeting.com', 'marketo.com',
'zoom.us', 'livestorm.co', 'hubspot.com', 'drift.com', 'salesforce.com',
'clickmeeting.com', 'liferay.com',
'qualtrics.com', 'workcast.com',
'livewebinar.com', 'getresponse.com', 'brightwork.com',
'superoffice.com', 'myownconference.com',
'info.workcast.com', 'tallyfy.com',
'readytalk.com', 'eventbrite.com',
'sitecore.com', 'pgi.com', '3cx.com', 'walkme.com',
'venngage.com', 'tableau.com', 'netsuite.com',
'zoominfo.com', 'sproutsocial.com']),
players aggl['site'].isin(['neilpatel.com', 'ventureharbour.com',
'wordstream.com', 'business.tutsplus.com',
'convinceandconvert.com',
'growthmarketingpro.com', 'marketinginsidergroup.com',

'adamenfroy.com', 'danielwaas.com',
'newbreedmarketing.com']),
players agg['site'].str.contains('|'.join(['trustradius.com', 'g2.com',
'capterra.com', 'softwareadvice.com'])),
players agg['site'].str.contains('|'.join(['facebook.com',
'linkedin.com', 'business.linkedin.com']l)),
players agg['site'].str.contains('|'.join(['.edu', '.ac.uk']))

]

Create a list of the values we want to assign for each condition. The categories in this case are based on
their business model or site purpose:

segment values = ['search', 'reference', 'publisher', 'martech',
'consulting', 'reviews', 'social media', 'education']

Create a new column and use np.select to assign values to it using our lists as arguments:
players agg['segment'] = np.select(site conds, segment values, default =
'other')
players _agg.head(5)

This results in the following:

>>>4f fijackgoogleseo.com#E R & $ 2. # F i <<<

site wavg_rank count visi _merge segment
875 google.com 1.6 1027 641.875000 right_only search
876 hubspot.com 6.0 429 71.500000 right_only martech
877 gotomeeting.com 51 238 46.666667 right_only martech
878 scholar.google.com 1.0 31 31.000000 right_only search
879 facebook.com 2.0 57 28.500000 right_only social_media

The sites are categorized. We'll now look at the sites classed as other. This is useful because if we see any
sites we think are important enough to be categorized as not “other,” then we can update the conditions
earlier.

players agglplayers aggl'segment'] == 'other'].head(20)

This results in the following:

site wavg_rank count visi _merge segment
901 abm.com 14 12 10.909091 right_only other
909 toolshero.com 1.0 9 9.000000 right_only other
923 eventmanagercom 5.9 45 7.627119 right_only other
930 shrm.org 6.2 45 7.258065 right_only other
931 productplan.com 25 18 7.200000 right_only other
935 enterprisetraining.com 2.6 16 6.153846 right_only other
936 indeed.com 3.1 19 6.129032 right_only other
937 enonic.com 1.0 6 6.000000 right_only other
944 en.rockcontent.com 12.0 69 5.750000 right_only other
946 highspot.com 4.2 24 5.714286 right_only other

players agg map = players agg[['site', 'segment']]

players agg _map

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

site segment

875 google.com search
876 hubspot.com martech
877 gotomeeting.com martech
878 scholar.google.com search
879 facebook.com social_media
778 360learning.com other
779 scholarworks.umass.edu education
780 cpe.kennesaw.edu education
781 unisys.com other
5394 integrations.clickmeeting.com other

5395 rows x 2 columns

There you have a mapping dataframe which will be used to give segmented SERPs insights, starting with

visibility.

Visibility

With the sites categorized, we can now compare performance by site type before and after the update.
As usual, we'll aggregate the before and after datasets. Only this time, we will also merge the site type

labels.
Start with the before dataset:

before sector ung reach = getstat bef unique.merge (players agg map, on =
'site', how = 'left')

We filter for the top 10 to calculate our reach statistics, which we’ll need for our visibility calculations
later on:

before sector ung reach =
before sector ung reach[before sector ung reach['rank'] < 11]

before sector agg reach =

before sector ung reach.groupby(['segment']).agg({'count':

'sum'}) .reset index()

before sector agg reach = before sector agg reach.rename (columns = {'count':
'reach'})

before sector agg reach = before sector agg reach[['segment',6 'reach']]
before sector agg reach['reach'] =
np.where (before sector agg reach['reach'].isnull(),

0, before sector agg reach['reach'])

The same logic and operation is applied to the after dataset:

after sector ung reach = getstat aft unique.merge(players agg map, on =
'site', how = 'left')

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

after sector ung reach =
after sector ung reach[after sector ung reach['rank'] < 11]

after sector agg reach =

after sector ung reach.groupby(['segment']).agg({'count':

'sum'}) .reset index()

after sector agg reach = after sector agg reach.rename(columns = {'count':
'reach'})

after sector agg reach['reach'] =

np.where (after sector agg reach['reach'].isnull(), O,

after sector agg reach['reach'])

after sector agg reach = after sector agg reach[['segment',6 'reach']]
after sector agg reach.sort values('reach', ascending = False) .head(10)

This results in the following:

segment reach

3 other 7395
2 martech 1666
7 search 1244
4 publisher 617
6 reviews 475
0 consulting 470
1 education 226
8 social_media 118
5 reference 100

“Other” as a site type segment dominates the statistics in terms of reach. We may want to filter this out
later on. Now for the weighted average rankings by search volume, which will include the wavg_rank_sv()
function defined earlier.

before sector ung visi =

before sector ung svranks.merge (before sector agg reach, on = 'segment', how
= 'left'")

before sector ung visi['reach'] =

np.where (before sector ung visi['reach'].isnull(), O,

before sector ung visi['reach'])

before sector ung visi['wavg rank'] =
np.where (before sector ung visi['wavg rank'].isnull(), 100,
before sector ung visi['wavg rank'])

before sector ung visi['visibility'] = before sector ung visi['reach'] /
before sector ung visi['wavg rank']

before sector ung visi = before sector ung visi.sort values('visibility',
ascending = False)

after sector ung visi =
after sector ung svranks.merge (after sector agg reach, on = 'segment', how =

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

"left')
after sector ung visi['reach'] =
np.where (after sector ung visi['reach'].isnull(), O,

after sector ung visi['reach'])

after sector ung visi['wavg rank'] =

np.where (after sector ung visi['wavg rank'].isnull(), 100,
after sector ung visi['wavg rank'])

after sectaor ung visi['visibility'] = after sector ung visi['reach'] /
after sector ung visi['wavg rank']
after sector ung visi = after sector ung visi.sort values('visibility',

ascending = False)
after sector ung visi

This results in the following:

segment wavg_rank reach visibility
3 other 13.9 7395 532.014388
7 search 3.8 1244 327.368421
2 martech 8.8 1666 189.318182
4 publisher 10.2 617 60.490196
6 reviews 11.7 475 40.598291
0 consulting 11.8 470 39.830508
8 social_media 3.9 118 30.256410
1 education 7.5 226 30.133333
5 reference 4.8 100 20.833333

As well as reach, other performs well in the search volume weighted rank stakes and therefore in overall
visibility. With the before and after segmented datasets aggregated, we can now join them:

compare sector visi players =

before sector ung visi.merge(after sector ung visi, on = ['segment'], how =
'outer')
compare sector visi players = compare sector visi players.rename (columns =
{'wavg _rank x': 'before rank', 'wavg rank y': 'after rank',
'reach x': 'before reach', 'reach y': 'after reach',
'visibility x': 'before visi', 'visibility y':

'after visi'

})

compare sector visi players|['before visi'] =
np.where (compare sector visi players|['before visi'].isnull()
0, compare sector visi players|['before visi'

compare sector visi players['after visi'] =

np.where (compare sector visi players['after visi'].isnull(),
0, compare sector visi players['after visi'])

compare sector visi players['delta visi'] =

compare sector visi players|['after visi'] -

compare sector visi players|['before visi']

1)

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

compare sector visi players =
compare sector visi players.sort values('delta visi')

compare sector visi players.head(10)
This results in the following:

segment before_rank before_reach before_visi after_rank after_reach after_visi delta_visi

6 reference 3.2 91 28.437500 4.8 100 20.833333 -7.604167
4 consulting 12.2 468 38.360656 11.8 470 39.830508 1.469853
1 search 35 1140 325.714286 3.8 1244 327.368421 1.654135
5 reviews 12.7 444 34.960630 11.7 475 40.598291 5.637661
0 other 13.3 7000 526.315789 13.9 7395 532.014388 5.698599
7 education 9.6 215 22.395833 7.5 226 30.133333 7.737500
8 social_media 7T 104 13.506494 3.9 118 30.256410 16.749917
2 martech 9.4 1595 169.680851 8.8 1666 189.318182 19.637331
3 publisher 13.4 538 40.149254 10.2 617 60.490196 20.340942

The only site group that lost were reference sites like Wikipedia, dictionaries, and so on. Their reach
increased by 11%, but their rankings declined by almost two places on average. This could be that
nonreference sites are churning out more value adding articles which are crowding out generic sites like
Wikipedia that have no expertises in those areas.

Let’s reshape the data for visualization:

compare sector visi players long = compare sector visi players[['segment',
'before visi', 'after visi']]
compare sector visi players long =
compare sector visi players long.melt(id vars = ['segment'],
var name='Phase',
value name='Visi')
compare sector visi players long['Phase'] =
compare sector visi players long['Phase'].str.replace(' visi', '')

compare sector visi players long['Phase'] =

compare sector visi players long['Phase'].astype('category')

compare sector visi players long['Phase']

compare sector visi players long['Phase'].cat.reorder categories(['after',
'before'])

compare sector visi players long.head(10)

This results in the following:

>>>if {ijackgoogleseo.com# M & 3 2. hik<<<

segment Phase Visi

0 reference before 28.437500

1 consulting before 38.360656
2 search before 325.714286
3 reviews before 34.960630
4 other before 526.315789
5 education before 22.395833
6 social_media before 13.506494
7 martech before 169.680851
8 publisher before 40.149254
9 reference after 20.833333
compare sector visi players long plt = (
ggplot (compare sector visi players long, aes(x = 'reorder (segment,
Visi)', y = 'Visi', fill = 'Phase')) +
geom bar (stat = 'identity', position = 'dodge', alpha = 0.8) +
labs(y = 'Visibility', x ="' ") +
coord flip() +
theme (legend position = 'right', axis text x=element text (rotation=0,

hjust=1, size = 12))
)

compare sector visi players long plt.save(filename =

'images/11l compare sector visi players long plt.png', height=5, width=10,
units = 'in', dpi=1000)

Compare sector visi players long plt

So other than reference sites, every other category gained, including martech and publishers which
gained the most (Figure 10-16).

other-

martech -

publisher=-
Phase

. after

' before

consulting -

FEVIEWS =
education -
reference -

I O S | W S e
=

| se—— e———

S

[

[

-

=

|

social_media-

Visibility
Figure 10-16 Visibility before and after by site type

Snippets

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

In addition to visibility, we can dissect result types by segment too. Although there are many visualizations
that can be done by segment, we've chosen snippets so that we can introduce a heatmap visualization

technique.

This time, we'll aggregate on snippets and segments, having performed the join for both before and after

datasets:

before sector ung snippets
'site', how = 'left')
before sector agg snippets
'segment']) .agg ({'count':

before sector agg snippets
'segment', 'count']]
before sector agg snippets
{'count': 'reach'})

after sector ung snippets
'site', how = 'left')
after sector agg snippets

after sector agg snippets
'segment', 'count']]
after sector agg snippets
{'count': 'reach'})

= getstat bef unique.merge (players agg map, on =

= before sector ung snippets.groupby(['snippets',

'sum'}) .reset index()

before sector agg snippets[['snippets',

= before sector agg snippets.rename (columns =

getstat aft unique.merge (players agg map, on =

= after sector ung_snippets.groupby(['snippets’,

'segment']).agg({'count': 'sum'}).reset index()

= after sector agg snippets[['snippets’,

= after sector agg snippets.rename (columns =

after sector agg snippets.sort values('reach', ascending = False).head(10)
This results in the following:

snippets segment reach
20 organic other 10805
61 image / organic other 4603
89 organic martech 1698
98 people also ask search 862
17 amp / organic other 779
60 image / organic martech 699
91 organic publisher 605
87 organic consulting 470
78 interesting finds other 366
93 organic reviews 356

For post update, we can see that much of other’s reach are organic, images, and AMP post update. How does

that compare pre- and post update?

compare sector snippets =

before sector agg snippets.

['"snippets', 'segment'],

how =

merge (after sector agg snippets,
'outer')

on =

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

compare sector snippets = compare sector snippets.rename (columns =
{'reach x': 'before reach', 'reach y': 'after reach'})

compare sector snippets|['before reach'] =

np.where (compare sector snippets|['before reach'].isnull(), O,

compare sector snippets|['before reach'])

compare sector snippets['after reach'] =

np.where (compare sector snippets['after reach'].isnull(), O,
compare sector snippets['after reach'])

compare sector snippets['delta reach'] =

compare sector snippets['after reach']

compare sector snippets|['before reach']

compare sector snippets = compare sector snippets.sort values('delta reach')
compare sector snippets.head(10)

This results in the following:

snippets segment before_reach after_reach delta_reach

94 organic reviews 407.0 356.0 -51.0
56 faq / organic other 233.0 204.0 -29.0
65 image / organic reviews 151.0 132.0 -19.0
89 organic education 365.0 350.0 -15.0
16 amp / organic martech 100.0 87.0 -13.0
95 organic search 72.0 60.0 -12.0
88 organic consulting 480.0 470.0 -10.0
38 answers / paragraph other 112.0 103.0 -9.0
98 organic / sitelinks other 18.0 10.0 -8.0
101 placesv3 / ratings other 13.0 6.0 -7.0

Review sites lost the most reach in the organic listings and Google images. Martech lost out on AMP results.

compare sector snippets.tail (10)

This results in the following:

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

snippets segment before_reach after reach delta_reach

52 carousel / videos search 258.0 280.0 22.0
63 image/organic publisher 225.0 265.0 40.0
17 amp / organic other 729.0 779.0 50.0
92 organic publisher 553.0 605.0 52.0
79 interesting finds other 306.0 366.0 60.0
61 image/organic martech 639.0 699.0 60.0
57 faq /organic reviews 41.0 129.0 88.0
99 people also ask search 760.0 862.0 102.0
91 organic other 10410.0 10805.0 395.0
62 image / organic other 4194.0 4603.0 409.0

By contrast, publisher sites appear to have displaced review sites on images and organic results. Since
we’re more interested in result types other than the regular organic links, we’ll strip these out and visualize.
Otherwise, we'll end up with charts that show a massive weight for organic links while dwarfing out the rest
of the result types.

compare sector snippets graphdf =
compare sector snippets[compare sector snippets['snippets'] != 'organic']

compare sector snippets plt = (
ggplot (compare sector snippets graphdf,
aes(x = 'segment', y = 'snippets', fill = 'delta reach')) +
geom tile(stat 'identity', alpha = 0.6) +

labs(y ="', x="'") +
theme classic() +
theme (legend position = 'right',

axis text x=element text (rotation=90, hjust=1)
)
)

compare sector snippets plt.save(filename =

'images/12 compare sector snippets plt.png', height=5, width=10, units =
'in', dpi=1000)

compare sector snippets plt

The heatmap in Figure 10-17 uses color as the third dimension to display where the major changes in
reach were for the different site segments (bottom) and result types (vertical).
This results in the following:

>>>4f #ijackgoogleseo.com# B & 3 2 &4 fif<<<

sidegs =s—————
EilTer p
iated saarcha
[2tings farganic
placs opie d.[S E
arban ‘i
knowled raj \=
szt — = — |
images / knowl delta reach
Image / ratin Pm; rM.ir an0
‘Can "?‘ weh
o an:L B 300
carousel / duge —_— =
catouse J’JJ ?CDS S
carsusel | piganic r ——— 200
carousei / knowle e ura 'n v _—
Carusel] |ma e org "’é
=] 100
.:ns ~; ¥ i iﬂ L |
gnswers Ao Ll F
answers /150 Falted 2ear §| - ——— 2
answers | knowledge AL oAy parag kﬂ
: .-mn 570 i
A EL —
:rrr;_ls.lmromqr{r" e _
et — —
utcordlor ?al sw" - x é.
COr ki
scontgy e ool ! AL i : - . .
= c = [i o w = ™
£ g g £ £ z g 5 B
] s & o Az @ 2 g g
@ £ & = b & a v
5] £ 2]]
8 B o B
-1
]

Figure 10-17 Heatmap showing the difference in top 10 counts by site type and result type

The major change that stands out is Google image results for the other segment. The rest appears
inconsequential by contrast. The heatmap is an example of how three-dimensional categorical data can be
visualized.

Summary

We focused on analyzing performance following algorithm updates with a view to explaining what
happened and possible extraction of insights for areas of further research and recommendation generation.

Not only did we evaluate methods for establishing visibility changes, our general approach was to
analyze the general SERP trends before segmenting by result types, cannibals. Then we looked at the target
site level, seeing the changes by keyword, query length, and URLs.

We also tried evaluating general SERP trends by grouping sites into site category segments to give a
richer analysis of the SERPs by visibility and snippets. While the visualization of data before and after the
core update doesn’t always reveal the causes of any algorithm update, some patterns can be learned to
inform further areas of research for recommendation generation. The data can always be joined with other
data sources and use the techniques outlined in competitor analysis to uncover potential ranking factor
hypotheses for split testing.

The next chapter discusses the future of SEO.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. Voniatis, Data-Driven SEO with Python
https://doi.org/10.1007/978-1-4842-9175-7_11

11. The Future of SEO

Andreas Voniatis?

(1) Surrey, UK

The exploration of applying data science methods to SEO ultimately
leads to further questions on the evolution of SEO as an industry and a
profession.

As paid search has increasingly become more automated and
commoditized, could the same happen to SEO?

To answer that question, let’s reflect on how data science has been
applied to SEO in this book, the limitations and opportunities for
automation.

Aggregation
Aggregation is a data analysis technique where data is summarized at a
group level, for example, the average number of clicks by content
group. In Microsoft Excel, this would be achieved using pivot tables.
Aggregation is something that can and should be achieved by
automation. Aggregation has been applied to help us understand too
many different areas of SEO to name (covered in this book). With the
code supplied, this could be integrated into cloud-based data pipelines
for SEO applications to load data warehouses and power dashboards.
Aggregation for most use cases is good enough. However, for
scientific exploration of the data and hypothesis testing, we need to
consider the distribution of the data, its variation, and other statistical
properties.

https://doi.org/10.1007/978-1-4842-9175-7_11

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Aggregation for reporting and many analytical aspects of SEO
consulting can certainly be automated, which would be carried out in
the cloud. This is pretty straightforward to do given the data pipeline
technology by Apache that’s already in place.

Distributions

The statistical distribution has power because we’re able to
understand what is normal and therefore identify anything that is
significantly above or below performance.

We used distributions to find growth keywords where keywords in
Google Search Console (GSC) had impressions above the 95th
percentile for their ranking position.

We also used distributions to identify content that lacked internal
links in a website architecture and hierarchy.

This can also be automated in the cloud which could lead to
applications being released for the SEO industry to automate the
identification of internal link opportunities. There is a slight risk of
course that all internal links are done on a pure distribution basis and
not factoring in content not intended for search channels which would
need to be part of the software design.

String Matching

String matching using the Sorensen-Dice algorithm has been applied to
help match content to URLs for use cases such as keyword mapping,
migration planning, and others.

The results are decent as it’s relatively quick and scales well, but it
relies on descriptive URLs and title tags in the first instance. It also
relies on preprocessing such as removing the website domain portion
of the URL before applying string matching, which is easily automated.
Less easy to work around is the human judgment of what is similar
enough for the title and URL slug to be a good match. Should the
threshold be 70%, 83%, or 92%?

That is less easy and probably would require some self-learning in
the form of an Al, more specifically a recurrent neural network (RNN).
It’s not impossible, of course, as you would need to determine what a

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

good and less good outcome metric is to know how to train a model.
Plus, you'd need at least a million data points to train the model.

A key question for keyword mapping will be “what is the metric that
shows which URL is the best for users searching for X keyword.” An
RNN could be good here as it could learn from top ranking SERP
content, reduce it to an object, and then compare site content against
that object to map the keyword to.

For redirecting expired URLs (with backlinks) to live URLs with a
200 HTTP response, it could be more straightforward and not require
an Al. You might use a decision tree-based algorithm using user
behavior to inform what is the best replacement URL, that is, users on
“URL A” would always go to URL X out of the other URL choices
available.

A non-Al-based solution doesn’t rely on millions of SERP or Internet
data and would therefore be (relatively) inexpensive to construct in-
house. The Al-based solutions on the other hand are likely to either be
built as a SaaS or by a mega enterprise brand that relies on organic
traffic like Amazon, Quora, or Tripadvisor.

Clustering

In this book, clustering has been applied to determine search intent by
comparing search results at scale. The principles are based on
comparing distances between data points, and wherever a distance is
relatively small, a cluster exists. Word stemming hasn’t been applied in
this book as it lacks the required precision despite the speed.

Clustering is useful not only for understanding keywords but also
for grouping keywords for reporting performance and grouping
content to set the website hierarchy. Your imagination as an SEO expert
is the limit.

Applications already exist in the SEO marketplace for clustering
keywords according to search intent by comparing search results, so
this can and already has been automated in the cloud by Artios,
Keyword Insights, Keyword Cupid, SEO Scout and others.

Machine Learning (ML) Modeling

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Trying to understand how things work in organic search is one of the
many pleasures and trials of SEO, especially in the current era of Google
updates. Modeling aided by machine learning helps in that regard
because you're effectively feeding data into a machine learning
algorithm, and it will show the most influential factors behind the
algorithm update.

Machine learning models could most certainly be deployed into the
cloud as part of automated applications to highlight most influential
SERP factors and qualities of backlinks as part of a wider dashboard
intelligence system or a stand-alone application.

Because no neural network is required, this is relatively cheap to
build and deploy, leaving the SEO professionals to understand the
model outputs and how to apply them.

Set Theory

Set theory is where we compare sets (thinklists) of data like keywords
and compare them to another set. This can be used to see the
difference between two datasets. This was used for content gap
analysis to find common keywords (i.e., where the keywords of two
websites intersect) and to find the gap between the target site and the
core keyword set.

This is pretty straightforward and can easily be automated using
tools like SEMRush and AHREFs. So why do it in Python? Because it’s
free and it gives you more control over the degree of intersection
required.

Knowing the perfect degree of intersection is less clear because it
would require research and development to work out the degree of
intersects required which for one will depend on the number of sites
being intersected.

However, the skill is knowing which competitors to include in the
set in the first place which may not be so easy for a machine to discern.

What Computers Can and Can’t Do

From the preceding text, we see a common pattern, that is, when it
comes to straightforward tasks such as responding to statistical

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

properties or decisions based on numerical patterns, computers excel
(albeit with some data cleanup and preparation).

When matters are somewhat fuzzy and subject to interpretation
such as language, computers can still rise to the challenge, but that
requires significant resources to get the data and train an Al model.

For the SEO Experts

We should learn Python for data analysis because that’s how we
generate insights and recommendations in response. It doesn’t make
sense not to make use of technology and data science thinking to solve
SEO problems, especially when the SERPs are determined by a
consistent (and therefore more predictable) algorithm.

Not only will learning Python and data science help future-proof
your career as an SEQO, it will give you a deeper appreciation for how
search engines work (given they are mathematical) and enable you to
devote much more time and energy toward defining hypotheses to test
and create SEO solutions. Spending less time collecting and analyzing
data and more time responding to the data is the order of the day.

You'll also be in a far better position to work with software
engineers when it comes to specifying cloud apps, be it reporting,
automation, or otherwise.

Of course, creativity comes from knowledge, so the more you know
about SEQ, the better the questions you will be able to ask of the data,
producing better insights as a consequence and much more targeted
recommendations.

Summary

In this chapter, we consolidated at a very high level the ideas and
techniques used to make SEO data driven:

e Aggregation

Distributions

e String matching

e (lustering

Machine learning (ML) modeling

>>>4f fijackgoogleseo.comi I & 3 2§ fhih<<<

e Settheory

We also examined what computers can and can’t do and provided a
reminder why SEO experts should turn to data science.
Here’s to the future of SEO.

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Index

A

A/Atesting
aa_means dataframe
aa_model.summary()
aa_test_box_plt
dataframe
data structures
date range
groups’ distribution
histogram plots
.merge() function
NegativeBinomial() model
optimization
pretest and test period groups
p-value
SearchPilot
sigma
statistical model
statistical properties
summary() attribute
test period
Accelerated mobile pages (AMP)
Account-based marketing
Additional features
Adobe Analytics
Aggregation
AHREFs
Akaike information criterion (AIC)
Alternative methods
Amazon Web Services (AWS)
anchor_levels_issues_count_plt graphic
anchor_rel_stats_site_agg plt plot
Anchor texts
anchor_issues_count_plt
HREF

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

issues by site level
nondescriptive
search engines and users
Sitebulb
Anchor text words
Andreas
Antispam algorithms
APl libraries
API output
APl response
Append() function
apply_pcn function
astype() function
Augmented Dickey-Fuller method (ADF)
Authority
aggregations
backlinks
data and cleaning
data features
dataframe
descriptive statistics
distribution
domain rating
domains
links
math approach
rankings
search engines
SEO harder
SEO industry
spreadsheet
Authority preoptimization
Authority scores
Automation
averageSessionDuration

B

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Backlink domain

Bayesian information criterion (BIC)
Beige trench coats

Best practices for webinars
BlackHatWorld forums

Box plot distribution

C

Cannibalization
Cannibalized SERP
generic and brand hybrid keywords
keyword
Categorical analysis
Change point analysis
Child nodes
Child URL node folders
Chrome Developer Tools
Click-through rate (CTR)
Cloud computing services
Cloud web crawlers
CLS_cwv_landscape_plt
Cluster headings
Clustering
Clusters
Column reallocation
Combining site level and page authority
orphaned URLs
underindexed URLs
underlinked URLs
Comparative averages and variations
Competitive market
Competitor analysis
AHREFs files
cache age
competitiveness
concat() function
crawl_path

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

dataframe

derive new features

domain-wide features

groupby() function

keywords

linear regression

machine learning

merge() function

rank and search result

rank checking tool

ranking

ranking factors

ranking pages

robust analysis

search engines

SEO analysis

SERPs data

string format columns

tag branding proportion

tracking code

variable

visibility metric

ZEero errors
Competitor_count_cumsum_plt plot
Competitors
Computational advertising
Content

content consolidation

content creation

data sources

keyword mapping

user query
Content creation (planning landing page content)

cleaning and selecting headings

cluster headings

crawling

extracting the headings

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

hostname
reflections
SERP data
TLD
URLs
verticals
Content gap analysis
combinations function
content gaps
content intersection
core content set
dataframe
getting the data
list and set functions
mapping customer demand
search engines
SEMRush files
SEMRush site
Content intersection
Content management system (CMS)
Core Web Vitals (CWV)
Google initiative
initiative
landscape
onsite CWV
technical SEO
web developments
Crawl data
Crawl depth
Crawling software
Crawling tools
Creating effective webinars
Cumulative average backlink traffic
Cumulative Layout Shift (CLS)
Cumulative sum
Custom function
CWV metric values

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

CWYV scores

D

Dashboard
data sources
ETL
See Extract, transform and load (ETL)
SEO
types, data sources
Data-driven approach
CWV
internal link optimization
See Internal link optimization
modeling page authority
Data-driven keyword research
Data-driven SEO
DataForSEO SERPs API
Dataframe
Data post migration
Data science
automatable
cheap
datarich
Data sources
Data visualization
Data warehouse
Decision tree-based algorithm
Dedupe
Deduplicate lists
Defining ABM
depthauth_stats_plt
Describe() function
Destination URLs
df.info()
diag_conds
Diagnosis
Distilled ODN

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Distributions
DNA sequencing
Documentation
Domain authority
Domain rating (DR)
Domains
create new columns
device search result types
HubSpot
rankings
reach
reach stratified
rename columns
separate panels by phase as parameter
visibility
WAVG search volume
WorkCast
drop_col function

E

Eliminate NAs
Experiment
ab_assign_box_plt
ab_assign_log_box_plt
ab_assign_plt
ab_group
A/B group
ab_model.summary()
A/B tests
analytics data
array
dataframe
dataset
distribution, test group
histogram
hypothesis
outcomes

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

pd.concat dataframe
p-value
simul_abgroup_trend.head()
simul_abgroup_trend_plt
test_analytics_expanded
test and control
test and control groups
test and control sessions
website analytics software
Experiment design
A/Atesting
See A/Atesting
actual split test
APIs
dataframe
data types
distribution of sessions
Pandas dataframe
sample size
basic principles
dataframe
factor
level of statistical significance
levels of significance
minimum URLs
parameters
python_rzip function
run_simulations
SEO experiment
split_ab_dev dataframe
test and control groups
testing_days
test landing pages
urls_control dataframe
standard deviation (sd) value
to_datetime() function
website analytics data

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

website analytics package
zero inflation
Extract, transform and load (ETL)

extract process
DataForSEO SERPs API
Google Analytics (GA)
Google Search Console (GSC)
PageSpeed API

loading data

transforming data

F

facet_wrap() function
FCP_cwv_landscape_plt
FID_cwv_landscape_plt
Financial securities
First Contentful Paint (FCP)
First Input Delay (FID)
Forecasts

client pitches and reporting

decomposing

exploring your data

future

model test

SARIMA
The future of SEO

aggregation

clustering

distribution

machine learning (ML) modeling

SEO experts

set theory

string matching

G

geom_bar() function
Geom_histogram function
get_api_result

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

getSTAT data
Google
Google algorithm update
cannibalization
dataset
dedupe
domains
See Domains
getstat_after
getSTAT data
import SERPs data, getSTAT
keywords
token length
token length deep dive
np.select() function
ON24
result types
segments
np.select() function
snippets
top competitors
visibility
strip_subdomains
target level
keywords
pages
urisplit function
zero search volumes
Google Analytics (GA)
and GSC URLs
tabular exports
URLs
version 4
Google Cloud Platform (GCP)
Google Data Studio (GDS)
Google PageSpeed API
Google rank

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Google Search Console (GSC)
activation
data
data explore
filter and export to CSV
import, clean, and arrange the data
position data into whole numbers
search queries
segment average and variation
segment by query type
Google’s knowledge
Google Trends
multiple keywords
ps4 and ps5
Python
single keywords
time series data
visualizing
GoToMeeting
Groupby aggregation function
groupby() function
gsc_ba_diag
GSC traffic data

H

Heading

Heatmap

Hindering search engines

HTTP protocol

HubSpot

Hypothesis generation
competitor analysis
conference events
industry peers
past experiment failures
recent website updates
SEO performance

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

social media
team’s ideas
website articles

L]

la_current_mapping
Inbound internal links
Inbound links
Indexable URLs
Individual CWV metrics
Inexact (data) science of SEO
channel’s diminishing value
high costs
lacking sample data
making ads look
noisy feedbackloop
things can’t be measured
Internal link optimization
anchor text relevance
Anchor texts
content type
crawl dataframe
external inbound link data
hyperlinked URL'’s
inbound links
link dataframe
by page authority
probability
Sitebulb
Sitebulb auditing software
by site level
URLs
URLs with backlinks
website optimization
Internal links distribution
intlink_dist_plt plot
Irrel_anchors

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Irrelevant anchors
Irrelevant anchor texts

K

keysv_df
Keyword mapping
approaches
definition
string matching
Keyword research
data-driven methods
data sources
forecasts
Google Search Console (GSC)
Google Trends
search intent
SERP competitors
Keywords
token length
token length deep dive
Keywords_dict

L

LCP_cwv_landscape_plt plot
Levenshtein distance
Life insurance

Linear models

Link acquisition program
Link capital

Link capital velocity

Link checkers

Link quality

Link velocity

Link volumes

Listdir() function

Live Webcast Elite

Live webinar
Logarithmic scale

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Logarized internal links
log_intlinks

log_pa

Log page authority

Long short-term memory (LSTM)
Looker Studio bar chart

Looker Studio graph

M

Machine learning (ML)
Management
Management content
Many-to-many relationship
Marketing channels
The mean
Median
Medium
melt() function
Mens jeans
Metrics
Migration forensics
analysis impact
diagnostics
segmented time trends
segmenting URLs
time trends and change point analysis
traffic trend
Migration mapping
Migration planning
Migration URLs
MinMaxScaler()
ML algorithm
ML model
ML modeling
ML processes
ML software library
Modeling page authority

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

approach
calculating new distribution
dataframe
examining authority distribution
filters
Sitebulb desktop crawler
Modeling SERPs
Multicollinearity
Multiple audit measurements

N

Natural language processing (NLP)
Near identical code
Near Zero Variance (NZVs)
API
highvar_variables
scaled_images column
search query
title_relevance
new_branch
Non-CWYV factors
Nonindexable URLs
Nonnumeric columns
np.select() function

o

old_branch

ON24

One hot encoding (OHE)
Online webinars

Onsite indexable URLs

Open source data science tools
Organic results

Orphaned URLs
ove_intlink_dist_plt

P
pageauth_newdist_plt

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

page_authority_dist_plt
Page authority level
page_authority_trans_dist_plt
PageRank

PageSpeed API

PageSpeed data

Paid search ads

Pandas dataframe
parent_child_map dataframe
parent_child_nodes

Parent URL node folders
Pattern identification
PCMag

perf_crawl

perf_diags

perf_recs dataframe

Phase

Plot impressions vs. rank_bracket
plot intlink_dist_plt

Power network

PS4

PS5

Python

Python code

Q

Quantile
Query data vs. expected average
“Quick and dirty” analysis

R

Random forest
Rank checking tool
Ranking factors
Ranking position
Rankings
RankScience

Rank tracking costs

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Reach

Reallocation authority

Recurrent neural network (RNN)
Referring domains

Referring URL

Repetitive work

Root Mean Squared Error (RMSE)
r-squared

S

Salesforce webinars
SARIMA
Screaming Frog
Search engine
Search engine optimization (SEO)
Search Engine Results Pages (SERPs)
Search intent
convert SERPs URL into string
core updates
DataForSEQO’s SERP API
keyword content mapping
Ladies trench coats
Life insurance
paid search ads
queries
rank tracking costs
SERPs comparison
Split-Apply-Combine (SAC)
Trench coats
Search query
Search volume
Segment
SEMRush
semrush_csvs
SEMRush domain
SEMRush files
SEMRush visibility

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

SEO benefits

SEO campaigns and operations

SEO manager

SEO rank checking tool

SERP competitors
extract keywords from page title
filter and clean data
SEMRush
SERPs data

SERP dataframe

SERP results

SERPs comparison

SERPs data

SERPs model

Serps_raw dataframe

set_post_data

Set theory

Single-level factor (SLFs)
dataset
parameterized URLs
ranking URL titles

SIS_cwv_landscape_plt

Site architecture

Sitebulb crawl data

Site depth

Site migration

Snippets

Sorensen-Dice

speed_ex_plt chart

Speed Index Score (SIS)

Speed score

Split A/B test

Split heading

Standard deviations

Statistical distribution

Statistically robust

stop_doms list

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

String matching
cross-product merge
dataframe
DNA sequencing
groupby() function
libraries
np.where()
simi column
Sitebulb
Sorensen-Dice
sorensen_dice function
string distance
to URLs
values

String matching

String methods

String similarity

Structured Query Language (SQL)

T

target_CLS_plt
target_crawl_unmigrated
target_FCP_plt
target_FID_plt
target_LCP_plt
target_speedDist_plt plot
Technical SEO
data-driven approach
See Data-driven approach
search engines and websites interaction
Tech SEO diagnosis
TF-IDF
Think vlookup/index match
Time series data
TLD extract package
Token length
Token size

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

Top-level domain (TLD)
Touched Interiors
Traffic post migration
Traffic/ranking changes
parent and child nodes
separate migration documents
site levels
site taxonomy/hierarchy
Travel nodes
Two-step aggregation approach

U

Underindexed URLs

Underlinked page authority URLs
optimal threshold
pageauth_agged_plt
PageRank
site-level approach

Underlinked site-level URLs
average internal links
code exports
depth_uidx_plt
depth_uidx_prop_plt
intlinks_agged table
list comprehension
lower levels
orphaned URLs
percentile number
place marking
quantiles

Upper quantile

Urisplit() function

URL by site level

URL Rating

452 URLs

URLSs by site level

URL strings

>>>4f fijackgoogleseo.com# B & $ 2 h ik <<<

URL structure

URL visibility

User experience (UX)
User query

\'

Variance inflation factor (VIF)
Visibility
Visualization

w

wavg_rank
wavg_rank_imps
wavg_rank_sv() function
WAVG search volume
Webinar

Webinar best practices
Webinar events
Webmaster tools
Webmaster World
Website analytics
Website analytics data
Winning benchmark
Wordcloud function
WorkCast

XY
xbox series x

Z

Zero inflation
Zero string similarity

	Front Matter
	1. Introduction
	2. Keyword Research
	3. Technical
	4. Content and UX
	5. Authority
	6. Competitors
	7. Experiments
	8. Dashboards
	9. Site Migration Planning
	10. Google Updates
	11. The Future of SEO
	Back Matter

