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To	Julia.



Foreword
The data we have access to as SEOs has changed a lot during my 17
years in the industry. Although we lost analytics-level keyword data,
and Yahoo! Site Explorer, we gained a wealth of opportunity in big data,
proprietary metrics, and even some from the horse’s mouth in Google
Search Console.

You don’t have to be able to code to be an effective SEO. But there is
a certain kind of approach and a certain kind of mindset that bene�its
from wrangling data in all its forms. If that’s how you prefer to work,
you will very quickly hit the limits of spreadsheets and text editors.
When you do, you’ll do well to turn to more powerful tools to help you
scale what you’re capable of, get things done that you wouldn’t even
have been able to do without a computer helping, and speed up every
step of the process.

There are a lot of programming languages, and a lot of ways of
learning them. Some people will tell you there is only one right way. I’m
not one of those people, but my personal �irst choice has been Python
for years now. I liked it initially for its relative simplicity and ease of
getting started, and very quickly fell for the magic of being able to
import phenomenal power written by others with a single line of code.
As I got to know the language more deeply and began to get some sense
of the “pythonic” way of doing things, I came to appreciate the brevity
and clarity of the language. I am no expert, and I’m certainly not a
professional software engineer, but I hope that makes me a powerful
advocate for the approach outlined in this book - because I have been
the target market.

When I was at university, I studied neural networks among many
other things. At the time, they were fairly abstract concepts in
operations research. At that point in the late 90s, there wasn’t the
readily available computing power plus huge data sets needed to
realise the machine learning capabilities hidden in those nodes, edges,
and statistical relationships. I’ve remained fascinated by what is
possible and with the help of magical import statements and
remarkably mature frameworks, I have even been able to build and
train my own neural networks in Python. As a stats geek, I love that it’s



all stats under the hood, but at the same time, I appreciate the beauty
in a computer being able to do something a person can’t.

A couple of years after university, I founded the SEO agency Distilled
with my co-founder Duncan Morris, and one of the things that we
encouraged among our SEO consultants was taking advantage of the
data and tools at their disposal. This led to fun innovation - both
decentralised, in individual consultants building scripts and notebooks
to help them scale their work, do it faster, or be more effective, and
centrally in our R&D team.

That R&D team would be the group who built the platform that
would become SearchPilot and launched the latest stage of my career
where we are very much leading the charge for data aware decisions in
SEO. We are building the enterprise SEO A/B testing platform to help
the world’s largest websites prove the value of their on-site SEO
initiatives. All of this uses similar techniques to those outlined in the
pages that follow to decide how to implement tests, to consume data
from a variety of APIs, and to analyse their results with neural
networks.

I believe that as Google implements more and more of their own
machine learning into their ranking algorithms, that SEO becomes
fundamentally harder as the system becomes harder to predict, and
has a greater variance across sites, keywords, and topics. It’s for this
reason that I am investing so much time, energy, and the next phase of
my career into our corner of data driven SEO. I hope that this book can
set a whole new cohort of SEOs on a similar path.

I �irst met Andreas over a decade ago in London. I’ve seen some of
the things he has been able to build over the years, and I’m sure he is
going to be an incredible guide through the intricacies of wrangling
data to your bene�it in the world of SEO. Happy coding!

Will Critchlow, CEO, SearchPilot
September 2022



Why	I	Wrote	This	Book
Since 2003, when I �irst got into SEO (by accident), much has changed
in the practice of SEO. The ingredients were lesser known even though
much of the focus was on getting backlinks, be they reciprocal, one-way
links or from private networks (which are still being used in the
gaming space). Other ingredients include transitioning to becoming a
recognized brand, producing high-quality content which is valuable to
users, a delightful user experience, producing and organizing content
by search intent, and, for now and tomorrow, optimizing the search
journey.

Many of the ingredients are now well known and are more
complicated with the advent of mobile, social media, and voice and the
increasing sophistication of search engines.

Now more than ever, the devil is in the details. There is more data
being generated than ever before from ever more third-party data
sources and tools. Spreadsheets alone won’t hack it. You need a sharper
blade, and data science (combined with your SEO knowledge) is your
best friend.

I created this book for you, to make your SEO data driven and
therefore the best it can be.

And why now in 2023? Because COVID-19 happened which gave me
time to think about how I could add value to the world and in particular
the niche world of SEO.

Even more presciently, there are lots of conversations on Twitter
and LinkedIn about SEOs and the use of Python in SEO. So we felt the
timing is right as the SEO industry has the appetite and we have
knowledge to share.

I wish you the very best in your new adventure as a data-driven SEO
specialist!



Who	This	Book	Is	For
We wrote this book to help you get ahead in your career as an SEO
specialist. Whether you work in-house for a brand, an advertising
agency, a consultant, or someone else (please write to us and introduce
yourself !), this book will help you see SEO from a different angle and
probably in a whole new way. Our goals for you are as follows:

A	data	science	mindset	to	solving	SEO	challenges: You’ll start thinking
about the outcome metrics, the data sources, the data structures to
feed data into the model, and the models required to help you solve
the problem or at the very least remove some of the disinformation
surrounding the SEO challenge, all of which will take you several
steps nearer to producing great SEO recommendations and ideas for
split testing.
A	greater	insight	into	search	engines: You’ll also have a greater
appreciation for search engines like Google and a more contextual
understanding of how they are likely to rank websites. After all,
search engines are computer algorithms, not people, and so building
your own algorithms and models to solve SEO challenges will give
you some insight into how a search engine may reward or not
reward certain features of a website and its content.
Code	to	get	going: The best way to learn naturally is by doing. While
there are many courses in SEO, the most committed students of SEO
will build their own websites and test SEO ideas and practices. Data
science for SEO is no different if you want to make your SEO data
driven. So, you’ll be provided with starter scripts in Python to try
your own hand in clustering pages and content, analyzing ranking
factors. There will be code for most things but not for everything, as
not everything has been coded for (yet). The code is there to get you
started and can always be improved upon.
Familiarity	with	Python: Python is the mainstay of data science in
industry, even though R is still widely used. Python is free (open
source) and is highly popular with the SEO community, data
scientists, and the academic community alike. In fact, R and Python
are quite similar in syntax and structure. Python is easy to use, read,
and learn. To be clear, in no way do we suggest or advocate one



language is better than the other, it’s purely down to user preference
and convenience.

Beyond	the	Scope
While this book promises and delivers on making your SEO data
driven, there are a number of things that are better covered by other
books out there, such as

How	to	become	an	SEO	specialist: What this book won’t cover is how
to become an SEO expert although you’ll certainly come away with a
lot of knowledge on how to be a better SEO specialist. There are
some fundamentals that are beyond the scope of this book.

For example, we don’t get into how a search engine works, what a
content management system is, how it works, and how to read and
code HTML and CSS. We also don’t expose all of the ranking factors that
a search engine might use to rank websites or how to perform a site
relaunch or site migration.

This book assumes you have a rudimentary knowledge of how SEO
works and what SEO is. We will give a data-driven view of the many
aspects of SEO, and that is to reframe the SEO challenge from a data
science perspective so that you have a useful construct to begin with.

How	to	become	a	data	scientist: This book will certainly expose the
data science techniques to solve SEO challenges. What it won’t do is
teach you to become a data scientist or teach you how to program in
the Python computing language.

To become a data science professional requires a knowledge of
maths (linear algebra, probability, and statistics) in addition to
programming. A true data scientist not only knows the theory and
underpinnings of the maths and the software engineering to obtain and
transform the data, they also know how and when to deploy certain
models, the pros and cons of each (say Random Forest vs. AdaBoost),
and how to rebuild each model from scratch. While we won’t teach you
how to become a fully �ledged data scientist, you’ll understand the
intuition behind the models and how a data scientist would approach
an SEO challenge.



There is no one answer of course; however, the answers we provide
are based on experience and will be the best answer we believe at the
time of writing. So you’ll certainly be a data-driven SEO specialist, and
if you take the trouble to learn data science properly, then you’re well
on your way to becoming an SEO scientist.



How	This	Book	Works
Each chapter covers major work streams of SEO which will be familiar
to you:
1.

Keyword research  
2.

Technical  
3.

Content and UX  
4.

Authority  
5.

Competitor analysis  
6.

Experiments  
7.

Dashboards  
8.

Migration planning and postmortems 
9.

Google updates  
10.

Future of SEO  
Under each chapter, we will de�ine as appropriate

SEO challenge(s) from a data perspective
Data sources
Data structures
Models
Model output evaluation
Activation suggestions

I’ve tried to apply data science to as many SEO processes as
possible in the areas identi�ied earlier. Naturally, there will be some
areas that could be applied that have not. However, technology is
changing, and Google is already releasing updates to combat AI-written



content. So I’d imagine in the very near future, more and more areas of
SEO will be subject to data science.



Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub
(https://github.com/Apress). For more detailed information, please
visit http://www.apress.com/source-code.
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Before the Google Search Essentials (formerly Webmaster Guidelines),
there was an unspoken contract between SEOs and search engines
which promised traf�ic in return for helping search engines extract and
index website content. This chapter introduces you to the challenges of
applying data science to SEO and why you should use data.

The	Inexact	(Data)	Science	of	SEO
There are many trends that motivate the application of data science to
SEO; however, before we get into that, why isn’t there a rush of data
scientists to the industry door of SEO? Why are they going into areas of
paid search, programmatic advertising, and audience planning instead?

Here’s why:
Noisy feedback loop
Diminishing value of the channel
Making ads look more like organic listings
Lack of sample data
Things that can’t be measured
High costs

Noisy	Feedback	Loop
Unlike paid search campaigns where changes can be live after 15 mins,
the changes that affect SEO, be it on a website or indeed offsite, can

https://doi.org/10.1007/978-1-4842-9175-7_1


take anywhere between an hour and many weeks for Google and other
search engines to take note of and process the change within their
systems before it gets re�lected in the search engine results (which
may or may not result in a change of ranking position).

Because of this variable and unpredictable time lag, this makes it
rather dif�icult to undertake cause and effect analysis to learn from SEO
experiments.

Diminishing	Value	of	the	Channel
The diminishing value of the channel will probably put off any decision
by a data scientist to move into SEO when weighing up the options
between computational advertising, �inancial securities, and other
industries. SEO is likely to fall by the wayside as Google and others do
as much as possible to reduce the value of organic traf�ic in favor of
paid advertising.

Making	Ads	Look	More	like	Organic	Listings
Google is increasing the amount of ads shown before displaying the
organic results, which diminishes the return of SEO (and therefore the
appeal) to businesses. Google is also monetizing organic results such
as Google Jobs, Flights, Credit Cards, and Shopping, which displaces the
organic search results away from the top.

Lack	of	Sample	Data
It's the lack of data points that makes data-driven SEO analysis more
challenging. How many times has an SEO run a technical audit and
taken this as a re�lection of the SEO reality? How do we know this
website didn’t have an off moment during that particular audit?

Thank goodness, the industry-leading rank measurement tools are
recording rankings on a daily basis. So why aren’t SEO teams auditing
on a more regular basis?

Many SEO teams are not set up to take multiple measurements
because most do not have the infrastructure to do so, be it because
they

Don’t understand the value of multiple measurements for data
science



Don’t have the resources or don’t have the infrastructure
Rely on knowing when the website changes before having to run
another audit (albeit tools like ContentKing have automated the
process)

To have a dataset that has a true representation of the SEO reality, it
must have multiple audit measurements which allow for statistics such
as average and standard deviations per day of

Server status codes
Duplicate content
Missing titles

With this type of data, data scientists are able to do meaningful SEO
science work and track these to rankings and UX outcomes.

Things	That	Can’t	Be	Measured
Even with the best will to collect the data, not everything worth
measuring can be measured. Although this is likely to be true of all
marketing channels, not just SEO, it’s not the greatest reason for data
scientists not to move into SEO. If anything, I’d argue the opposite in
the sense that many things in SEO are measurable and that SEO is data
rich.

There are things we would like to measure such as
Search	query: Google, for some time, has been hiding the search
query detail of organic traf�ic, of which the keyword detail in Google
Analytics is shown as “Not Provided.” Naturally, this would be useful
as there are many keywords to one URL relationship, so getting the
breakdown would be crucial for attribution modeling outcomes,
such as leads, orders, and revenue.
Search	volume: Google Ads does not fully disclose search volume per
search query. The search volume data for long tail phrases provided
by Ads is reallocated to broader matches because it’s pro�itable for
Google to encourage users to bid on these terms as there are more
bidders in the auction. Google Search Console (GSC) is a good
substitute, but is �irst-party data and is highly dependent on your
site’s presence for your hypothesis keyword.



Segment: This would tell us who is searching, not just the keyword,
which of course would in most cases vastly affect the outcomes of
any machine-learned SEO analysis because a millionaire searching
for “mens jeans” would expect different results to another user of
more modest means. After all, Google is serving personalized results.
Not knowing the segment simply adds noise to any SERPs model or
otherwise.

High	Costs
Can you imagine running a large enterprise crawling technology like
Botify daily? Most brands run a crawl once a month because it’s cost
prohibitive, and not just on your site. To get a complete dataset, you’d
need to run it on your competitors, and that’s only one type of SEO
data.

Cost won’t matter as much to the ad agency data scientist, but it will
affect whether they will get access to the data because the agency may
decide the budget isn’t worthwhile.

Why	You	Should	Turn	to	Data	Science	for	SEO
There are many reasons to turn to data science to make your SEO
campaigns and operations data driven.

SEO	Is	Data	Rich
We don’t have the data to measure everything, including Google’s user
response data to the websites listed in the Search Engine Results Pages
(SERPs), which would be the ultimate outcome data. What we do have
is �irst-party (your/your company’s data like Google/Adobe Analytics)
and third-party (think rank checking tools, cloud auditing software)
export data.

We also have the open source data science tools which are free to
make sense of this data. There are also many free highly credible
sources online that are willing to teach you how to use these tools to
make sense of the ever-increasing deluge of SEO data.

SEO	Is	Automatable



At least in certain aspects. We’re not saying that robots will take over
your career. And yet, we believe there is a case that some aspects of
your job as an SEO a computer can do instead. After all, computers are
extremely good at doing repetitive tasks, they don’t get tired nor bored,
can “see” beyond three dimensions, and only live on electricity.

Andreas has taken over teams where certain members spent time
constantly copying and pasting information from one document to
another (the agency and individual will remain unnamed to spare their
blushes).

Doing repetitive work that can be easily done by a computer is not
value adding, emotionally engaging, nor good for your mental health.
The point is we as humans are at our best when we’re thinking and
synthesizing information about a client’s SEO; that’s when our best
work gets done.

Data	Science	Is	Cheap
We also have the open source data science tools (R, Python) which are
free to make sense of this data. There are also many free highly
credible sources online that are willing to teach you how to use these
tools to make sense of the ever-increasing deluge of SEO data.

Also, if there is too much data, cloud computing services such as
Amazon Web Services (AWS) and Google Cloud Platform (GCP) are also
rentable by the hour.

Summary
This brief introductory chapter has covered the following:

The inexact science of SEO
Why you should turn to data science for SEO
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Behind every query a user enters within a search engine is a word or series of words. For instance, a user
may be looking for a “hotel” or perhaps a “hotel in New York City.” In search engine optimization (SEO),
keywords are invariably the target, providing a helpful way of understanding demand for said queries and
helping to more effectively understand various ways that users search for products, services, organizations,
and, ultimately, answers.

As well as SEO starting from keywords, it also tends to end with the keyword as an SEO campaign may
be evaluated on the value of the keyword’s contribution. Even if this information is hidden from us by
Google, attempts have been made by a number of SEO tools to infer the keyword used by users to reach a
website.

In this chapter, we will give you data-driven methods for �inding valuable keywords for your website (to
enable you to have a much richer understanding of user demand).

It’s also worth noting that given keyword rank tracking comes at a cost (usually charged per keyword
tracked or capped at a total number of keywords), it makes sense to know which keywords are worth the
tracking cost.

Data	Sources
There are a number of data sources when it comes to keyword research, which we’ll list as follows:
Google	Search	Console
Competitor	Analytics
SERPs
Google	Trends
Google Ads
Google Suggest

We’ll cover the ones highlighted in bold as they are not only the more informative of the data sources,
they also scale as data science methods go. Google Ads data would only be so appealing if it were based on
actual impression data.

We will also show you how to make forecasts of keyword data both in terms of the amount of
impressions you get if you achieve a ranking on page 1 (within positions 1 to 10) and what this impact
would be over a six-month horizon.

Armed with a detailed understanding of how customers search, you’re in a much stronger position to
benchmark where you index vs. this demand (in order to understand the available opportunity you can lean
into), as well as be much more customer focused when orienting your website and SEO activity to target
that demand.

Let’s get started.

Google	Search	Console	(GSC)
Google Search Console (GSC) is a (free) �irst-party data source, which is rich in market intelligence. It’s no
wonder Google does everything possible to make it dif�icult to parse, let alone obfuscate, the data when
attempting to query the API at date and keyword levels.

https://doi.org/10.1007/978-1-4842-9175-7_2


GSC data is my �irst port of call when it comes to keyword research because the numbers are consistent,
and unlike third-party numbers, you’ll get data which isn’t based on a generic click through a rate mapped to
ranking.1

The overall strategy is to look for search queries that have impressions that are signi�icantly above the
average for their ranking position. Why impressions? Because impressions are more plentiful and they
represent the opportunity, whereas clicks tend to come “after the fact,” that is, they are the outcome of the
opportunity.

What is signi�icant? This could be any search query with impression levels more than two standard
deviations (sigmas) above the mean (average), for example.

There is no hard and fast rule. Two sigmas simply mean that there’s a less than 5% chance that the
search query is actually less like the average search query, so a lower signi�icance threshold like one sigma
could easily suf�ice.

Import,	Clean,	and	Arrange	the	Data

import pandas as pd
import numpy as np
import glob
import os

The data are several exports from Google Search Console (GSC) of the top 1000 rows based on a number
of �ilters. The API could be used, and some code is provided in Chapter 10 showing how to do so.

For now, we’re reading multiple GSC export �iles stored in a local folder.
Set the path to read the �iles:

data_dir = os.path.join('data', 'csvs')
gsc_csvs = glob.glob(data_dir + "/*.csv")

Initialize an empty list that will store the data being read in:

gsc_li = []

The for loop iterates through each export �ile and takes the �ilename as the modi�ier used to �ilter the
results and then appends it to the preceding list:

for cf in gsc_csvs:
    df = pd.read_csv(cf, index_col=None, header=0)
    df['modifier'] = os.path.basename(cf)
    df.modifier = df.modifier.str.replace('_queries.csv', '')
    gsc_li.append(df)

Once the list is populated with the export data, it’s combined into a single dataframe:

gsc_raw_df = pd.DataFrame()
gsc_raw_df = pd.concat(gsc_li, axis=0, ignore_index=True)

The columns are formatted to be more data-friendly:

gsc_raw_df.columns =
gsc_raw_df.columns.str.strip().str.lower().str.replace(' ',
'_').str.replace('(', '').str.replace(')', '')

gsc_raw_df.head()

This produces the following:



With the data imported, we’ll want to format the column values to be capable of being summarized. For
example, we’ll remove the percent signs in the ctr column and convert it to a numeric format:

gsc_clean_ctr_df['ctr'] = gsc_clean_ctr_df['ctr'].str.replace('%', '')
gsc_clean_ctr_df['ctr'] = pd.to_numeric(gsc_clean_ctr_df['ctr'])

GSC data contains a funny character “<” in the impressions and clicks columns for values less than 10;
our job is to clean this up by removing them and then arranging impressions in descending order. In Python,
this would look like

gsc_clean_ctr_df['impressions'] =
gsc_clean_ctr_df.impressions.str.replace('<', '')
pd.to_numeric(gsc_import_df.impressions)

We’ll also deduplicate the top_queries column:

gsc_dedupe_df = gsc_clean_ctr_df.drop_duplicates(subset='top_queries',
keep="first")

Segment	by	Query	Type
The next step is to segment the queries by type. The reason for this is that we want to compare the
impression volumes within a segment as opposed to the overall website.

This makes numbers more meaningful in terms of highlighting opportunities within segments.
Otherwise, if we compared impressions to the website average, then we may miss out on valuable search
query opportunities.

The approach we’re using in Python is to categorize based on modi�ier strings found in the query
column:

retail_vex = ['cdkeys', 'argos', 'smyth', 'amazon', 'cyberpunk', 'GAME']
platform_vex = ['ps5', 'xbox', 'playstation', 'switch', 'ps4', 'nintendo']
title_vex = ['blackops', 'pokemon', 'minecraft', 'mario',
'outriders','fifa', 'animalcrossing', 'resident', 'spiderman',
'newhorizons', 'callofduty']
network_vex = ['ee', 'o2', 'vodafone','carphone']

gsc_segment_strdetect = gsc_dedupe_df[['query', 'clicks', 'impressions',
'ctr', 'position']]

Create a list of our conditions:

query_conds = [
    gsc_segment_strdetect['query'].str.contains('|'.join(retail_vex)),
    gsc_segment_strdetect['query'].str.contains('|'.join(platform_vex)),
    gsc_segment_strdetect['query'].str.contains('|'.join(title_vex)),
    gsc_segment_strdetect['query'].str.contains('|'.join(network_vex))
]



Create a list of the values we want to assign for each condition:

segment_values = ['Retailer', 'Console', 'Title', 'Network'] #, 'Title',
'Accessories', 'Network', 'Top1000', 'Broadband']

Create a new column and use np.select to assign values to it using our lists as arguments:

gsc_segment_strdetect['segment'] = np.select(query_conds, segment_values)

gsc_segment_strdetect

Here is the output:

Round	the	Position	Data	into	Whole	Numbers
Given the position column is a �loating number (i.e., contains decimals), the reason we’d like to do this is
because we’ll be calculating the impression statistics per rounded ranking position. This will give us 100
statistics. Now imagine if we didn’t round it, we could have impression statistics for 10,000 ranking
positions and not all of them are useful.

gsc_segment_strdetect['rank_bracket'] =
gsc_segment_strdetect.position.round(0)
gsc_segment_strdetect

This results in the following:



Calculate	the	Segment	Average	and	Variation
Now the data is segmented, we compute the average impressions and the lower and upper percentiles of
impressions for the ranking position. The aim is to identify queries that have impressions two standard
deviations or more above the ranking position. This means the query is likely to be a great opportunity for
SEO and well worth monitoring.

The reason we’re doing it this way, as opposed to just selecting high impression keywords per se, is
because many keyword queries have high impressions just by virtue of being in the top 20 in the �irst place.
This would make the number of queries to track rather large and expensive.

queries_rank_imps = gsc_segment_strdetect[['rank_bracket', 'impressions']]
group_by_rank_bracket = queries_rank_imps.groupby(['rank_bracket'],
as_index=False)

def imp_aggregator(col):
    d = {}
    d['avg_imps'] = col['impressions'].mean()
    d['imps_median'] = col['impressions'].quantile(0.5)
    d['imps_lq'] = col['impressions'].quantile(0.25)
    d['imps_uq'] = col['impressions'].quantile(0.95)
    d['n_count'] = col['impressions'].count()
    return pd.Series(d, index=['avg_imps', 'imps_median', 'imps_lq',
'imps_uq', 'n_count'])

overall_rankimps_agg = group_by_rank_bracket.apply(imp_aggregator)
overall_rankimps_agg

This results in the following:



In this case, we went with the 25th and 95th percentiles. The lower percentile number doesn’t matter as
much as we’re far more interested in �inding queries with averages beyond the 95th percentile. If we can do
that, we have a juicy keyword. Quick note, in data science, a percentile is known as a “quantile.”

Could we make a table for each and every segment? For example, show the statistics for impressions by
ranking position by section. Yes, of course, you could, and in theory, it would provide a more contextual
analysis of queries performed vs. their segment average. The deciding factor on whether to do so or not
depends on how many data points (i.e., ranked queries) you have for each rank bracket to make it
worthwhile (i.e., statistically robust). You’d want at least 30 data points in each to go that far.

Compare	Impression	Levels	to	the	Average
Okay, now let’s left join (think vlookup or index match) the table from the previous set and then join it to the
segmented data. Then we have a dataframe that shows the query data vs. the expected average and upper
quantile.

Join accessories_rankimps_agg onto accessory_queries by rank_bracket:

query_quantile_stats = gsc_segment_strdetect.merge(overall_rankimps_agg, on
=['rank_bracket'], how='left')
query_quantile_stats

This results in the following:

Explore	the	Data



Now you might be wondering, how many keywords are punching above and below their weight (i.e., above
and below their quantile limits relative to their ranking position) and what are those keywords?

Get the number of keywords with high volumes of impressions:

query_stats_uq = query_quantile_stats.loc[query_quantile_stats.impressions >
query_quantile_stats.imps_uq]
query_stats_uq['query'].count()

This results in the following:

8390

Get the number of keywords with impressions and ranking beyond page 1:

query_stats_uq_p2b =
query_quantile_stats.loc[(query_quantile_stats.impressions >
query_quantile_stats.imps_uq) & (query_quantile_stats.rank_bracket > 10)]
query_stats_uq_p2b['query'].count()

This results in the following:

2510

Depending on your resources, you may wish to track all 8390 keywords or just the 2510. Let’s see how
the distribution of impressions looks visually across the range of ranking positions:

import seaborn as sns
import matplotlib.pyplot as plt
from pylab import savefig

Set the plot size:

sns.set(rc={'figure.figsize':(15, 6)})

Plot impressions vs. rank_bracket:

imprank_plt = sns.relplot(x = "rank_bracket", y = "impressions",
                hue = "quantiled", style = "quantiled",
                kind = "line", data = overall_rankimps_agg_long)

Save Figure 2-1 to a �ile for your PowerPoint deck or others:

imprank_plt.savefig("images/imprank_plt.png")

What’s interesting is the upper quantile impression keywords are not all in the top 10, but many are on
pages 2, 4, and 6 of the SERP results (Figure 2-1). This indicates that the site is either targeting the high-
volume keywords but not doing a good job of achieving a high ranking position or not targeting these high-
volume phrases.



Figure	2-1 Line chart showing GSC impressions per ranking position bracket for each distribution quantile

Let’s break this segment down.
Plot impressions vs. rank_bracket by segment:

imprank_seg = sns.relplot(x="rank_bracket", y="impressions",
                hue="quantiled", col="segment",
                kind="line", data = overall_rankimps_agg_long,
facet_kws=dict(sharex=False))

Export the �ile:

imprank_seg.savefig("images/imprank_seg.png")

Most of the high impression keywords are in Accessories, Console, and of course Top 1000 (Figure 2-2).

Figure	2-2 Line chart showing GSC impressions per ranking position bracket for each distribution quantile faceted by segment

Export	Your	High	Value	Keyword	List
Now that you have your keywords, simply �ilter and export to CSV.



Export the dataframe to CSV:

query_stats_uq_p2b.to_csv('exports/query_stats_uq_p2b_TOTRACK.csv')

Activation
Now that you’ve identi�ied high impression value keywords, you can

Replace or add those keywords to the ones you’re currently tracking and campaigning
Research the content experience required to rank on the �irst page
Think about how to integrate these new targets into your strategy
Explore levels of on-page optimization for these keywords, including where there are low-hanging fruit
opportunities to more effectively interlink landing pages targeting these keywords (such as through blog
posts or content pages)
Consider whether increasing external link popularity (through content marketing and PR) across these
new landing pages is appropriate

Obviously, the preceding list is reductionist, and yet as a minimum, you have better nonbrand targets to
better serve your SEO campaign.

Google	Trends
Google Trends is another (free) third-party data source, which shows time series data (data points over
time) up to the last �ive years for any search phrase that has demand. Google Trends can also help you
compare whether a search is on the rise (or decline) while comparing it to other search phrases. It can be
highly useful for forecasting.

Although no Google Trends API exists, there are packages in Python (i.e., pytrends) that can automate
the extraction of this data as we’ll see as follows:

import pandas as pd
from pytrends.request import TrendReq
import time

Single	Keyword
Now that you’ve identi�ied high impression value keywords, you can see how they’ve trended over the last
�ive years:

kw_list = ["Blockchain"]
pytrends.build_payload(kw_list, cat=0, timeframe='today 5-y', geo='GB',
gprop='')
pytrends.interest_over_time()

This results in the following:



Multiple	Keywords
As you can see earlier, you get a dataframe with the date, the keyword, and the number of hits (scaled from 0
to 100), which is great, and what if you had 10,000 keywords that you wanted trends for?

In that case, you’d want a for loop to query the search phrases one by one and stick them all into a
dataframe like so:

Read in your target keyword data:

csv_raw = pd.read_csv('data/your_keyword_file.csv')
keywords_df = csv_raw[['query']]
keywords_list = keywords_df['query'].values.tolist()
keywords_list

Here’s the output of what keywords_list looks like:

['nintendo switch',
 'ps4',
 'xbox one controller',
 'xbox one',
 'xbox controller',
 'ps4 vr',
 'Ps5' ...]

Let’s now get Google Trends data for all of your keywords in one dataframe:

dataset = []
exceptions = []

for q in keywords_list:
    q_lst = [q]



    try:
        pytrends.build_payload(kw_list=q_lst, timeframe='today 5-y',
geo='GB', gprop='')
        data = pytrends.interest_over_time()
        data = data.drop(labels=['isPartial'],axis='columns')
        dataset.append(data)
        time.sleep(3)
    except:
        exceptions.append(q_lst)

gtrends_long = pd.concat(dataset, axis=1)

This results in the following:

Let’s convert to long format:

gtrends_long = gtrends_raw.melt(id_vars=['date'], var_name = 'query',
value_name = 'hits')
gtrends_long

This results in the following:



Looking at Google Trends raw, we now have data in long format showing
Date
Keyword
Hits

Let’s visualize some of these over time. We start by subsetting the dataframe:

k_list = ['ps5',  'xbox one',  'ps4',  'xbox series x', 'nintendo switch']
keyword_gtrends = gtrends_long.loc[gtrends_long['query'].isin(k_list)]
keyword_gtrends

This results in the following:



Visualizing	Google	Trends
Okay, so we’re now ready to plot the time series data as a chart, starting with the library import:

import seaborn as sns

Set the plot size:

sns.set(rc={'figure.figsize':(15, 6)})

Build and plot the chart:

keyword_gtrends_plt = sns.lineplot(data = keyword_gtrends, x = 'date', y =
'hits', hue = 'query')

Save the image to a �ile for your PowerPoint deck or others:

keyword_gtrends_plt.figure.savefig("images/keyword_gtrends.png")
keyword_gtrends_plt

Here, we can see that the “ps5” and “xbox series x” show a near identical trend which ramp up
signi�icantly, while other models are fairly stable and seasonal until the arrival of the new models.



Figure	2-3 Time series plot of Google Trends keywords

Forecast	Future	Demand
While it’s great to see what’s happened in the last �ive years, it’s also great to see what might happen in the
future. Thankfully, Python provides the tools to do so. The most obvious use cases for forecasts are client
pitches and reporting.

Exploring	Your	Data

import pandas as pd
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf
from statsmodels.tsa.seasonal import seasonal_decompose
from sklearn.metrics import mean_squared_error
from statsmodels.tools.eval_measures import rmse
import warnings
warnings.filterwarnings("ignore")
from pmdarima import auto_arima

Import Google Trends data:

df = pd.read_csv("exports/keyword_gtrends_df.csv", index_col=0)
df.head()

This results in the following:

As we’d expect, the data from Google Trends is a very simple time series with date, query, and hits spanning
a �ive-year period. Time to format the dataframe to go from long to wide:



df_unstacked = ps_trends.set_index(["date", "query"]).unstack(level=-1)
df_unstacked.columns.set_names(['hits', 'query'], inplace=True)
ps_unstacked = df_unstacked.droplevel('hits', axis=1)
ps_unstacked.columns = [c.replace(' ', '_') for c in ps_unstacked.columns]
ps_unstacked = ps_unstacked.reset_index()
ps_unstacked.head()

This results in the following:

We no longer have a hits column as these are the values of the queries in their respective columns. This
format is not only useful for SARIMA2 (which we will be exploring here) but also neural networks such as
long short-term memory (LSTM). Let’s plot the data:

ps_unstacked.plot(figsize=(10,5))

From the plot (Figure 2-4), you’ll note that the pro�iles of both “PS4” and “PS5” are different.

Figure	2-4 Time series plot of both ps4 and ps5

For the nongamers among you, “PS4” is the fourth generation of the Sony PlayStation console, and “PS5”
the �ifth. “PS4” searches are highly seasonal and have a regular pattern apart from the end when the “PS5”
emerged. The “PS5” didn’t exist �ive years ago, which would explain the absence of trend in the �irst four
years of the preceding plot.

Decomposing	the	Trend



Let’s now decompose the seasonal (or nonseasonal) characteristics of each trend:

ps_unstacked.set_index("date", inplace=True)
ps_unstacked.index = pd.to_datetime(ps_unstacked.index)

query_col = 'ps5'
a = seasonal_decompose(ps_unstacked[query_col], model = "add")
a.plot();

Figure 2-5 shows the time series data and the overall smoothed trend showing it rises from 2020.

Figure	2-5 Decomposition of the ps5 time series

The seasonal trend box shows repeated peaks which indicates that there is seasonality from 2016,
although it doesn’t seem particularly reliable given how �lat the time series is from 2016 until 2020. Also
suspicious is the lack of noise as the seasonal plot shows a virtually uniform pattern repeating periodically.

The Resid (which stands for “Residual”) shows any pattern of what’s left of the time series data after
accounting for seasonality and trend, which in effect is nothing until 2020 as it’s at zero most of the time.

For “ps4,” see Figure 2-6.



Figure	2-6 Decomposition of the ps4 time series

We can see �luctuation over the short term (Seasonality) and long term (Trend), with some noise
(Resid). The next step is to use the augmented Dickey-Fuller method (ADF) to statistically test whether a
given time series is stationary or not:

from pmdarima.arima import ADFTest
adf_test = ADFTest(alpha=0.05)
adf_test.should_diff(ps_unstacked[query_col])

PS4: (0.09760939899434763, True)
PS5: (0.01, False)

We can see that the p-value of “PS5” shown earlier is more than 0.05, which means that the time series
data is not stationary and therefore needs differencing. “PS4” on the other hand is less than 0.05 at 0.01,
meaning it’s stationery and doesn’t require differencing.

The point of all this is to understand the parameters that would be used if we were manually building a
model to forecast Google searches.

Fitting	Your	SARIMA	Model
Since we’ll be using automated methods to estimate the best �it model parameters (later), we’re not going
to estimate the number of parameters for our SARIMA model.

To estimate the parameters for our SARIMA model, note that we set m to 52 as there are 52 weeks in a
year which is how the periods are spaced in Google Trends. We also set all of the parameters to start at 0 so
that we can let the auto_arima do the heavy lifting and search for the values that best �it the data for
forecasting:

ps5_s = auto_arima(ps_unstacked['ps4'],
           trace=True,
           m=52, #there are 52 period per season (weekly data)
           start_p=0,
           start_d=0,
           start_q=0,
           seasonal=False)



This results in the following:

Performing stepwise search to minimize aic

 ARIMA(3,0,3)(0,0,0)[0]             : AIC=1842.301, Time=0.26 sec
 ARIMA(0,0,0)(0,0,0)[0]             : AIC=2651.089, Time=0.01 sec
 ARIMA(1,0,0)(0,0,0)[0]             : AIC=1865.936, Time=0.02 sec
 ARIMA(0,0,1)(0,0,0)[0]             : AIC=2370.569, Time=0.05 sec
 ARIMA(2,0,3)(0,0,0)[0]             : AIC=1845.911, Time=0.12 sec
 ARIMA(3,0,2)(0,0,0)[0]             : AIC=1845.959, Time=0.16 sec
 ARIMA(4,0,3)(0,0,0)[0]             : AIC=1838.349, Time=0.34 sec
 ARIMA(4,0,2)(0,0,0)[0]             : AIC=1846.701, Time=0.22 sec
 ARIMA(5,0,3)(0,0,0)[0]             : AIC=1843.754, Time=0.25 sec
 ARIMA(4,0,4)(0,0,0)[0]             : AIC=1842.801, Time=0.27 sec
 ARIMA(3,0,4)(0,0,0)[0]             : AIC=1841.447, Time=0.36 sec
 ARIMA(5,0,2)(0,0,0)[0]             : AIC=1841.893, Time=0.24 sec
 ARIMA(5,0,4)(0,0,0)[0]             : AIC=1845.734, Time=0.29 sec
 ARIMA(4,0,3)(0,0,0)[0] intercept   : AIC=1824.187, Time=0.82 sec
 ARIMA(3,0,3)(0,0,0)[0] intercept   : AIC=1824.769, Time=0.34 sec
 ARIMA(4,0,2)(0,0,0)[0] intercept   : AIC=1826.970, Time=0.34 sec
 ARIMA(5,0,3)(0,0,0)[0] intercept   : AIC=1826.789, Time=0.44 sec
 ARIMA(4,0,4)(0,0,0)[0] intercept   : AIC=1827.114, Time=0.43 sec
 ARIMA(3,0,2)(0,0,0)[0] intercept   : AIC=1831.587, Time=0.32 sec
 ARIMA(3,0,4)(0,0,0)[0] intercept   : AIC=1825.359, Time=0.42 sec
 ARIMA(5,0,2)(0,0,0)[0] intercept   : AIC=1827.292, Time=0.40 sec
 ARIMA(5,0,4)(0,0,0)[0] intercept   : AIC=1829.109, Time=0.51 sec

Best model:  ARIMA(4,0,3)(0,0,0)[0] intercept
Total fit time: 6.601 seconds

The preceding printout shows that the parameters that get the best results are

PS4: ARIMA(4,0,3)(0,0,0)
PS5: ARIMA(3,1,3)(0,0,0)

The PS5 estimate is further detailed when printing out the model summary:

ps5_s.summary()

This results in the following:



What’s happening is the function is looking to minimize the probability of error measured by both the
Akaike information criterion (AIC) and Bayesian information criterion:

AIC = -2Log(L) + 2(p + q + k + 1)

such that L is the likelihood of the data, k = 1 if c ≠ 0, and k = 0 if c = 0.

BIC = AIC + [log(T) - 2] + (p + q + k + 1)

By minimizing AIC and BIC, we get the best estimated parameters for p and q.

Test	the	Model
Now that we have the parameters, we can now start making forecasts for both products:

ps4_order = ps4_s.get_params()['order']
ps4_seasorder = ps4_s.get_params()['seasonal_order']

ps5_order = ps5_s.get_params()['order']



ps5_seasorder = ps5_s.get_params()['seasonal_order']

params = {
    "ps4": {"order": ps4_order, "seasonal_order": ps4_seasorder},
    "ps5": {"order": ps5_order, "seasonal_order": ps5_seasorder}
}

Create an empty list to store the forecast results:

results = []
fig, axs = plt.subplots(len(X.columns), 1, figsize=(24, 12))

Iterate through the columns to �it the best SARIMA model:

for i, col in enumerate(X.columns):
    arima_model = SARIMAX(train_data[col],
                          order = params[col]["order"],
                          seasonal_order = params[col]["seasonal_order"])
    arima_result = arima_model.fit()

Make forecasts:

    arima_pred = arima_result.predict(start = len(train_data),
                                      end = len(X)-1, typ="levels")\
                             .rename("ARIMA Predictions")

Plot predictions:

    test_data[col].plot(figsize = (8,4), legend=True, ax=axs[i])
    arima_pred.plot(legend = True, ax=axs[i])

    arima_rmse_error = rmse(test_data[col], arima_pred)
    mean_value = X[col].mean()

    results.append((col, arima_pred, arima_rmse_error, mean_value))
    print(f'Column: {col} --> RMSE Error: {arima_rmse_error} - Mean:
{mean_value}\n')

This results in the following:

Column: ps4 --> RMSE Error: 8.626764032898576 - Mean: 37.83461538461538
Column: ps5 --> RMSE Error: 27.552818032476257 - Mean: 3.973076923076923

For ps4, the forecasts are pretty accurate from the beginning until March when the search values start to
diverge (Figure 2-7), while the ps5 forecasts don’t appear to be very good at all, which is unsurprising.



Figure	2-7 Time series line plots comparing forecasts and actual data for both ps4 and ps5

The forecasts show the models are good when there is enough history until they suddenly change like
they have for PS4 from March onward. For PS5, the models are hopeless virtually from the get-go. We know
this because the Root Mean Squared Error (RMSE) is 8.62 for PS4 which is more than a third of the PS5
RMSE of 27.5, which, given Google Trends varies from 0 to 100, is a 27% margin of error.

Forecast	the	Future
At this point, we’ll now make the foolhardy attempt to forecast the future based on the data we have to date:

oos_train_data = ps_unstacked
oos_train_data.tail()

This results in the following:

As you can see from the preceding table extract, we’re now using all available data. Now we shall predict the
next six months (de�ined as 26 weeks) in the following code:

oos_results = []
weeks_to_predict = 26



fig, axs = plt.subplots(len(ps_unstacked.columns), 1, figsize=(24, 12))

Again, iterate through the columns to �it the best model each time:

for i, col in enumerate(ps_unstacked.columns):
    s = auto_arima(oos_train_data[col], trace=True)
    oos_arima_model = SARIMAX(oos_train_data[col],
                          order = s.get_params()['order'],
                          seasonal_order = s.get_params()['seasonal_order'])
    oos_arima_result = oos_arima_model.fit()

Make forecasts:

    oos_arima_pred = oos_arima_result.predict(start = len(oos_train_data),
                                      end = len(oos_train_data) +
weeks_to_predict, typ="levels").rename("ARIMA Predictions")

Plot predictions:

    oos_arima_pred.plot(legend = True, ax=axs[i])
    axs[i].legend([col]);
    mean_value = ps_unstacked[col].mean()

    oos_results.append((col, oos_arima_pred, mean_value))
    print(f'Column: {col} - Mean: {mean_value}\n')

Here’s the output:

Performing stepwise search to minimize aic
 ARIMA(2,0,2)(0,0,0)[0] intercept   : AIC=1829.734, Time=0.21 sec
 ARIMA(0,0,0)(0,0,0)[0] intercept   : AIC=1999.661, Time=0.01 sec
 ARIMA(1,0,0)(0,0,0)[0] intercept   : AIC=1827.518, Time=0.03 sec
 ARIMA(0,0,1)(0,0,0)[0] intercept   : AIC=1882.388, Time=0.05 sec
 ARIMA(0,0,0)(0,0,0)[0]             : AIC=2651.089, Time=0.01 sec
 ARIMA(2,0,0)(0,0,0)[0] intercept   : AIC=1829.254, Time=0.04 sec
 ARIMA(1,0,1)(0,0,0)[0] intercept   : AIC=1829.136, Time=0.09 sec
 ARIMA(2,0,1)(0,0,0)[0] intercept   : AIC=1829.381, Time=0.26 sec
 ARIMA(1,0,0)(0,0,0)[0]             : AIC=1865.936, Time=0.02 sec

Best model:  ARIMA(1,0,0)(0,0,0)[0] intercept
Total fit time: 0.722 seconds
Column: ps4 - Mean: 37.83461538461538

Performing stepwise search to minimize aic
 ARIMA(2,1,2)(0,0,0)[0] intercept   : AIC=1657.990, Time=0.19 sec
 ARIMA(0,1,0)(0,0,0)[0] intercept   : AIC=1696.958, Time=0.01 sec
 ARIMA(1,1,0)(0,0,0)[0] intercept   : AIC=1673.340, Time=0.04 sec
 ARIMA(0,1,1)(0,0,0)[0] intercept   : AIC=1666.878, Time=0.05 sec
 ARIMA(0,1,0)(0,0,0)[0]             : AIC=1694.967, Time=0.01 sec
 ARIMA(1,1,2)(0,0,0)[0] intercept   : AIC=1656.899, Time=0.14 sec
 ARIMA(0,1,2)(0,0,0)[0] intercept   : AIC=1663.729, Time=0.04 sec
 ARIMA(1,1,1)(0,0,0)[0] intercept   : AIC=1656.787, Time=0.07 sec
 ARIMA(2,1,1)(0,0,0)[0] intercept   : AIC=1656.351, Time=0.16 sec
 ARIMA(2,1,0)(0,0,0)[0] intercept   : AIC=1672.668, Time=0.04 sec
 ARIMA(3,1,1)(0,0,0)[0] intercept   : AIC=1657.661, Time=0.11 sec
 ARIMA(3,1,0)(0,0,0)[0] intercept   : AIC=1670.698, Time=0.05 sec
 ARIMA(3,1,2)(0,0,0)[0] intercept   : AIC=1653.392, Time=0.33 sec
 ARIMA(4,1,2)(0,0,0)[0] intercept   : AIC=inf, Time=0.40 sec
 ARIMA(3,1,3)(0,0,0)[0] intercept   : AIC=1643.872, Time=0.45 sec



 ARIMA(2,1,3)(0,0,0)[0] intercept   : AIC=1659.698, Time=0.23 sec
 ARIMA(4,1,3)(0,0,0)[0] intercept   : AIC=inf, Time=0.48 sec
 ARIMA(3,1,4)(0,0,0)[0] intercept   : AIC=inf, Time=0.47 sec
 ARIMA(2,1,4)(0,0,0)[0] intercept   : AIC=1645.994, Time=0.52 sec
 ARIMA(4,1,4)(0,0,0)[0] intercept   : AIC=1647.585, Time=0.56 sec
 ARIMA(3,1,3)(0,0,0)[0]             : AIC=1641.790, Time=0.37 sec
 ARIMA(2,1,3)(0,0,0)[0]             : AIC=1648.325, Time=0.38 sec
 ARIMA(3,1,2)(0,0,0)[0]             : AIC=1651.416, Time=0.24 sec
 ARIMA(4,1,3)(0,0,0)[0]             : AIC=1650.077, Time=0.59 sec
 ARIMA(3,1,4)(0,0,0)[0]             : AIC=inf, Time=0.58 sec
 ARIMA(2,1,2)(0,0,0)[0]             : AIC=1656.290, Time=0.10 sec
 ARIMA(2,1,4)(0,0,0)[0]             : AIC=1644.099, Time=0.38 sec
 ARIMA(4,1,2)(0,0,0)[0]             : AIC=inf, Time=0.38 sec
 ARIMA(4,1,4)(0,0,0)[0]             : AIC=1645.756, Time=0.56 sec

Best model:  ARIMA(3,1,3)(0,0,0)[0]
Total fit time: 7.954 seconds
Column: ps5 - Mean: 3.973076923076923

This time, we automated the �inding of the best-�itting parameters and fed that directly into the model.
The forecasts don’t look great (Figure 2-8) because there’s been a lot of change in the last few weeks of

the data; however, that’s in the case of those two keywords.

Figure	2-8 Out-of-sample forecasts of Google Trends for ps4 and ps5

The forecast quality will be dependent on how stable the historic patterns are and will obviously not
account for unforeseeable events like COVID-19.

Export your forecasts:

df_pred = pd.concat([pd.Series(res[1]) for res in oos_results], axis=1)
df_pred.columns = [x + str('_preds') for x in ps_unstacked.columns]
df_pred.to_csv('your_forecast_data.csv')

What we learn here is where forecasting using statistical models are useful or are likely to add value for
forecasting, particularly in automated systems like dashboards, that is, when there’s historical data and not
when there is a sudden spike like PS5.

Clustering	by	Search	Intent



Search intent is the meaning behind the search queries that users of Google type in when searching online.
So you may have the following queries:

“Trench coats”
“Ladies trench coats”
“Life insurance”
“Trench coats” will share the same search intent as “Ladies trench coats” but won’t share the same

intent as “Life insurance.” To work this out, a simple comparison of the top 10 ranking sites for both search
phrases in Google will offer a strong suggestion of what Google thinks of the search intent between the two
phrases.

It’s not a perfect method, but it works well because you’re using the ranking results which are a
distillation of everything Google has learned to date on what content satis�ies the search intent of the
search query (based upon the trillions of global searches per year). Therefore, it’s reasonable to surmise
that if two search queries have similar enough SERPs, then the search intent is shared between keywords.

This is useful for a number of reasons:
Rank	tracking	costs: If your budget is limited, then knowing the search intent means you can avoid
incurring further expense by not tracking keywords with the same intent as those you’re tracking. This
comes with a risk as consumers change and the keyword not tracked may not share the same intent
anymore.
Core	updates: With changing consumer search patterns come changing intents, which means you can see
if keywords change clusters or not by comparing the search intent clusters of keywords before and after
the update, which will help inform your response.
Keyword	content	mapping: Knowing the intent means you can successfully map keywords to landing
pages. This is especially useful in ensuring your site architecture consists of landing pages which map to
user search demand.
Paid	search	ads: Good keyword content mappings also mean you can improve the account structure and
resulting quality score of your paid search activity.

Starting	Point
Okay, time to cluster. We’ll assume you already have the top 100 SERPs3 results for each of your keywords
stored as a Python dataframe “serps_input.” The data is easily obtained from a rank tracking tool, especially
if they have an API:

serps_input

This results in the following:



Here, we’re using DataForSEO’s SERP API,4 and we have renamed the column from “rank_absolute” to
“rank.”

Filter	Data	for	Page	1
Because DataForSEO’s numbers to individual results are contained within carousels, People Also Ask, etc.,
we’ll want to compare the top 20 results of each SERP to each other to get the approximate results for page
1. We’ll also �ilter out URLs that have the value “None.” The programming approach we’ll take is “Split-
Apply-Combine.” What is Split-Apply-Combine?

Split the dataframe into keyword groups
Apply the �iltering formula to each group
Combine the keywords of each group

Here it goes:
Split:

serps_grpby_keyword = serps_input.groupby("keyword")

Apply the function, before combining:

def filter_twenty_urls(group_df):
    filtered_df = group_df.loc[group_df['url'].notnull()]
    filtered_df = filtered_df.loc[filtered_df['rank'] <= 20]
    return filtered_df
filtered_serps = serps_grpby_keyword.apply(filter_twenty_urls)

Combine and add pre�ix to column names:

normed = normed.add_prefix('normed_')

Concatenate with an initial dataframe:



filtered_serps_df = pd.concat([filtered_serps],axis=0)

Convert	Ranking	URLs	to	a	String
To compare the SERPs for each keyword, we need to convert the SERPs URL into a string. That’s because
there’s a one (keyword) to many (SERP URLs) relationship. The way we achieve that is by simply
concatenating the URL strings for each keyword, using the Split-Apply-Combine approach (again). Convert
results to strings using SAC:

filtserps_grpby_keyword = filtered_serps_df.groupby("keyword")

def string_serps(df):
    df['serp_string'] = ''.join(df['url'])
    return df

    Combine
strung_serps = filtserps_grpby_keyword.apply(string_serps)

Concatenate with an initial dataframe and clean:

strung_serps = pd.concat([strung_serps],axis=0)
strung_serps = strung_serps[['keyword', 'serp_string']]#.head(30)
strung_serps = strung_serps.drop_duplicates()
strung_serps

This results in the following:

Now we have a table showing the keyword and their SERP string, we’re ready to compare SERPs. Here’s an
example of the SERP string for “�ifa 19 ps4”:

strung_serps.loc[1, 'serp_string']

This results in the following:

'https://www.amazon.co.uk/Electronic-Arts-221545-FIFA-PS4/dp/B07DLXBGN8https:/
GAMES/dp/B07DL2SY2Bhttps://www.game.co.uk/en/fifa-19-2380636https://www.ebay.c
Games/139973/bn_7115134270https://www.pricerunner.com/pl/1422-4602670/PlayStat
Priceshttps://pricespy.co.uk/games-consoles/computer-video-games/ps4/fifa-19-p



p4766432https://store.playstation.com/en-gb/search/fifa%2019https://www.amazon
4/dp/B07DL2SY2Bhttps://www.tesco.com/groceries/en-GB/products/301926084https:/
games/ps-4-fifa-19/1000076097883https://uk.webuy.com/product-detail/?id=503094
software&superCatName=gaming&title=fifa-
19https://www.pushsquare.com/reviews/ps4/fifa_19https://en.wikipedia.org/wiki/
Arts-Fifa19SEPS4-Fifa-PS4/dp/B07DVWWF44https://www.vgchartz.com/game/222165/fi
19/https://www.metacritic.com/game/playstation-4/fifa-19https://www.johnlewis.
ps4/p3755803https://www.ebay.com/p/22045274968'

Compare	SERP	Distance
The SERPs comparison will use string distance techniques which allow us to see how similar or dissimilar
one keyword’s SERPs are. This technique is similar to how geneticists would compare one DNA sequence to
another.

Naturally, we need to get the SERPs into a format ready for Python to compare SERPs. To do this, we
need to convert each SERP to a string and then put them side by side. Group the table by keyword:

filtserps_grpby_keyword = filtered_serps_df.groupby("keyword")
def string_serps(df):
    df['serp_string'] = ' '.join(df['url'])
    return df

Combine using the preceding function:

strung_serps = filtserps_grpby_keyword.apply(string_serps)

Concatenate with an initial dataframe and clean:

strung_serps = pd.concat([strung_serps],axis=0)
strung_serps = strung_serps[['keyword', 'serp_string']]#.head(30)
strung_serps = strung_serps.drop_duplicates()
#strung_serps['serp_string'] =
strung_serps.serp_string.str.replace("https://www\.", "")
strung_serps.head(15)

This results in the following:



Here, we now have the keywords and their respective SERPs all converted into a string which �its into a
single cell. For example, the search result for “beige trench coats” is

'https://www.zalando.co.uk/womens-clothing-coats-trench-coats/_beige/
https://www.asos.com/women/coats-jackets/trench-coats/cat/?cid=15143
https://uk.burberry.com/womens-trench-coats/beige/
https://www2.hm.com/en_gb/productpage.0751992002.xhtml
https://www.hobbs.com/clothing/coats-jackets/trench/beige/
https://www.zara.com/uk/en/woman-outerwear-trench-l1202.xhtml
https://www.ebay.co.uk/b/Beige-Trench-Coats-for-Women/63862/bn_7028370345
https://www.johnlewis.com/browse/women/womens-coats-jackets/trench-
coats/_/N-flvZ1z0rnyl https://www.elle.com/uk/fashion/what-to-
wear/articles/g30975/best-trench-coats-beige-navy-black/'

Time to put these side by side. What we’re effectively doing here is taking a product of the column to
itself, that is, squaring it, so that we get all the SERPs combinations possible to put the SERPs side by side.

Add a function to align SERPs:

def serps_align(k, df):
    prime_df = df.loc[df.keyword == k]
    prime_df = prime_df.rename(columns = {"serp_string" : "serp_string_a",
'keyword': 'keyword_a'})
    comp_df = df.loc[df.keyword != k].reset_index(drop=True)
    prime_df =
prime_df.loc[prime_df.index.repeat(len(comp_df.index))].reset_index(drop=True)



    prime_df = pd.concat([prime_df, comp_df], axis=1)
    prime_df = prime_df.rename(columns = {"serp_string" : "serp_string_b",
'keyword': 'keyword_b', "serp_string_a" : "serp_string", 'keyword_a':
'keyword'})
    return prime_df

Test the function on a single keyword:

serps_align('ps4', strung_serps)

Set up desired dataframe columns:

columns = ['keyword', 'serp_string', 'keyword_b', 'serp_string_b']
matched_serps = pd.DataFrame(columns=columns)
matched_serps = matched_serps.fillna(0)

Call the function for each keyword:

for q in queries:
    temp_df = serps_align(q, strung_serps)
    matched_serps = matched_serps.append(temp_df)

This results in the following:

The preceding result shows all of the keywords with SERPs compared side by side with other keywords and
their SERPs. Next, we’ll infer keyword intent similarity by comparing serp_strings, but �irst here’s a note on
the methods like Levenshtein, Jaccard, etc.

Levenshtein distance is edit based, meaning the number of edits required to transform one string (in
our case, serp_string) into the other string (serps_string_b). This doesn’t work very well because the
websites within the SERP strings are individual tokens, that is, not a single continuous string.

Sorensen-Dice is better because it is token based, that is, it treats the individual websites as individual
items or tokens. Using set similarity methods, the logic is to �ind the common tokens and divide them by
the total number of tokens present by combining both sets. It doesn’t take the order into account, so we
must go one better.

M Measure which looks at both the token overlap and the order of the tokens, that is, weighting the
order tokens earlier (i.e., the higher ranking sites/tokens) more than the later tokens. There is no API for
this unfortunately, so we wrote the function for you here:

import py_stringmatching as sm
ws_tok = sm.WhitespaceTokenizer()

Only compare the top k_urls results:

def serps_similarity(serps_str1, serps_str2, k=15):



    denom = k+1
    norm = sum([2*(1/i - 1.0/(denom)) for i in range(1, denom)])
    #use to tokenize the URLs
    ws_tok = sm.WhitespaceTokenizer()
    #keep only first k URLs
    serps_1 = ws_tok.tokenize(serps_str1)[:k]
    serps_2 = ws_tok.tokenize(serps_str2)[:k]
    #get positions of matches
    match = lambda a, b: [b.index(x)+1 if x in b else None for x in a]
    #positions intersections of form [(pos_1, pos_2), ...]
    pos_intersections = [(i+1,j) for i,j in enumerate(match(serps_1,
serps_2)) if j is not None]
    pos_in1_not_in2 = [i+1 for i,j in enumerate(match(serps_1, serps_2)) if
j is None]
    pos_in2_not_in1 = [i+1 for i,j in enumerate(match(serps_2, serps_1)) if
j is None]

    a_sum = sum([abs(1/i -1/j) for i,j in pos_intersections])
    b_sum = sum([abs(1/i -1/denom) for i in pos_in1_not_in2])
    c_sum = sum([abs(1/i -1/denom) for i in pos_in2_not_in1])

    intent_prime = a_sum + b_sum + c_sum
    intent_dist = 1 - (intent_prime/norm)
    return intent_dist

Apply the function:

matched_serps['si_simi'] = matched_serps.apply(lambda x:
serps_similarity(x.serp_string, x.serp_string_b), axis=1)
matched_serps[["keyword", "keyword_b", "si_simi"]]

This is the resulting dataframe:



Before sorting the keywords into topic groups, let’s add search volumes for each. This could be an imported
table like the following one called “keysv_df”:

keysv_df

This results in the following:



Let’s now join the data. What we’re doing here is giving Python the ability to group keywords according to
SERP similarity and name the topic groups according to the keyword with the highest search volume.

Group keywords by search intent according to a similarity limit. In this case, keyword search results
must be 40% or more similar. This is a number based on trial and error of which the right number can vary
by the search space, language, or other factors.

simi_lim = 0.4

Append topic vols:

keywords_crossed_vols = serps_compared.merge(keysv_df, on = 'keyword', how =
'left')
keywords_crossed_vols = keywords_crossed_vols.rename(columns = {'keyword':
'topic', 'keyword_b': 'keyword', 'search_volume': 'topic_volume'})

Append keyword vols:

keywords_crossed_vols = keywords_crossed_vols.merge(keysv_df, on =



'keyword', how = 'left')

Simulate si_simi:

#keywords_crossed_vols['si_simi'] =
np.random.rand(len(keywords_crossed_vols.index))
keywords_crossed_vols.sort_values('topic_volume', ascending = False)

Strip the dataframe of NAN:

keywords_filtered_nonnan = keywords_crossed_vols.dropna()

We now have the potential topic name, keyword SERP similarity, and search volumes of each. You’ll note
the keyword and keyword_b have been renamed to topic and keyword, respectively. Now we’re going to
iterate over the columns in the dataframe using list comprehensions.

List comprehension is a technique for looping over lists. We applied it to the Pandas dataframe because
it’s much quicker than the .iterrows() function. Here it goes.

Add a dictionary comprehension to create numbered topic groups from keywords_�iltered_nonnan:

# {1: [k1, k2, ..., kn], 2: [k1, k2, ..., kn], ..., n: [k1, k2, ..., kn]}

Convert the top names into a list:

queries_in_df = list(set(keywords_filtered_nonnan.topic.to_list()))

Set empty lists and dictionaries:

topic_groups_numbered = {}
topics_added = []

De�ine a function to �ind the topic number:

def latest_index(dicto):
    if topic_groups_numbered == {}:
        i = 0
    else:
        i = list(topic_groups_numbered)[-1]
    return i

De�ine a function to allocate keyword to topic:

def find_topics(si, keyw, topc):
    i = latest_index(topic_groups_numbered)
    if (si >= simi_lim) and (not keyw in topics_added) and (not topc in
topics_added):
        #print(si, ', kw=' , keyw,', tpc=', topc,', ', i,', ',
topic_groups_numbered)
        i += 1
        topics_added.extend([keyw, topc])
        topic_groups_numbered[i] = [keyw, topc]
    elif si >= simi_lim and (keyw in topics_added) and (not topc in
topics_added):
        #print(si, ', kw=' , keyw,', tpc=', topc,', ', i,', ',
topic_groups_numbered)
        j = [key for key, value in topic_groups_numbered.items() if keyw in
value]
        topics_added.extend(topc)
        topic_groups_numbered[j[0]].append(topc)



    elif si >= simi_lim and (not keyw in topics_added) and (not topc in
topics_added):
        #print(si, ', kw=' , keyw,', tpc=', topc,', ', i,', ',
topic_groups_numbered)
        j = list(mydict.keys())[list(mydict.values()).index(keyw)]
        topic_groups_numbered[j[0]].append(topc)

The list comprehension will now apply the function to group keywords into clusters:

[find_topics(x, y, z) for x, y, z in zip(keywords_filtered_nonnan.si_simi,
keywords_filtered_nonnan.keyword,
 keywords_filtered_nonnan.topic)]
topic_groups_numbered

This results in the following:

{1: ['easy access savings',
  'savings account',
  'savings accounts uk',
  'savings rates',
  'online savings account',
  'online savings account',
  'online savings account'],
 2: ['isa account', 'isa', 'isa savings', 'isa savings'],
 3: ['kids savings account', 'child savings account'],
 4: ['best isa rates',
  'cash isa',
  'fixed rate isa',
  'fixed rate isa',
  'isa rates',
  'isa rates',
  'isa rates'],
 5: ['savings account interest rate',
  'savings accounts uk',
  'online savings account'],
 6: ['easy access savings account', 'savings rates', 'online savings
account'],
 7: ['cash isa rates', 'fixed rate isa', 'isa rates'],
 8: ['isa interest rates', 'isa rates'],
 9: ['fixed rate savings', 'fixed rate bonds', 'online savings account']}

The preceding results are statements printing out what keywords are in which topic group. We do this
to make sure we don’t have duplicates or errors, which is crucial for the next step to perform properly. Now
we’re going to convert the dictionary into a dataframe so you can see all of your keywords grouped by
search intent:

topic_groups_lst = []
for k, l in topic_groups_numbered.items():
    for v in l:
        topic_groups_lst.append([k, v])

topic_groups_dictdf = pd.DataFrame(topic_groups_lst, columns=
['topic_group_no', 'keyword'])
topic_groups_dictdf

This results in the following:



As you can see, the keywords are grouped intelligently, much like a human SEO analyst would group these,
except these have been done at scale using the wisdom of Google which is distilled from its vast number of
users. Name the clusters:

topic_groups_vols = topic_groups_dictdf.merge(keysv_df, on = 'keyword', how
= 'left')

def highest_demand(df):
    df = df.sort_values('search_volume', ascending = False)
    del df['topic_group_no']
    max_sv = df.search_volume.max()
    df = df.loc[df.search_volume == max_sv]
    return df

topic_groups_vols_keywgrp = topic_groups_vols.groupby('topic_group_no')
topic_groups_vols_keywgrp.get_group(1)

Apply and combine:



high_demand_topics =
topic_groups_vols_keywgrp.apply(highest_demand).reset_index()
del high_demand_topics['level_1']
high_demand_topics = high_demand_topics.rename(columns = {'keyword':
'topic'})

def shortest_name(df):
    df['k_len'] = df.topic.str.len()
    min_kl = df.k_len.min()
    df = df.loc[df.k_len == min_kl]
    del df['topic_group_no']
    del df['k_len']
    del df['search_volume']
    return df

high_demand_topics_spl = high_demand_topics.groupby('topic_group_no')

Apply and combine:

named_topics = high_demand_topics_spl.apply(shortest_name).reset_index()
del named_topics['level_1']

Name topic numbered keywords:

topic_keyw_map = pd.merge(named_topics, topic_groups_dictdf, on =
'topic_group_no', how = 'left')
topic_keyw_map

The resulting table shows that we now have keywords clustered by topic:



Let’s add keyword search volumes:

topic_keyw_vol_map = pd.merge(topic_keyw_map, keysv_df, on = 'keyword', how
= 'left')
topic_keyw_vol_map

This results in the following:



This is really starting to take shape, and you can quickly see opportunities emerging.

SERP	Competitor	Titles
If you don’t have much Google Search Console data or Google Ads data to mine, then you may need to resort
to your competitors. You may or may not want to use third-party keyword research tools such as SEMRush.
And you don’t have to.

Tools like SEMRush, Keyword.io, etc., certainly have a place in the SEO industry. In the absence of any
other data, they are a decent ready source of intelligence on what search queries generate relevant traf�ic.

However, some work will need to be done in order to weed out the noise and extract high value phrases
– assuming a competitive market. Otherwise, if your website (or niche) is so new in terms of what it offers
that there’s insuf�icient demand (that has yet to be created by advertising and PR to generate nonbrand
searches), then these external tools won’t be as valuable. So, our approach will be to
1.

Crawl your own website  
2.

Filter and clean the data for sections covering only what you sell 
3.

Extract keywords from your site’s title tags  
4.

Filter using SERPs data (next section)  
Filter	and	Clean	the	Data	for	Sections	Covering	Only	What	You	Sell



The required data for this exercise is to literally take a site auditor5 and crawl your website. Let’s assume
you’ve exported the crawl data with just the columns: URL and title tag; we’ll import and clean:

import pandas as pd
import numpy as np

crawl_import_df = pd.read_csv('data/crawler-filename.csv')
crawl_import_df

This results in the following:

The preceding result shows the dataframe of the crawl data we’ve just imported. We’re most interested in
live indexable6 URLs, so let’s �ilter and select the page_title and URL columns:

titles_urls_df = crawl_import_df.loc[crawl_import_df.indexable == True]
titles_urls_df = titles_urls_df[['page_title', 'url']]
titles_urls_df

This results in the following:

Now we’re going to clean the title tags to make these nonbranded, that is, remove the site name and the
magazine section.

titles_urls_df['page_title'] = titles_urls_df.page_title.str.replace(' -



Saga', '')
titles_urls_df =
titles_urls_df.loc[~titles_urls_df.url.str.contains('/magazine/')]
titles_urls_df

This results in the following:

We now have 349 rows, so we will query some of the keywords to illustrate the process.

Extract	Keywords	from	the	Title	Tags
We now desire to extract keywords from the page title in the preceding dataframe. A typical data science
approach would be to break down the titles into all kinds of combinations and then do a frequency count,
maybe weighted by ranking.

Having tried it, we wouldn’t recommend this approach; it’s overkill and there is probably not enough
data to make it worthwhile. A more effective and simpler approach is to break down the titles by
punctuation marks. Why? Because humans (or probably some AI nowadays) wrote those titles, so these are
likely to be natural breakpoints for target search phrases.

Let’s try it; break the titles into n grams:

pd.set_option('display.max_rows', 1000)
serps_ngrammed = filtered_serps_df.set_index(["keyword", "rank_absolute"])\
                 .apply(lambda x: x.str.split('[-,|?()&:;\
[\]=]').explode())\
                 .dropna()\
                 .reset_index()
serps_ngrammed.head(10)

This results in the following:



Courtesy of the explode function, the dataframe has been unnested such that we can see the keyword rows
expanded for the different text previously within the same title and conjoined by the punctuation mark.

Filter	Using	SERPs	Data
Now all we have to do is perform a frequency count of the top three titles and then �ilter for any that appear
three times or more:

serps_ngrammed_grp = serps_ngrammed.groupby(['keyword', 'title'])
keyword_ideas_df =
serps_ngrammed_grp.size().reset_index(name='freq').sort_values(['keyword',
'freq'], ascending = False)
keyword_ideas_df = keyword_ideas_df[keyword_ideas_df.freq > 2]
keyword_ideas_df = keyword_ideas_df[keyword_ideas_df.title.str.contains('[a-
z]')]
keyword_ideas_df = keyword_ideas_df.rename(columns = {'title':
'keyword_idea'})
keyword_ideas_df

This results in the following:



1

2

3

4

5

6

Eh voila, the preceding result shows a dataframe of keywords obtained from the SERPs. Most of it makes
sense and can now be added to your list of keywords for serious consideration and tracking.

Summary
This chapter has covered data-driven keyword research, enabling you to

Find standout keywords from GSC data
Obtain trend data from Google Trends
Forecast future organic traf�ic using time series techniques
Cluster keywords by search intent
Find keywords from your competitors using SERPs data

In the next chapter, we will cover the mapping of those keywords to URLs.

Footnotes
In 2006, AOL shared click-through rate data based upon over 35 million search queries, and since then it has inspired numerous models to try and

estimate the click-through rate (CTR) by search engine ranking position. That is, for every 100 people searching for “hotels in New York,” 30% (for
example) click on the position 1 ranking, with just 16% clicking on position 2 (hence the importance of achieving the top ranked position, in order
to, effectively, double your traf�ic (for that keyword))

 
Seasonal Autoregressive Integrated Moving Average

 
Search Engine Results Pages (SERP)

 
Available at https://dataforseo.com/apis/serp-api/

 
Like Screaming Frog, OnCrawl, or Botify, for instance

 
That is, pages with a 200 HTTP response that do block search indexing with “noindex”

 

https://dataforseo.com/apis/serp-api/
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Technical SEO mainly concerns the interaction of search engines and websites such that
Website content is made discoverable by search engines.
The priority of content is made apparent to search engines implied by its proximity to the home page.
Search engine resources are conserved to access content (known as crawling) intended for search result
inclusion.
Extract the content meaning from those URLs again for search result inclusion (known as indexing).

In this chapter, we’ll look at how data-driven approach can be taken toward improving technical SEO in
the following manner:
Modeling	page	authority: This is useful for helping fellow SEO and non-SEOs understand the impact of
technical SEO changes.
Internal	link	optimization: To improve the use of internal links used to make content more discoverable
and help signal to search engines the priority of content.
Core	Web	Vitals	(CWV): While the bene�its to the UX are often lauded, there are ranking boost bene�its to
an improved CWV because of the conserved search engine resources used to extract content from a web
page.

By no means will we claim that this is the �inal word on data-driven SEO from a technical perspective.
What we will do is expose data-driven ways of solving technical SEO issues using some data science such as
distribution analysis.

Where	Data	Science	Fits	In
An obvious challenge of SEO is deciding which pages should be made accessible to the search engines and
users and which ones should not. While many crawling tools provide visuals of the distributions of pages by
site depth, etc., it never hurts to use data science, which we will go into more detail and complexity, which
will help you

Optimize internal links
Allocate keywords to pages based on the copy
Allocate parent nodes to the orphaned URLs

Ultimately, the preceding list will help you build better cases for getting technical recommendations
implemented.

Modeling	Page	Authority
Technical optimization involves recommending changes that often make URLs nonindexable or
canonicalized (for a number of reasons such as duplicate content). These changes are recommended with
the aim of consolidating page authority onto URLs which will remain eligible for indexing.

The following section aims to help data-driven SEO quantify the bene�icial extra page authority. The
approach will be to
1. Filter in web pages

https://doi.org/10.1007/978-1-4842-9175-7_3


 
2.

Examine the distribution of authority before optimization  
3.

Calculate the new distribution (to quantify the incremental page authority following a decision on
which URLs will no longer be made indexable, making their authority available for reallocation)

 
First, we need to load the necessary packages:

import re
import time
import random
import pandas as pd
import numpy as np
import datetime
import requests
import json
from datetime import timedelta
from glob import glob
import os
from client import RestClient # If using the Data For SEO API
from textdistance import sorensen_dice
from plotnine import *
import matplotlib.pyplot as plt
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
import uritools
from urllib.parse import urlparse
import tldextract

pd.set_option('display.max_colwidth', None)
%matplotlib inline

Set variables:

root_domain = 'boundlesshq.com'
hostdomain = 'www.boundlesshq.com'
hostname = 'boundlesshq'
full_domain = 'https://www.boundlesshq.com'
client_name = 'Boundless'
audit_monthyear = 'jul_2022'

Import the crawl data from the Sitebulb desktop crawler. Screaming Frog or any other site crawling
software can be used; however, the column names may differ:

crawl_csv =
pd.read_csv('data/boundlesshq_com_all_urls__excluding_uncrawled__filtered.csv'

Clean the column names using a list comprehension:

crawl_csv.columns =
[col.lower().replace('.','').replace('(','').replace(')','').replace('
','_')
                     for col in crawl_csv.columns]

crawl_csv

Here is the result of crawl_csv:



The dataframe is loaded into a Pandas dataframe. The most important �ields are as follows:
url: To detect patterns for noindexing and canonicalizing
ur: URL Rating, Sitebulb’s in-house metric for measuring internal page authority
content_type: For �iltering
passes_pagerank: So we know which pages have authority
indexable: Eligible for search engine index inclusion

Filtering	in	Web	Pages
The next step is to �ilter in actual web pages that belong to the site and are capable of passing authority:

crawl_html = crawl_csv.copy()
crawl_html = crawl_html.loc[crawl_html['content_type'] == 'HTML']
crawl_html = crawl_html.loc[crawl_html['host'] == root_domain]
crawl_html = crawl_html.loc[crawl_html['passes_pagerank'] == 'Yes']

crawl_html

The dataframe has been reduced to 309 rows. For ease of data handling, we’ll select some columns:

crawl_select = crawl_html[['url', 'ur', 'crawl_depth', 'crawl_source',
'http_status_code', 'indexable',
                 'indexable_status', 'passes_pagerank', 'total_impressions',
'first_parent_url', 'meta_robots_response']].copy()



Examine	the	Distribution	of	Authority	Before	Optimization
It is useful for groupby aggregation and counting:

crawl_select['project'] = client_name
crawl_select['count'] = 1

Let’s get some quick stats:

print(crawl_select['ur'].sum(),
crawl_select['ur'].sum()/crawl_select.shape[0])

10993 35.57605177993528

URLs on this site have an average page authority level (measured as UR). Let’s look at some further
stats, indexable and nonindexable pages. We’ll dimension on (I) indexable and (II) passes pagerank to sum
the number of URLs and UR (URL Rating):

overall_pagerank_agg = crawl_select.groupby(['indexable',
                                         'passes_pagerank']).agg({'count':
'sum',
                                                                  'ur':
'sum'}).reset_index()

Then we derive the page authority per URL by dividing the total UR by the total number of URLs:

overall_pagerank_agg['PA'] = overall_pagerank_agg['ur'] /
overall_pagerank_agg['count']
overall_pagerank_agg

This results in the following:

We see that there are 32 nonindexable URLs with a total authority of 929 that could be consolidated to the
indexable URLs.

There are some more stats, this time analyzed by site level purely out of curiosity:

site_pagerank_agg = crawl_select.groupby(['indexable',
                                          'crawl_depth']).agg({'count':
'sum',
                                                               'ur':
'sum'}).reset_index()
site_pagerank_agg['PA'] = site_pagerank_agg['ur'] /
site_pagerank_agg['count']

site_pagerank_agg

This results in the following:



Most of the URLs that have the authority for reallocation are four clicks away from the home page.
Let’s visualize the distribution of the authority preoptimization, using the geom_histogram function:

pageauth_dist_plt = (
    ggplot(crawl_select, aes(x = 'ur')) +
    geom_histogram(alpha = 0.7, fill = 'blue', bins = 20) +
    labs(x = 'Page Authority', y = 'URL Count') +
    theme(legend_position = 'none', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

pageauth_dist_plt.save(filename = 'images/1_pageauth_dist_plt.png',
                             height=5, width=8, units = 'in', dpi=1000)
pageauth_dist_plt

As we’d expect from looking at the stats computed previously, most of the pages have between 25 and
50 UR, with the rest spread out (Figure 3-1).



Figure	3-1. Histogram plot showing URL count of URL Page Authority scores

Calculating	the	New	Distribution
With the current distribution examined, we’ll now go about quantifying the new page authority distribution
following optimization.

We’ll start by getting a table of URLs by the �irst parent URL and the URL’s UR values which will be our
mapping for how much extra authority is available:

parent_pa_map = crawl_select[['first_parent_url', 'ur']].copy()
parent_pa_map = parent_pa_map.rename(columns = {'first_parent_url': 'url' ,
'ur': 'extra_ur'})

parent_pa_map

This results in the following:



The table shows all the parent URLs and their mapping.
The next step is to mark pages that will be noindexed, so we can reallocate their authority:

crawl_optimised = crawl_select.copy()

Create a list of URL patterns for noindex:

reallocate_conds = [
    crawl_optimised['url'].str.contains('/page/[0-9]/'),
    crawl_optimised['url'].str.contains('/country/')
]

Values if the URL pattern conditions are met.

reallocate_vals = [1, 1]

The reallocate column uses the np.select function to mark URLs for noindex. Any URLs not for noindex
are marked as “0,” using the default parameter:

crawl_optimised['reallocate'] = np.select(reallocate_conds, reallocate_vals,
default = 0)

crawl_optimised

This results in the following:

The reallocate column is added so we can start seeing the effect of the reallocation, that is, the potential
upside of technical optimization.

As usual, a groupby operation by reallocate and the average PA are calculated:

reallocate_agg = crawl_optimised.groupby('reallocate').agg({'count': sum,
'ur': sum}).reset_index()



reallocate_agg['PA'] = reallocate_agg['ur'] / reallocate_agg['count']
reallocate_agg

This results in the following:

So we’ll be actually reallocating 681 UR from the noindex URLs to the 285 indexable URLs. These noindex
URLs have an average UR of 28.

We �ilter the URLs just for the ones that will be noindexed to help us in determining what the extra page
authority will be:

no_indexed = crawl_optimised.loc[crawl_optimised['reallocate'] == 1]

We aggregate by the �irst parent URL (the parent node) for the total URLs within and their URL, because
the UR is likely to be reallocated to the remaining indexable URLs that share the same parent node:

no_indexed_map = no_indexed.groupby('first_parent_url').agg({'count': 'sum',
'ur': sum}).reset_index()

add_ur is a new column created representing the additional authority as a result of the optimization.
This is the total UR divided by the number of URLs:

no_indexed_map['add_ur'] = (no_indexed_map['ur'] /
no_indexed_map['count']).round(0)

Drop columns not required for joining later:

no_indexed_map.drop(['ur', 'count'], inplace = True,  axis = 1)
no_indexed_map

This results in the following:

The preceding table will be merged into the indexable URLs by the �irst parent URL.
Filter the URLs just for the indexable and add more authority as a result of the noindexing reallocate

URLs:



crawl_new = crawl_optimised.copy()
crawl_new = crawl_new.loc[crawl_new['reallocate'] == 0]

Join the no_indexed_map to get the amount of authority to be added:

crawl_new = crawl_new.merge(no_indexed_map, on = 'first_parent_url', how =
'left')

Often, when joining data, there will be null values for �irst parent URLs not in the mapping. np.where() is
used to replace those null values with zeros. This enables further data manipulation to take place as you’ll
see shortly.

crawl_new['add_ur'] = np.where(crawl_new['add_ur'].isnull(), 0,
crawl_new['add_ur'])

New_ur is the new authority score calculated by adding ur to add_ur:

crawl_new['new_ur'] = crawl_new['ur'] + crawl_new['add_ur']

crawl_new

This results in the following:

The indexable URLs now have their authority scores post optimization, which we’ll visualize as follows:

pageauth_newdist_plt = (
    ggplot(crawl_new, aes(x = 'new_ur')) +
    geom_histogram(alpha = 0.7, fill = 'lightgreen', bins = 20) +
    labs(x = 'Page Authority', y = 'URL Count') +
    theme(legend_position = 'none', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)



pageauth_newdist_plt.save(filename = 'images/2_pageauth_newdist_plt.png',
                             height=5, width=8, units = 'in', dpi=1000)
pageauth_newdist_plt

The pageauth_newdist_plt in Figure 3-2 shows the distribution of page-level authority (page authority).

Figure	3-2 Histogram of the distribution of page-level authority (page authority)

The impact is noticeable, as we see most pages are above 60 UR post optimization, should the
implementation move forward.

There are some quick stats to con�irm:

new_pagerank_agg = crawl_new.groupby(['reallocate']).agg({'count': 'sum',
                                                          'ur': 'sum',
                                                          'new_ur':
'sum'}).reset_ex()

new_pagerank_agg['PA'] = new_pagerank_agg['new_ur'] /
new_pagerank_agg['count']

print(new_pagerank_agg)

  reallocate  count     ur   new_ur    PA
0           0    285  10312  16209.0  57.0

The average page authority is now 57 vs. 36, which is a signi�icant improvement. While this method is
not an exact science, it could help you to build a case for getting your change requests for technical SEO
�ixes implemented.

Internal	Link	Optimization
Search engines are highly dependent on links in order to help determine the relative importance of pages
within a website. That’s because search engines work on the basis of assigning probability that content will
be found by users at random based on the random surfer concept. That is, a content is more likely to be
discovered if there are more links to the content.

If the content has more inbound links, then search engines also assume the content has more value,
having earned more links.



Search engines also rely on the anchor text to signal what the hyperlinked URL’s content will be about
and therefore its relevance to keywords.

Thus, for SEO, internal links play a key role in website optimization, helping search engines decide which
pages on the site are important and their associated keywords.

Here, we shall provide methods to optimize internal links using some data science, which will cover
1.

Distributing authority by site level  
2.

Distributing authority by external page authority accrued from external sites 
3.

Anchor text

import pandas as pd
import numpy as np
from textdistance import sorensen_dice
from plotnine import *
import matplotlib.pyplot as plt
from mizani.formatters import comma_format

target_name = 'ON24'
target_filename = 'on24'
website = 'www.on24.com'

 

The link data is sourced from the Sitebulb auditing software which is being imported along with making
the column names easier to work with:

link_raw = pd.read_csv('data/'+ client_filename + '_links.csv')
link_data = link_raw.copy()

link_data.drop('Unnamed: 13', axis = 1, inplace = True)

link_data.columns =
[col.lower().replace('.','').replace('(','').replace(')','').replace('
','_')
                     for col in link_data.columns]

link_data

The link dataframe shows us a list of links in terms of
Referring	URL: Where they are found



Target	URL: Where they point to
Referring	URL	Rank	UR: The page authority of the referring page
Target	URL	Rank	UR: The page authority of the target page
Anchor	text: The words used in the hyperlink
Location: Where the link can be found

Let’s import the crawl data, also sourced from Sitebulb:

crawl_data = pd.read_csv('data/'+ client_filename + '_crawl.csv')

crawl_data.drop('Unnamed: 103', axis = 1, inplace = True)

crawl_data.columns =
[col.lower().replace('.','').replace('(','').replace(')','').replace('
','_')
                     for col in crawl_data.columns]

crawl_data

This results in the following:

So we have the usual list of URLs and how they were found (crawl source) with other features spanning over
100 columns.

As you’d expect, the number of rows in the link data far exceeds the crawl dataframe as there are many
more links than pages!

Import the external inbound link data:

ahrefs_raw = pd.read_csv('data/'+ client_filename + '_ahrefs.csv')

ahrefs_raw.columns =
[col.lower().replace('.','').replace('(','').replace(')','').replace('
','_')
                     for col in ahrefs_raw.columns]

ahrefs_raw

This results in the following:



There are over 210,000 URLs with backlinks, which is very nice! There’s quite a bit of data, so let’s simplify a
little by removing columns and renaming some columns so we can join the data later:

ahrefs_df = ahrefs_raw[['page_url', 'url_rating_desc', 'referring_domains']]
ahrefs_df = ahrefs_df.rename(columns = {'url_rating_desc': 'page_authority',
'page_url': 'url'})
ahrefs_df

This results in the following:



Now we have the data in its simpli�ied form which is important because we’re not interested in the detail of
the links but rather the estimated page-level authority that they import into the target website.

By	Site	Level
With the data imported and cleaned, the analysis can now commence.

We’re always curious to see how many URLs we have at different site levels. We’ll achieve this with a
quick groupby aggregation function:

redir_live_urls.groupby(['crawl_depth']).size()

This results in the following:

crawl_depth
0             1
1            70
10            5
11            1
12            1
13            2
14            1
2           303
3           378
4           347
5           253
6           194
7            96
8            33
9            19
Not Set    2351
dtype: int64

We can see how Python is treating the crawl depth as a string character rather than a numbered
category, which we can �ix shortly.

Most of the site URLs can be found in the site depths of 2 to 6. There are over 2351 orphaned URLs,
which means these won’t inherit any authority unless they have backlinks.

We’ll now �ilter for redirected and live links:

redir_live_urls = crawl_data[['url', 'crawl_depth', 'http_status_code',
'indexable', 'no_internal_links_to_url', 'host', 'title']]

The dataframe is �iltered to include URLs that are indexable:

redir_live_urls = redir_live_urls =
redir_live_urls.loc[redir_live_urls['indexable'] == 'Yes']

Crawl depth is set as a category and ordered so that Python treats the column variable as a number as
opposed to a string character type:

redir_live_urls['crawl_depth'])
redir_live_urls['crawl_depth'] =
redir_live_urls['crawl_depth'].astype('category')
redir_live_urls['crawl_depth'] =
redir_live_urls['crawl_depth'].cat.reorder_categories(['0', '1', '2', '3',
'4',
 '5', '6', '7', '8', '9',
 '10', 'Not Set'
            ])
redir_live_urls = redir_live_urls.loc[redir_live_urls.host == website]



redir_live_urls.drop('host', axis = 1, inplace = True)

redir_live_urls

This results in the following:

Let’s look at the number of URLs by site level.

redir_live_urls.groupby(['crawl_depth']).size()

crawl_depth
0             1
1            66
2           169
3           280
4           253
5           201
6           122
7            64
8            17
9             6
10            1
Not Set    2303
dtype: int64

Note how the size has dropped slightly to 2303 URLs. The 48 nonindexable URLs were probably
paginated pages.

Let’s visualize the distribution:

from plotnine import *
import matplotlib.pyplot as plt
pd.set_option('display.max_colwidth', None)
%matplotlib inline



# Distribution of internal links to URL by site level
ove_intlink_dist_plt = (ggplot(redir_live_urls, aes(x =
'no_internal_links_to_url')) +
                    geom_histogram(fill = 'blue', alpha = 0.6, bins = 7) +
                    labs(y = '# Internal Links to URL') +
                    theme_classic() +
                    theme(legend_position = 'none')
                   )

ove_intlink_dist_plt.save(filename =
'images/1_overall_intlink_dist_plt.png',
                      height=5, width=5, units = 'in', dpi=1000)
ove_intlink_dist_plt

The plot ove_intlink_dist_plt in Figure 3-3 is a histogram of the number of internal links to a URL.

Figure	3-3 Histogram of the number of internal links to a URL

The distribution is negatively skewed such that most pages have close to zero links. This would be of
some concern to an SEO manager.

While the overall distribution gives one view, it would be good to deep dive into the distribution of
internal links by crawl depth:

redir_live_urls.groupby('crawl_depth').agg({'no_internal_links_to_url':
['describe']}).sort_values('crawl_depth')

This results in the following:



The table describes the distribution of internal links by crawl depth or site level. Any URL that is 3+ clicks
away from the home page can expect two internal links on average. This is probably the blog content as the
marketing team produces a lot of it.

To visualize it graphically

from plotnine import *
import matplotlib.pyplot as plt
pd.set_option('display.max_colwidth', None)
%matplotlib inline

intlink_dist_plt = (ggplot(redir_live_urls, aes(x = 'crawl_depth', y =
'no_internal_links_to_url')) +
                    geom_boxplot(fill = 'blue', alpha = 0.8) +
                    labs(y = '# Internal Links to URL', x = 'Site Level') +
                    theme_classic() +
                    theme(legend_position = 'none')
                   )

intlink_dist_plt.save(filename = 'images/1_intlink_dist_plt.png', height=5,
width=5, units = 'in', dpi=1000)
intlink_dist_plt

The plot intlink_dist_plt in Figure 3-4 is a histogram of the number of internal links to a URL by site level.



Figure	3-4 Box plot distributions of the number of internal links to a URL by site level

As suspected, the most variation is in the �irst level directly below the home page, with very little
variation beyond.

However, we can compare the variation between site levels for content in level 2 and beyond. For a quick
peek, we’ll use a logarithmic scale for the number of internal links to a URL:

from mizani.formatters import comma_format

intlink_dist_plt = (ggplot(redir_live_urls, aes(x = 'crawl_depth', y =
'no_internal_links_to_url')) +
                    geom_boxplot(fill = 'blue', alpha = 0.8) +
                    labs(y = '# Internal Links to URL', x = 'Site Level') +
                    scale_y_log10(labels = comma_format()) +
                    theme_classic() +
                    theme(legend_position = 'none')
                   )

intlink_dist_plt.save(filename = 'images/1_log_intlink_dist_plt.png',
height=5, width=5, units = 'in', dpi=1000)
intlink_dist_plt

The picture is clearer and more insightful, as we can see how much better and varied the distribution of
the lower site levels compared to each other (Figure 3-5).



Figure	3-5 Box plot distribution of the number of internal links by site level with logarized vertical axis

For example, it’s much more obvious that the median number of inbound internal links for pages on site
level 2 is much higher than the lower levels.

It’s also very obvious that the variation in internal inbound links for pages in site levels 3 and 4 is higher
than those in levels 5 and 6.

Remember though the preceding example was achieved using a log scale of the same input variable.
What we’ve learned here is that having a new variable which is taking a log of the internal links would

yield a more helpful picture to compare levels from 2 to 10.
We’ll achieve this by creating a new column variable “log_intlinks” which is a log of the internal link

count. To avoid negative in�inity values from taking a log of zero, we’ll add 0.01 to the calculation:

redir_live_urls['log_intlinks'] =
np.log2(redir_live_urls['no_internal_links_to_url'] + .01)

Now we'll plot using the new logarized variable:

intlink_dist_plt = (ggplot(redir_live_urls, aes(x = 'crawl_depth', y =
'log_intlinks')) +
                    geom_boxplot(fill = 'blue', alpha = 0.8) +
                    labs(y = '# Log Internal Links to URL', x = 'Site
Level') +
                    theme_classic() +
                    theme(legend_position = 'none')
                   )

intlink_dist_plt.save(filename = 'images/1c_loglinks_dist_plt.png',
height=5, width=5, units = 'in', dpi=1000)
intlink_dist_plt

The intlink_dist_plt plot (Figure 3-6) is quite similar to the logarized scale, only this time the numbers
are easier to read because we’re using normal scales for the vertical axis. The comparative averages and



variations are easier to compare.

Figure	3-6 Box plot distributions of logarized internal links by site level

Site-Level	URLs	That	Are	Underlinked
Now that we know the lay of the land in terms of what the distributions look like at the site depth level,
we’re ready to start digging deeper and see how many URLs are underlinked per site level.

For example, if the 35th percentile number of internal links to a URL is 10 for URLs at a given site level,
how many URLs are below that percentile?

That’s what we aim to �ind out. Why 35th and not 25th? It doesn’t really matter, a low cutoff point just
needs to be picked as the cutoff is arbitrary.

The �irst step is to calculate the averages of internal links for both nonlog and log versions, which will be
joined onto the main dataframe later:

intlink_dist =
redir_live_urls.groupby('crawl_depth').agg({'no_internal_links_to_url':
['mean'],
                                                           'log_intlinks':
['mean']
                                                          }).reset_index()
intlink_dist.columns = ['_'.join(col) for col in
intlink_dist.columns.values]
intlink_dist = intlink_dist.rename(columns =
{'no_internal_links_to_url_mean': 'avg_int_links',
                                              'log_intlinks_mean':
'logavg_int_links',
                                             })
intlink_dist

This results in the following:



The averages are in place by site level. Notice how the log column helps make the range of values between
crawl depths less extreme and skewed, that is, 4239 to 0.06 for the average vs. 12 to –6.39 for the log
average, which makes it easier to normalize the data.

Now we’ll set the lower quantile at 35% for all site levels. This will use a customer function
quantile_lower:

def quantile_lower(x):
    return x.quantile(.35).round(0)

quantiled_intlinks = redir_live_urls.groupby('crawl_depth').agg({'log_intlinks
                                                                 [quantile_low
quantiled_intlinks.columns = ['_'.join(col) for col in quantiled_intlinks.colu
quantiled_intlinks = quantiled_intlinks.rename(columns = {'crawl_depth_': 'cra
                                                          'log_intlinks_quanti
'sd_intlink_lowqua'})
quantiled_intlinks

This results in the following:



The lower quantile stats are set. Quartiles are limited to the 25th percentile, whereas a quantile means the
lower limits can be set to any number, such as 11th, 18th, 24th, etc., which is why we use quantiles instead
of quartiles. The next steps are to join the data to the main dataframe, then we’ll apply a function to mark
URLs that are underlinked for their given site level:

redir_live_urls_underidx = redir_live_urls.merge(quantiled_intlinks, on =
'crawl_depth', how = 'left')

The following function assesses whether the URL has less links than the lower quantile. If yes, then the
value of “sd_int_uidx” is 1, otherwise 0:

def sd_intlinkscount_underover(row):
    if row['sd_intlink_lowqua'] > row['log_intlinks']:
        val = 1
    else:
        val = 0
    return val

redir_live_urls_underidx['sd_int_uidx'] =
redir_live_urls_underidx.apply(sd_intlinkscount_underover, axis=1)

There’s some code to account for “Not Set” which are effectively orphaned URLs. In this instance, we set
these to 1 – meaning they’re underlinked:

redir_live_urls_underidx['sd_int_uidx'] = np.where(redir_live_urls_underidx['c
== 'Not Set', 1,
                                                   redir_live_urls_underidx['s

redir_live_urls_underidx

This results in the following:



The dataframe shows that the column is in place marking underlinked URLs as 1. With the URLs marked,
we’re ready to get an overview of how under-linked the URLs are, which will be achieved by aggregating by
crawl depth and summing the total number of underlinked URLs:

intlinks_agged =
redir_live_urls_underidx.groupby('crawl_depth').agg({'sd_int_uidx': ['sum',
'count']}).reset_index()

The following line tidies up the column names by inserting an underscore using a list comprehension:

intlinks_agged.columns = ['_'.join(col) for col in
intlinks_agged.columns.values]
intlinks_agged = intlinks_agged.rename(columns = {'crawl_depth_':
'crawl_depth'})

To get a proportion (or percentage), we divide the sum by the count and multiply by 100:

intlinks_agged['sd_uidx_prop'] = (intlinks_agged.sd_int_uidx_sum) /
intlinks_agged.sd_int_uidx_count * 100

print(intlinks_agged)

This results in the following:

  crawl_depth  sd_int_uidx_sum  sd_int_uidx_count  sd_uidx_prop
0            0                0                  1      0.000000
1            1               38                 66     57.575758
2            2               67                169     39.644970
3            3               75                280     26.785714
4            4               57                253     22.529644
5            5               31                201     15.422886
6            6                9                122      7.377049
7            7                9                 64     14.062500
8            8                3                 17     17.647059
9            9                2                  6     33.333333
10          10                0                  1      0.000000
11     Not Set             2303               2303    100.000000

So even though the content in levels 1 and 2 have more links than any of the lower levels, they have a
higher proportion of underlinked URLs than any other site level (apart from the orphans in Not Set of



course).
For example, 57% of pages just below the home page are underlinked.
Let’s visualize:

# plot the table
depth_uidx_plt = (ggplot(intlinks_agged, aes(x = 'crawl_depth', y =
'sd_int_uidx_sum')) +
                    geom_bar(stat = 'identity', fill = 'blue', alpha = 0.8)
+
                    labs(y = '# Under Linked URLs', x = 'Site Level') +
                    scale_y_log10() +
                    theme_classic() +
                    theme(legend_position = 'none')
                   )

depth_uidx_plt.save(filename = 'images/1_depth_uidx_plt.png', height=5,
width=5, units = 'in', dpi=1000)
depth_uidx_plt

It’s good to visualize using depth_uidx_plt because we can also see (Figure 3-7) that levels 2, 3, and 4
have the most underlinked URLs by volume.

Figure	3-7 Column chart of the number of internally under-linked URLs by site level

Let’s plot the intlinks_agged table:

depth_uidx_prop_plt = (ggplot(intlinks_agged, aes(x = 'crawl_depth', y =
'sd_uidx_prop')) +
                    geom_bar(stat = 'identity', fill = 'blue', alpha = 0.8)
+
                    labs(y = '% URLs Under Linked', x = 'Site Level') +
                    theme_classic() +
                    theme(legend_position = 'none')
                   )

depth_uidx_prop_plt.save(filename = 'images/1_depth_uidx_prop_plt.png',
height=5, width=5, units = 'in', dpi=1000)
depth_uidx_prop_plt



Plotting depth_uidx_prop_plt (Figure 3-8), we see it just so happens that although level 1 has a lower
volume, the proportion is higher. Intuitively, this is indicative of too many pages being linked from the home
page but unequally.

Figure	3-8 Column chart of the proportion of under internally linked URLs by site level

It’s not a given that URLs in the site level that are underlinked are a problem or perhaps more so by
design. However, they are worth reviewing as perhaps they should be at that site level or they do deserve
more internal links after all.

The following code exports the underlinked URLs to a CSV which can be viewed in Microsoft Excel:

underlinked_urls =
redir_live_urls_underidx.loc[redir_live_urls_underidx.sd_int_uidx == 1]
underlinked_urls = underlinked_urls.sort_values(['crawl_depth',
'no_internal_links_to_url'])
underlinked_urls.to_csv('exports/underlinked_urls.csv')

By	Page	Authority
Inbound links from external websites are a source of PageRank or, if we’re going to be search engine neutral
about it, page authority.

Given that not all pages earn inbound links, it is normally desired by SEOs to have pages without
backlinks crawled more often. So it would make sense to analyze and explore opportunities to redistribute
this PageRank to other pages within the website.

We’ll start by tacking on the AHREFs data to the main dataframe so we can see internal links by page
authority.

intlinks_pageauth = redir_live_urls_underidx.merge(ahrefs_df, on = 'url',
how = 'left')
intlinks_pageauth.head()

This results in the following:



We now have page authority and referring domains at the URL level. Predictably, the home page has a lot of
referring domains (over 3000) and the most page-level authority at 81.

As usual, we’ll perform some aggregations and explore the distribution of the PageRank
(interchangeable with page authority).

First, we’ll clean up the data to make sure we replace null values with zero:

intlinks_pageauth['page_authority'] =
np.where(intlinks_pageauth['page_authority'].isnull(),
                                               0,
intlinks_pageauth['page_authority'])

Aggregate by page authority:

intlinks_pageauth.groupby('page_authority').agg({'no_internal_links_to_url':
['describe']})

This results in the following:



The preceding table shows the distribution of internal links by different levels of page authority.
At the lower levels, most URLs have around two internal links.
A graph will give us the full picture:

# distribution of page_authority
page_authority_dist_plt = (ggplot(intlinks_pageauth, aes(x =
'page_authority')) +
                    geom_histogram(fill = 'blue', alpha = 0.6, bins = 30 ) +
                    labs(y = '# URLs', x = 'Page Authority') +
                    #scale_y_log10() +
                    theme_classic() +
                    theme(legend_position = 'none')
                   )

page_authority_dist_plt.save(filename =
'images/2_page_authority_dist_plt.png',
                             height=5, width=5, units = 'in', dpi=1000)
page_authority_dist_plt

The distribution, shown in page_authority_dist_plt (Figure 3-9), is heavily negatively skewed when
plotting the raw numbers. Most of the site URLs have a PageRank of 15, of which the number of URLs with
higher authority shrinks dramatically. A very high number of URLs have no authority, because they are
orphaned.

Figure	3-9 Distribution of URLs by page authority

Using the log scale, we can see how the higher levels of authority compare:

# distribution of page_authority
page_authority_dist_plt = (ggplot(intlinks_pageauth, aes(x =
'page_authority')) +
                    geom_histogram(fill = 'blue', alpha = 0.6, bins = 30 ) +
                    labs(y = '# URLs (Log)', x = 'Page Authority') +
                    scale_y_log10() +



                    theme_classic() +
                    theme(legend_position = 'none')
                   )

page_authority_dist_plt.save(filename =
'images/2_page_authority_dist_log_plt.png',
                             height=5, width=5, units = 'in', dpi=1000)
page_authority_dist_plt

Suddenly, the view shown by page_authority_dist_plt (Figure 3-10) is more interesting because as
authority increases by an increment of one, there are ten times less URLs than before – a pretty harsh
distribution of PageRank.

Figure	3-10 Distribution plot of URLs by logarized scale

Given this more insightful view, taking a log of “page_authority” to form a new column variable “log_pa”
is justi�ied:

intlinks_pageauth['page_authority'] =
np.where(intlinks_pageauth['page_authority'] == 0, .1,
intlinks_pageauth['page_authority'])
intlinks_pageauth['log_pa'] = np.log2(intlinks_pageauth.page_authority)
intlinks_pageauth.head()



The log_pa column is in place; let’s visualize:

page_authority_trans_dist_plt = (ggplot(intlinks_pageauth, aes(x =
'log_pa')) +
                    geom_histogram(fill = 'blue', alpha = 0.6, bins = 30 ) +
                    labs(y = '# URLs (Log)', x = 'Log Page Authority') +
                    scale_y_log10() +
                    theme_classic() +
                    theme(legend_position = 'none')
                   )

page_authority_trans_dist_plt.save(filename =
'images/2_page_authority_trans_dist_plt.png',
                             height=5, width=5, units = 'in', dpi=1000)
page_authority_trans_dist_plt

Taking a log has compressed the range of PageRank, as shown by page_authority_trans_dist_plt (Figure
3-11), by making it less extreme as the home page has a log_pa value of 6, bringing it closer to the rest of the
site.



Figure	3-11 Distribution of URLs by log page authority

The decimal points will be rounded to make the 3000+ URLs easier to categorize:

intlinks_pageauth['pa_band'] = intlinks_pageauth['log_pa'].apply(np.floor)

# display updated DataFrame
intlinks_pageauth

Page	Authority	URLs	That	Are	Underlinked
With the URLs categorized into PA bands, we want to see if they have less internal links for their authority
level than they should. We’ve set the threshold at 40% so that any URL that has less internal links for their
level of PA will be counted as underlinked.

The choice of 40% is not terribly important at this stage as each website (or market even) is different.
There are more scienti�ic ways of arriving at the optimal threshold, such as analyzing top-ranking



competitors for a search space; however, for now we’ll choose 40% as our threshold.

def quantile_lower(x):
    return x.quantile(.4).round(0)

quantiled_pageau = intlinks_pageauth.groupby('pa_band').agg({'no_internal_link
[quantile_lower]}).reset_index()
quantiled_pageau.columns = ['_'.join(col) for col in quantiled_pageau.columns.
quantiled_pageau = quantiled_pageau.rename(columns = {'pa_band_': 'pa_band',
                                                      'no_internal_links_to_ur
'pa_intlink_lowqua'})
quantiled_pageau

This results in the following:

Going by PageRank, we now have the minimum threshold of inbound internal links we would expect. Time
to join the data and mark the URLs that are underlinked for their authority level:

intlinks_pageauth_underidx = intlinks_pageauth.merge(quantiled_pageau, on =
'pa_band', how = 'left')

def pa_intlinkscount_underover(row):
    if row['pa_intlink_lowqua'] > row['no_internal_links_to_url']:
        val = 1
    else:
        val = 0
    return val

intlinks_pageauth_underidx['pa_int_uidx'] =
intlinks_pageauth_underidx.apply(pa_intlinkscount_underover, axis=1)

This function will allow us to make some aggregations to see how many URLs there are at each
PageRank band and how many are under-linked:

pageauth_agged =
intlinks_pageauth_underidx.groupby('pa_band').agg({'pa_int_uidx': ['sum',
'count']}).reset_index()
pageauth_agged.columns = ['_'.join(col) for col in
pageauth_agged.columns.values]

pageauth_agged['uidx_prop'] = pageauth_agged.pa_int_uidx_sum /
pageauth_agged.pa_int_uidx_count * 100

print(pageauth_agged)

This results in the following:

  pa_band_  pa_int_uidx_sum  pa_int_uidx_count  uidx_prop



0      -4.0                0               1320   0.000000
1       3.0                0               1950   0.000000
2       4.0               77                203  37.931034
3       5.0                4                  9  44.444444
4       6.0                0                  1   0.000000

Most of the underlinked content appears to be those that have the highest page authority, which is
slightly contrary to what the site-level approach suggests (that pages lower down are underlinked). That’s
assuming most of the high authority pages are closer to the home page.

What is the right answer? It depends on what we’re trying to achieve. Let’s continue with more analysis
for now and visualize the authority stats:

# distribution of page_authority
pageauth_agged_plt =
(ggplot(intlinks_pageauth_underidx.loc[intlinks_pageauth_underidx['pa_int_uidx
== 1],
                             aes(x = 'pa_band')) +
                    geom_histogram(fill = 'blue', alpha = 0.6, bins = 10) +
                    labs(y = '# URLs Under Linked', x = 'Page Authority Level'
+
                    theme_classic() +
                    theme(legend_position = 'none')
                   )

pageauth_agged_plt.save(filename = 'images/2_pageauth_agged_hist.png',
                        height=5, width=5, units = 'in', dpi=1000)
pageauth_agged_plt

We see in pageauth_agged_plt (Figure 3-12) that there are almost 80 URLs underlinked at PageRank
level 4 and a few at PageRank level 5. This is quite an abstract concept admittedly.

Figure	3-12 Distribution of under internally linked URLs by page authority level



Content	Type
Perhaps it would be more useful to visualize this by content type just by a “quick and dirty” analysis using
the �irst subdirectory:

intlinks_content_underidx = intlinks_depthauth_underidx.copy()

To get the �irst subfolder, we’ll de�ine a function that allows the operation to continue in case of a fail
(which would happen for the home page URL because there is no subfolder). The k parameter speci�ies the
number of slashes in the URL to �ind the desired folder and parse the subdirectory name:

def get_folder(fp, k=3):
    try:
        return os.path.split(fp)[0].split(os.sep)[k]
    except:
        return 'home'

intlinks_content_underidx['content'] =
intlinks_content_underidx['url'].apply(lambda x: get_folder(x))

Inspect the distribution of links by subfolder:

intlinks_content_underidx.groupby('content').agg({'no_internal_links_to_url':
['describe']})

This results in the following:

Wow, 183 subfolders! That’s way too much for categorical analysis. We could break it down and aggregate it
into fewer categories using the ngram techniques described in Chapter 9; feel free to try.

In any case, it looks like the site architecture is too �lat and could be better structured to be more
hierarchical, that is, more pyramid like.

Also, many of the content folders only have one inbound internal link, so even without the bene�it of data
science, it’s obvious these require SEO attention.



Combining	Site	Level	and	Page	Authority
Perhaps it would be more useful to visualize by combining site level and page authority?

intlinks_depthauth_underidx = intlinks_pageauth_underidx.copy()
intlinks_depthauth_underidx['depthauth_uidx'] = np.where((intlinks_depthauth_u
+
                                                         intlinks_depthauth_un
== 2), 1, 0)

'''intlinks_depthauth_underidx['depthauth_uidx'] =
np.where((intlinks_depthauth_underidx['sd_int_uidx'] == 1) &
                                                         (intlinks_depthauth_u
== 1), 1, 0)'''

depthauth_uidx = intlinks_depthauth_underidx.groupby(['crawl_depth',
'pa_band']).agg({'depthauth_uidx': 'sum'}).reset_index()
depthauth_urls = intlinks_depthauth_underidx.groupby(['crawl_depth', 'pa_band'
'count'}).reset_index()

depthauth_stats = depthauth_uidx.merge(depthauth_urls,
                                                 on = ['crawl_depth', 'pa_band
depthauth_stats['depthauth_uidx_prop'] = (depthauth_stats['depthauth_uidx'] /
depthauth_stats['url']).round(2)
depthauth_stats.sort_values('depthauth_uidx', ascending = False)

This results in the following:

Most of the underlinked URLs are orphaned and have page authority (probably from backlinks).
Visualize to get a fuller picture:

depthauth_stats_plt = (
    ggplot(depthauth_stats,
           aes(x = 'pa_band', y = 'crawl_depth', fill = 'depthauth_uidx')) +
    geom_tile(stat = 'identity', alpha = 0.6) +
    labs(y = '', x = '') +
    theme_classic() +



    theme(legend_position = 'right')
)

depthauth_stats_plt.save(filename = 'images/3_depthauth_stats_plt.png',
                              height=5, width=10, units = 'in', dpi=1000)
depthauth_stats_plt

There we have it, depthauth_stats_plt (Figure 3-13) shows most of the focus should go into the
orphaned URLs (which they should anyway), but more importantly we know which orphaned URLs to
prioritize over others.

Figure	3-13 Heatmap of page authority level, site level, and underlinked URLs

We can also see the extent of the issue. The second highest priority group of underindexed URLs are at
site levels 2, 3, and 4.

Anchor	Texts
If the count and their distribution represent the quantitative aspect of internal links, then the anchor texts
could be said to represent their quality.

Anchor texts signal to search engines and users what content to expect after accessing the hyperlink.
This makes anchor texts an important signal and one worth optimizing.

We’ll start by aggregating the crawl data from Sitebulb to get an overview of the issues:

anchor_issues_agg = crawl_data.agg({'no_anchors_with_empty_href': ['sum'],
                'no_anchors_with_leading_or_trailing_whitespace_in_href': ['su
                'no_anchors_with_local_file': ['sum'],
                'no_anchors_with_localhost': ['sum'],
                'no_anchors_with_malformed_href': ['sum'],
                'no_anchors_with_no_text': ['sum'],
                'no_anchors_with_non_descriptive_text': ['sum'],
                'no_anchors_with_non-http_protocol_in_href': ['sum'],
                'no_anchors_with_url_in_onclick': ['sum'],
                'no_anchors_with_username_and_password_in_href': ['sum'],
                'no_image_anchors_with_no_alt_text': ['sum']
               }).reset_index()

anchor_issues_agg = pd.melt(anchor_issues_agg, var_name=['issues'],
                            value_vars=['no_anchors_with_empty_href',
                                        'no_anchors_with_leading_or_trailing_w
                                        'no_anchors_with_local_file','no_ancho



                                        'no_anchors_with_malformed_href',
'no_anchors_with_no_text',
                                        'no_anchors_with_non_descriptive_text'
                                        'no_anchors_with_non-http_protocol_in_
                                        'no_anchors_with_url_in_onclick',
                                        'no_anchors_with_username_and_password
                                        'no_image_anchors_with_no_alt_text'],
                            value_name='instances'
                           )
anchor_issues_agg

This results in the following:

Over 4000 links with no descriptive anchor text jump out as the most common issue, not to mention the 19
anchors with empty HREF (albeit very low in number).

To visualize

anchor_issues_count_plt = (ggplot(anchor_issues_agg, aes(x =
'reorder(issues, instances)', y = 'instances')) +
                    om_bar(stat = 'identity', fill = 'blue', alpha = 0.6) +
                    labs(y = '# instances of Anchor Text Issues', x = '') +
                    theme_classic() +
                    coord_flip() +
                    theme(legend_position = 'none')
                   )

anchor_issues_count_plt.save(filename =
'images/4_anchor_issues_count_plt.png',
                        height=5, width=5, units = 'in', dpi=1000)
anchor_issues_count_plt

anchor_issues_count_plt (Figure 3-14) visually con�irms the number of internal links with
nondescriptive anchor text.



Figure	3-14 Bar chart of anchor text issues

Anchor	Issues	by	Site	Level
We’ll drill down on the preceding example by site level to get a bit more insight to see where the problems
are happening:

anchor_issues_levels =
crawl_data.groupby('crawl_depth').agg({'no_anchors_with_empty_href': ['sum'],
                'no_anchors_with_leading_or_trailing_whitespace_in_href':
['sum'],
                'no_anchors_with_local_file': ['sum'],
                'no_anchors_with_localhost': ['sum'],
                'no_anchors_with_malformed_href': ['sum'],
                'no_anchors_with_no_text': ['sum'],
                'no_anchors_with_non_descriptive_text': ['sum'],
                'no_anchors_with_non-http_protocol_in_href': ['sum'],
                'no_anchors_with_url_in_onclick': ['sum'],
                'no_anchors_with_username_and_password_in_href': ['sum'],
                'no_image_anchors_with_no_alt_text': ['sum']
               }).reset_index()
anchor_issues_levels.columns = ['_'.join(col) for col in
anchor_issues_levels.columns.values]
anchor_issues_levels.columns = [str.replace(col, '_sum', '') for col in
anchor_issues_levels.columns.values]
anchor_issues_levels.columns = [str.replace(col, 'no_anchors_with_', '') for c
in anchor_issues_levels.columns.values]
anchor_issues_levels = anchor_issues_levels.rename(columns = {'crawl_depth_':
'crawl_depth'})

anchor_issues_levels = pd.melt(anchor_issues_levels, id_vars=['crawl_depth'],
var_name=['issues'],
                            value_vars=['empty_href',
                                        'leading_or_trailing_whitespace_in_hre
                                        'local_file','localhost',
                                        'malformed_href', 'no_text',
                                        'non_descriptive_text',



                                        'non-http_protocol_in_href',
                                        'url_in_onclick',
                                        'username_and_password_in_href',
                                        'no_image_anchors_with_no_alt_text'],
                            value_name='instances'
                           )

print(anchor_issues_levels)

This results in the following:

   crawl_depth                                  issues  instances
111     Not Set                    non_descriptive_text       2458
31      Not Set  leading_or_trailing_whitespace_in_href       2295
104           3                    non_descriptive_text        350
24            3  leading_or_trailing_whitespace_in_href        328
105           4                    non_descriptive_text        307
..          ...                                     ...        ...
85           13                                 no_text          0
84           12                                 no_text          0
83           11                                 no_text          0
82           10                                 no_text          0
0             0                              empty_href          0

[176 rows x 3 columns]

Most of the issues are on orphaned pages followed by URLs three to four levels deep.
To visualize

anchor_levels_issues_count_plt = (ggplot(anchor_issues_levels, aes(x =
'crawl_depth',
                                                                 y =
'issues', fill = 'instances')) +
                    geom_tile() +
                    labs(y = '# instances of Anchor Text Issues', x = '') +
                    scale_fill_cmap(cmap_name='viridis') +
                    theme_classic()
                   )

anchor_levels_issues_count_plt.save(filename =
'images/4_anchor_levels_issues_count_plt.png',
                        height=5, width=5, units = 'in', dpi=1000)
anchor_levels_issues_count_plt

The anchor_levels_issues_count_plt graphic (Figure 3-15) makes it clearer; the technical issues with
anchor text lay with the orphaned pages.



Figure	3-15 Heatmap of site level, anchor text issues, and instances

Anchor	Text	Relevance
Of course, that’s not the only aspect of anchor text that SEOs are interested in. SEOs want to know the extent
of the relevance between the anchor text and the destination URL.

For that task, we’ll use string matching techniques on the Sitebulb link report to measure that relevance
and then aggregate to see the overall picture:

link_df = link_data[['target_url', 'referring_url', 'anchor_text',
'location']]
link_df = link_df.rename(columns = {'target_url':'url'})

Merge with the crawl data using the URL as the primary key and then �ilter for indexable URLs only:

anchor_merge = crawl_data.merge(link_df, on = 'url', how = 'left')
anchor_merge = anchor_merge.loc[anchor_merge['host'] == website]

anchor_merge = anchor_merge.loc[anchor_merge['indexable'] == 'Yes']

anchor_merge['crawl_depth'] = anchor_merge['crawl_depth'].astype('category')
anchor_merge['crawl_depth'] =
anchor_merge['crawl_depth'].cat.reorder_categories(['0', '1', '2', '3', '4',
 '5', '6', '7', '8', '9',
'10', 'Not Set'])

Then we compare the string similarity of the anchor text and title tag of the destination URLs:

anchor_merge['anchor_relevance'] = anchor_merge.loc[:, ['title',
                                                        'anchor_text']].apply
x: sorensen_dice(*x), axis=1)

And any URLs with less than 70% relevance score will be marked as irrelevant under the new column
“irrel_anchors” as a 1.

Why 70%? This is from experience, and you’re more than welcome to try different thresholds.
With Sorensen-Dice, which is not only fast but meets SEO needs for measuring relevance, 70% seems to

be the right limit between relevance and irrelevance, especially when accounting for the site markers in the
title tag string:



anchor_merge['irrel_anchors'] = np.where(anchor_merge['anchor_relevance'] <
.7, 1, 0)

Having a single factor makes it easier to aggregate the entire dataframe by column although there are
alternative methods to this:

anchor_merge['project'] = target_name

anchor_merge

This results in the following:

Because there is a many-to-many relationship between referring pages and destination URLs (i.e., a
destination URL can receive links from multiple URLs, and the former can link to multiple URLs), the
dataframe has expanded to over 350,000 rows from 8611.

Let’s aggregate by counting the number of URLs per referring URL:

anchor_rel_stats_site_agg =
anchor_merge.groupby('project').agg({'irrel_anchors': 'sum'}).reset_index()
anchor_rel_stats_site_agg['total_urls'] = anchor_merge.shape[0]
anchor_rel_stats_site_agg['irrel_anchors_prop'] =
anchor_rel_stats_site_agg['irrel_anchors']
/anchor_rel_stats_site_agg['total_urls']
print(anchor_rel_stats_site_agg)

 project  irrel_anchors  total_urls  irrel_anchors_prop
0    ON24         333946      350643            0.952382

About 95% of anchor texts on this site are irrelevant. How does this compare to their competitors?
That’s your homework.

Let’s go slightly deeper and analyze this by site depth:

anchor_rel_depth_irrels =
anchor_merge.groupby(['crawl_depth']).agg({'irrel_anchors':
'sum'}).reset_index()
anchor_rel_depth_urls =
anchor_merge.groupby(['crawl_depth']).agg({'project':
'count'}).reset_index()
anchor_rel_depth_stats =
anchor_rel_depth_irrels.merge(anchor_rel_depth_urls, on = 'crawl_depth', how
= 'left')



anchor_rel_depth_stats['irrel_anchors_prop'] =
anchor_rel_depth_stats['irrel_anchors'] / anchor_rel_depth_stats['project']

anchor_rel_depth_stats

This results in the following:

Virtually, all content at all site levels with the exception of those three clicks away from the home page
(probably blog posts) have irrelevant anchors.

Let’s visualize:

# anchor issues text
anchor_rel_stats_site_agg_plt = (ggplot(anchor_rel_depth_stats,
                                        aes(x = 'crawl_depth', y =
'irrel_anchors_prop')) +
                    geom_bar(stat = 'identity', fill = 'blue', alpha = 0.6)
+
                    labs(y = '# irrel_anchors', x = '') +
                    #scale_y_log10() +
                    theme_classic() +
                    coord_flip() +
                    theme(legend_position = 'none')
                   )

anchor_rel_stats_site_agg_plt.save(filename =
'images/3_anchor_rel_stats_site_agg_plt.png',
                        height=5, width=5, units = 'in', dpi=1000)
anchor_rel_stats_site_agg_plt

Irrelevant anchors by site level are shown in the anchor_rel_stats_site_agg_plt plot (Figure 3-16), where
we can see it is pretty much sitewide with less instances on URLs in site level 3.



Figure	3-16 Bar chart of irrelevant anchor texts by site level

Location
More insight could be gained by looking at the location of the anchors:

anchor_rel_locat_irrels =
anchor_merge.groupby(['location']).agg({'irrel_anchors':
'sum'}).reset_index()
anchor_rel_locat_urls = anchor_merge.groupby(['location']).agg({'project':
'count'}).reset_index()
anchor_rel_locat_stats =
anchor_rel_locat_irrels.merge(anchor_rel_locat_urls, on = 'location', how =
'left')
anchor_rel_locat_stats['irrel_anchors_prop'] =
anchor_rel_locat_stats['irrel_anchors'] / anchor_rel_locat_stats['project']

anchor_rel_locat_stats

This results in the following:

The irrelevant anchors are within the header or footer which make these relatively easy to solve.

Anchor	Text	Words
Let’s look at the anchor texts themselves. Anchor texts are the words that make up the HTML hyperlinks.
Search engines use these words to assign some meaning to the page that is being linked to.



Naturally, search engines will score anchor texts that accurately describe the content of the page they’re
linking to, because if a user does click the link, then they will receive a good experience of the content such
that it matches their expectations created by the anchor text.

We’ll start by looking at the most common words anchor texts used in the website:

anchor_count = anchor_merge[['anchor_text']].copy()
anchor_count['count'] = 1

anchor_count_agg = anchor_count.groupby('anchor_text').agg({'count':
'sum'}).reset_index()
anchor_count_agg = anchor_count_agg.sort_values('count', ascending = False)

anchor_count_agg

This results in the following:

There are over 1,808 variations of anchor texts of which “Contact Us” is the most popular along with “Live
Demo” and “Resources.”

Let’s visualize using a word cloud. We’ll have to import the WordCloud package and convert the
dataframe into a dictionary:

from wordcloud import WordCloud

data = anchor_count_agg.set_index('anchor_text').to_dict()['count']
data

{'Contact Us ': 7427,
 'Live Demo Discover how to create engaging webinar experiences designed to
cativate and convert your audience. ': 7426,
 'Resources ': 7426,
 'Live Demo ': 7426,



 'ON24 Webcast Elite ': 3851,
 'ON24 platform ': 3806,
 'Press Releases ': 3799, …}

Once converted, we feed this into the wordcloud function, limiting the data to the 200 most popular
anchors:

wc = WordCloud(background_color='white',
               width=800, height=400,
               max_words=30).generate_from_frequencies(anchor_count_agg)

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 10))
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')

# Save image
wc.to_file("images/wordcloud.png")

plt.show()

The word cloud (Figure 3-17) could be used in a management presentation. There are some pretty long
anchors there!

Figure	3-17 Word cloud of the most commonly used anchor texts

The activation from this point would be to see about �inding semiautomated rules to improve the
relevance of anchor texts, which is made easier by virtue of the fact that these are within the header or
footer.

Core	Web	Vitals	(CWV)
Core Web Vitals (CWV) is a Google initiative to help websites deliver a better UX. This includes speed, page
stability during load, and the time it takes for the web page to become user interactive. So if CWV is about
users, why is this in the technical section?

The technical SEO bene�its which are less advertised help Google (and other search engines) mainly
conserve computing resources to crawl and render websites. So it’s a massive win-win-win for search
engines, users, and webmasters.



So by pursuing CWV, you’re effectively increasing your crawl and render budget which bene�its your
technical SEO.

However, technical SEO doesn’t hold great appeal to marketing teams, whereas it’s a much easier sell to
marketing teams if you can imply the ranking bene�its to justify web developments of improving CWV. And
that is what we’ll aim to do in this section.

We’ll start with the landscape to show the overall competitive picture before drilling down on the
website itself for the purpose of using data to prioritize development.

Landscape

import re
import time
import random
import pandas as pd
import numpy as np
import requests
import json
import plotnine
import tldextract
from plotnine import *
from mizani.transforms import trans
from client import RestClient

target_bu = 'boundless'
target_site = 'https://boundlesshq.com/'
target_name = target_bu

We start by obtaining the SERPs for your target keywords using the pandas read_csv function. We’re
interested in the URL which will form the input for querying the Google PageSpeed API which gives us the
CWV metric values:

desktop_serps_df = pd.read_csv('data/1_desktop' + client_name +
'_serps.csv')
desktop_serps_df

This results in the following:



The SERPs data can get a bit noisy, and ultimately the business is only interested in their direct competitors,
so we’ll create a list of them to �ilter the SERPs accordingly:

selected_sites = [target_site, 'https://papayaglobal.com/', 'https://www.airsw
'https://shieldgeo.com/',
                  'https://remote.com/', 'https://www.letsdeel.com/',
'https://www.omnipresent.com/']

desktop_serps_select = desktop_serps_df[~desktop_serps_df['url'].isnull()].cop
desktop_serps_select =
desktop_serps_select[desktop_serps_select['url'].str.contains('|'.join(selecte
desktop_serps_select

There are much less rows as a result, which means less API queries and less time required to get the data.
Note the data is just for desktop, so this process would need to be repeated for mobile SERPs also.
To query the PageSpeed API ef�iciently and avoid duplicate requests, we want a unique set of URLs. We

achieve this by
Exporting the URL column to a list

desktop_serps_urls = desktop_serps_select['url'].to_list()

Deduplicating the list

desktop_serps_urls = list(dict.fromkeys(desktop_serps_urls))
desktop_serps_urls

['https://papayaglobal.com/blog/how-to-avoid-permanent-establishment-risk/',
 'https://www.omnipresent.com/resources/permanent-establishment-risk-a-
remote-workforce',
 'https://www.airswift.com/blog/permanent-establishment-risks',
 'https://www.letsdeel.com/blog/permanent-establishment-risk',
 'https://shieldgeo.com/ultimate-guide-permanent-establishment/',
 'https://remote.com/blog/what-is-permanent-establishment',
 'https://remote.com/lp/global-payroll',
 'https://remote.com/services/global-payroll?nextInternalLocale=en-us', . .
. ]

With the list, we query the API, starting by setting the parameters for the API itself, the device, and the
API key (obtained by getting a Google Cloud Platform account which is free):

base_url = 'https://www.googleapis.com/pagespeedonline/v5/runPagespeed?url='
strategy = '&strategy=desktop'



api_key = '&key=[Your PageSpeed API key]'

Initialize an empty dictionary and set i to zero which will be used as a counter to help us keep track of
how many API calls have been made and how many to go:

desktop_cwv = {}
i = 1

for url in desktop_serps_urls:
    request_url = base_url + url + strategy + api_key
    response = json.loads(requests.get(request_url).text)
    i += 1
    print(i, " ", request_url)
    desktop_cwv[url] = response

The result is a dictionary containing the API response. To get this output into a usable format, we iterate
through the dictionary to pull out the actual CWV scores as the API has a lot of other micro measurement
data which doesn’t serve our immediate objectives.

Initialize an empty list which will store the API response data:

desktop_psi_lst = []

Loop through the API output which is a JSON dictionary, so we need to pull out the relevant “keys” and
add them to the list initialized earlier:

for key, data in desktop_cwv.items():
    if 'lighthouseResult' in data:
        FCP = data['lighthouseResult']['audits']['first-contentful-paint']
['numericValue']
        LCP = data['lighthouseResult']['audits']['largest-contentful-paint']
['numericValue']
        CLS = data['lighthouseResult']['audits']['cumulative-layout-shift']
['numericValue']
        FID = data['lighthouseResult']['audits']['max-potential-fid']
['numericValue']
        SIS = data['lighthouseResult']['audits']['speed-index']['score'] *
100

        desktop_psi_lst.append([key, FCP, LCP, CLS, FID, SIS])

Convert the list into a dataframe:

desktop_psi_df = pd.DataFrame(desktop_psi_lst, columns = ['url', 'FCP',
'LCP', 'CLS', 'FID', 'SIS'])
desktop_psi_df

This results in the following:



The PageSpeed data on all of the ranking URLs is in a dataframe with all of the CWV metrics:
FCP: First Contentful Paint
LCP: Largest Contentful Paint
CLS: Cumulative Layout Shift
SIS: Speed Index Score

To show the relevance of the ranking (and hopefully the bene�it to ranking by improving CWV), we want
to merge this with the rank data:

dtp_psi_serps = desktop_serps_select.merge(desktop_psi_df, on = 'url', how =
'left')
dtp_psi_serps_bu = dtp_psi_serps.merge(target_keywords_df, on = 'keyword',
how = 'left')
dtp_psi_serps_bu.to_csv('data/'+ target_bu +'_dtp_psi_serps_bu.csv')
dtp_psi_serps_bu

This results in the following:

The dataframe is complete with the keyword, its rank, URL, device, and CWV metrics.
At this point, rather than repeat near identical code for mobile, you can assume we have the data for

mobile which we have combined into a single dataframe using the pandas concat function (same headings).



To add some additional features, we have added another column is_target indicating whether the
ranking URL is the client or not:

overall_psi_serps_bu['is_target'] =
np.where(overall_psi_serps_bu['url'].str.contains(target_site), '1', '0')

Parse the site name:

overall_psi_serps_bu['site'] = overall_psi_serps_bu['url'].apply(lambda url:
tldextract.extract(url).domain)

Count the column for easy aggregation:

overall_psi_serps_bu['count'] = 1

The resultant dataframe is overall_psi_serps_bu shown as follows:

The aggregation will be executed at the site level so we can compare how each site scores on average for
their CWV metrics and correlate that with performance:

overall_psi_serps_agg = overall_psi_serps_bu.groupby('site').agg({'LCP': 'mean
                                                                  'FCP': 'mean
                                                                  'CLS': 'mean
                                                                  'FID': 'mean
                                                                  'SIS': 'mean
                                                                  'rank_absolu
'mean',
                                                                  'count':
'sum'}).reset_index()
overall_psi_serps_agg = overall_psi_serps_agg.rename(columns = {'count': 'reac

Here are some operations to make the site names shorter for the graphs later:

overall_psi_serps_agg['site'] = np.where(overall_psi_serps_agg['site'] ==
'papayaglobal', 'papaya',
                                          overall_psi_serps_agg['site'])
overall_psi_serps_agg['site'] = np.where(overall_psi_serps_agg['site'] ==
'boundlesshq', 'boundless',



                                          overall_psi_serps_agg['site'])
overall_psi_serps_agg

This results in the following:

That’s the summary which is not so easy to discern trends, and now we’re ready to plot the data, starting
with the overall speed index. The Speed Index Score (SIS) is scaled between 0 and 100, 100 being the fastest
and therefore best.

Note that in all of the charts that will compare Google rank with the individual CWV metrics, the vertical
axis will be inverted such that the higher the position, the higher the ranking. This is to make the charts
more intuitive and easier to understand.

SIS_cwv_landscape_plt = (
    ggplot(overall_psi_serps_agg,
           aes(x = 'SIS', y = 'rank_absolute', fill = 'site', colour =
'site',
                               size = 'reach')) +
    geom_point(alpha = 0.8) +
    geom_text(overall_psi_serps_agg, aes(label = 'site'),
position=position_stack(vjust=-0.08)) +
    labs(y = 'Google Rank', x = 'Speed Score') +
    scale_y_reverse() +
  scale_size_continuous(range = [7, 17]) +
    theme(legend_position = 'none', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

SIS_cwv_landscape_plt.save(filename = 'images/0_SIS_cwv_landscape.png',
                             height=5, width=8, units = 'in', dpi=1000)
SIS_cwv_landscape_plt

Already we can see in SIS_cwv_landscape_plt (Figure 3-18) that the higher your speed score, the higher
you rank in general which is a nice easy sell to the stakeholders, acting as motivation to invest resources
into improving CWV.



Figure	3-18 Scatterplot comparing speed scores and Google rank of different websites

Boundless in this instance are doing relatively well. Although they don’t rank the highest, this could
indicate that either some aspects of CWV are not being attended to or something non-CWV related or more
likely a combination of both.

LCP_cwv_landscape_plt = (
    ggplot(overall_psi_serps_agg,
           aes(x = 'LCP', y = 'rank_absolute', fill = 'site', colour =
'site',
                               size = 'reach')) +
    geom_point(alpha = 0.8) +
    geom_text(overall_psi_serps_agg, aes(label = 'site'),
position=position_stack(vjust=-0.08)) +
    labs(y = 'Google Rank', x = 'Largest Contentful Paint') +
    scale_y_reverse() +
  scale_size_continuous(range = [7, 17]) +
    theme(legend_position = 'none', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

LCP_cwv_landscape_plt.save(filename = 'images/0_LCP_cwv_landscape.png',
                             height=5, width=8, units = 'in', dpi=1000)
LCP_cwv_landscape_plt

The LCP_cwv_landscape_plt plot (Figure 3-19) shows that Papaya and Remote look like outliers; in any
case, the trend does indicate that the less time it takes to load the largest content element, the higher the
rank.



Figure	3-19 Scatterplot comparing Largest Contentful Paint (LCP) and Google rank by website

FID_cwv_landscape_plt = (
    ggplot(overall_psi_serps_agg,
           aes(x = 'FID', y = 'rank_absolute', fill = 'site', colour =
'site',
                               size = 'reach')) +
    geom_point(alpha = 0.8) +
    geom_text(overall_psi_serps_agg, aes(label = 'site'),
position=position_stack(vjust=-0.08)) +
    labs(y = 'Google Rank', x = 'First Input Delay') +
    scale_y_reverse() +
    scale_x_log10() +
  scale_size_continuous(range = [7, 17]) +
    theme(legend_position = 'none', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

FID_cwv_landscape_plt.save(filename = 'images/0_FID_cwv_landscape.png',
                             height=5, width=8, units = 'in', dpi=1000)
FID_cwv_landscape_plt

Remote looks like an outlier in FID_cwv_landscape_plt (Figure 3-20). Should the outlier be removed? Not
in this case, because we don’t remove outliers just because it doesn’t show us what we wanted it to show.



Figure	3-20 Scatterplot comparing First Input Delay (FID) and Google rank by website

The trend indicates that the less time it takes to make the page interactive for users, the higher the rank.
Boundless are doing well in this respect.

CLS_cwv_landscape_plt = (
    ggplot(overall_psi_serps_agg,
           aes(x = 'CLS', y = 'rank_absolute', fill = 'site', colour =
'site',
                               size = 'reach')) +
    geom_point(alpha = 0.8) +
    geom_text(overall_psi_serps_agg, aes(label = 'site'),
position=position_stack(vjust=-0.08)) +
    labs(y = 'Google Rank', x = 'Cumulative Layout Shift') +
    scale_y_reverse() +
  scale_size_continuous(range = [7, 17]) +
    theme(legend_position = 'none', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

CLS_cwv_landscape_plt.save(filename = 'images/0_CLS_cwv_landscape.png',
                             height=5, width=8, units = 'in', dpi=1000)
CLS_cwv_landscape_plt

Okay, CLS where Boundless don’t perform as well is shown in CLS_cwv_landscape_plt (Figure 3-21). The
impact on improving rank is quite unclear too.



Figure	3-21 Scatterplot comparing Cumulative Layout Shift (CLS) and Google rank by website

FCP_cwv_landscape_plt = (
    ggplot(overall_psi_serps_agg,
           aes(x = 'FCP', y = 'rank_absolute', fill = 'site', colour =
'site',
                               size = 'reach')) +
    geom_point(alpha = 0.8) +
    geom_text(overall_psi_serps_agg, aes(label = 'site'),
position=position_stack(vjust=-0.08)) +
    labs(y = 'Google Rank', x = 'First Contentful Paint') +
    scale_y_reverse() +
  scale_size_continuous(range = [7, 17]) +
    theme(legend_position = 'none', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

FCP_cwv_landscape_plt.save(filename = 'images/0_FCP_cwv_landscape.png',
                             height=5, width=8, units = 'in', dpi=1000)
FCP_cwv_landscape_plt

Papaya and Remote look like outliers in FCP_cwv_landscape_plt (Figure 3-22); in any case, the trend
does indicate that the less time it takes to load the largest content element, the higher the rank.



Figure	3-22 Scatterplot comparing First Contentful Paint (FCP) and Google rank by website

That’s the deep dive into the overall scores. The preceding example can be repeated for both desktop
and mobile scores to drill down into, showing which speci�ic CWV metrics should be prioritized. Overall, for
boundless, CLS appears to be its weakest point.

In the following, we’ll summarize the analysis on a single chart by pivoting the data in a format that can
be used to power the single chart:

overall_psi_serps_long = overall_psi_serps_agg.copy()

We select the columns we want:

overall_psi_serps_long = overall_psi_serps_long[['site', 'LCP', 'FCP',
'CLS', 'FID', 'SIS']]

and use the melt function to pivot the table:

overall_psi_serps_long = overall_psi_serps_long.melt(id_vars=['site'],
                                                     value_vars=['LCP',
'FCP', 'CLS', 'FID', 'SIS'],
                                                     var_name='Metric',
value_name='Index')
overall_psi_serps_long['x_axis'] = overall_psi_serps_long['Metric']
overall_psi_serps_long['site'] = np.where(overall_psi_serps_long['site'] ==
'papayaglobal', 'papaya',
                                          overall_psi_serps_long['site'])
overall_psi_serps_long['site'] = np.where(overall_psi_serps_long['site'] ==
'boundlesshq', 'boundless',
                                          overall_psi_serps_long['site'])

overall_psi_serps_long

This results in the following:



That’s the long format in place, ready to plot.

speed_ex_plt = (
    ggplot(overall_psi_serps_long,
           aes(x = 'site', y = 'Index', fill = 'site')) +
    geom_bar(stat = 'identity', alpha = 0.8) +
    labs(y = '', x = '') +
    theme(legend_position = 'right',
          axis_text_x =element_text(rotation=90, hjust=1, size = 12),
          legend_title = element_blank()
         ) +
    facet_grid('Metric ~ .', scales = 'free')
)

speed_ex_plt.save(filename = 'images/0_CWV_Metrics_plt.png',
                             height=5, width=8, units = 'in', dpi=1000)
speed_ex_plt

The speed_ex_plt chart (Figure 3-23) shows the competitors being compared for each metric. Remote
seem to perform the worst on average, so their prominent rankings are probably due to non-CWV factors.



Figure	3-23 Faceted column chart of different sites by CWV metric

Onsite	CWV
The purpose of the landscape was to use data to motivate the client, colleagues, and stakeholders of the SEO
bene�its that would follow CWV improvement. In this section, we’re going to drill into the site itself to see
where the improvements could be made.

We’ll start by importing the data and cleaning up the columns as usual:

target_crawl_raw =
pd.read_csv('data/boundlesshq_com_all_urls__excluding_uncrawled__filtered_2022

target_crawl_raw.columns = [col.lower() for col in target_crawl_raw.columns]
target_crawl_raw.columns = [col.replace('(', '') for col in target_crawl_raw.c
target_crawl_raw.columns = [col.replace(')', '') for col in target_crawl_raw.c
target_crawl_raw.columns = [col.replace('@', '') for col in target_crawl_raw.c
target_crawl_raw.columns = [col.replace('/', '') for col in target_crawl_raw.c
target_crawl_raw.columns = [col.replace(' ', '_') for col in target_crawl_raw.
print(target_crawl_raw.columns)

We’re using Sitebulb crawl data, and we want to only include onsite indexable URLs since those are the
ones that rank, which we will �ilter as follows:

target_crawl_raw = target_crawl_raw.loc[target_crawl_raw['host'] ==
target_host]
target_crawl_raw = target_crawl_raw.loc[target_crawl_raw['indexable_status']
== 'Indexable']
target_crawl_raw = target_crawl_raw.loc[target_crawl_raw['content_type'] ==
'HTML']

target_crawl_raw

This results in the following:



With 279 rows, it’s a small website. The next step is to select the desired columns which will comprise the
CWV measures and anything that could possibly explain it:

target_speedDist_df = target_crawl_raw[['url', 'cumulative_layout_shift',
'first_contentful_paint',
                                        'largest_contentful_paint',
'performance_score', 'time_to_interactive',
                                        'total_blocking_time',
'images_without_dimensions', 'perf_budget_fonts',
                                        'font_transfer_size_kib',
'fonts_files', 'images_files',
                                        'images_not_efficiently_encoded',
'images_size_kib',
                                        'images_transfer_size_kib',
'images_without_dimensions', 'media_files',
                                        'media_size_kib',
'media_transfer_size_kib',
                                        'next-gen_format_savings_kib',
'offscreen_images_not_deferred',
                                        'other_files', 'other_size_kib',
'other_transfer_size_kib',
                                        'passed_font-face_display_urls',
'render_blocking_savings',
                                        'resources_not_http2',
'scaled_images', 'perf_budget_total']]

target_speedDist_df

This results in the following:



The dataframe columns have reduced from 71 to 29, and the CWV scores are more apparent.
Attempting to analyze the sites at the URL will not be terribly useful, so to make pattern identi�ication

easier, we will classify the content by folder location:

section_conds = [
    target_speedDist_df['url'] == 'https://boundlesshq.com/',
    target_speedDist_df['url'].str.contains('/guides/'),
    target_speedDist_df['url'].str.contains('/how-it-works/')
]

section_vals = ['home', 'guides', 'commercial']

target_speedDist_df['content'] = np.select(section_conds, section_vals,
default = 'blog')

We’ll also convert the main metrics to a number:

cols = ['cumulative_layout_shift', 'first_contentful_paint',
'largest_contentful_paint', 'performance_score',
        'time_to_interactive', 'total_blocking_time']

target_speedDist_df[cols] = pd.to_numeric(target_speedDist_df[cols].stack(),
errors='coerce').unstack()

target_speedDist_df

This results in the following:



A new column has been created in which each indexable URL is labeled by their content category.
Time for some aggregation using groupby on “content”:

speed_dist_agg = target_speedDist_df.groupby('content').agg({'url': 'count',
'performance_score'}).reset_index()
speed_dist_agg

This results in the following:

Most of the content are guides followed by blog posts with three offer pages. To visualize, we’re going to use
a histogram showing the distribution of the overall performance score and color code the URLs in the score
columns by their segment.

The home page and the guides are by far the fastest.

target_speedDist_plt = (
    ggplot(target_speedDist_df,
           aes(x = 'performance_score', fill = 'content')) +
    geom_histogram(alpha = 0.8, bins = 20) +
    labs(y = 'Page Count', x = '\nSpeed Score') +
    #scale_x_continuous(breaks=range(0, 100, 20)) +
    theme(legend_position = 'right',
          axis_text_x = element_text(rotation=90, hjust=1, size = 7))
)

target_speedDist_plt.save(filename = 'images/3_target_speedDist_plt.png',
                             height=5, width=8, units = 'in', dpi=1000)
target_speedDist_plt

The target_speedDist_plt plot (Figure 3-24) shows the home page (in purple) performs reasonably well
with a speed score of 84. The guides vary, but most of these have a speed above 80, and the majority of blog
posts are in the 70s.



Figure	3-24 Distribution of speed score by content type

Let’s drill down by CWV score category, starting with CLS:

target_CLS_plt = (
    ggplot(target_speedDist_df,
           aes(x = 'cumulative_layout_shift', fill = 'content')) +
    geom_histogram(alpha = 0.8, bins = 20) +
    labs(y = 'Page Count', x = '\ncumulative_layout_shift') +
    #scale_x_continuous(breaks=range(0, 100, 20)) +
    theme(legend_position = 'right',
          axis_text_x = element_text(rotation=90, hjust=1, size = 7))
)

target_CLS_plt.save(filename = 'images/3_target_CLS_plt.png',
                             height=5, width=8, units = 'in', dpi=1000)
target_CLS_plt

As shown in target_CLS_plt (Figure 3-25), guides have the least amount of shifting during browser
rendering, whereas the blogs and the home page shift the most.



Figure	3-25 Distribution of CLS by content type

So we now know which content templates to focus our CLS development efforts.

target_FCP_plt = (
    ggplot(target_speedDist_df,
           aes(x = 'first_contentful_paint', fill = 'content')) +
    geom_histogram(alpha = 0.8, bins = 30) +
    labs(y = 'Page Count', x = '\nContentful paint') +
    theme(legend_position = 'right',
          axis_text_x = element_text(rotation=90, hjust=1, size = 7))
)

target_FCP_plt.save(filename = 'images/3_target_FCP_plt.png',
                             height=5, width=8, units = 'in', dpi=1000)
target_FCP_plt

In this area, target_FCP_plt (Figure 3-26) shows no discernible trends here which indicates it’s an overall
site problem. So digging into the Chrome Developer Tools and looking into the network logs would be the
obvious next step.



Figure	3-26 Distribution of FCP by content type

target_LCP_plt = (
    ggplot(target_speedDist_df,
           aes(x = 'largest_contentful_paint', fill = 'content')) +
    geom_histogram(alpha = 0.8, bins = 20) +
    labs(y = 'Page Count', x = '\nlargest_contentful_paint') +
    theme(legend_position = 'right',
          axis_text_x = element_text(rotation=90, hjust=1, size = 7))
)

target_LCP_plt.save(filename = 'images/3_target_LCP_plt.png',
                             height=5, width=8, units = 'in', dpi=1000)
target_LCP_plt

target_LCP_plt (Figure 3-27) shows most guides and some blogs have the fastest LCP scores; in any case,
the blog template and the rogue guides would be the areas of focus.



Figure	3-27 Distribution of LCP by content type

target_FID_plt = (
    ggplot(target_speedDist_df,
           aes(x = 'time_to_interactive', fill = 'content')) +
    geom_histogram(alpha = 0.8, bins = 20) +
    labs(y = 'Page Count', x = '\ntime_to_interactive') +
    theme(legend_position = 'right',
          axis_text_x = element_text(rotation=90, hjust=1, size = 7))
)

target_FID_plt.save(filename = 'images/3_target_FID_plt.png',
                             height=5, width=8, units = 'in', dpi=1000)
target_FID_plt

The majority of the site appears in target_FID_plt (Figure 3-28) to enjoy fast FID times, so this would be
the least priority for CWV improvement.



Figure	3-28 Distribution of FID by content type

Summary
In this chapter, we covered how data-driven approach could be taken toward technical SEO by way of

Modeling page authority to estimate the bene�it of technical SEO recommendations to colleagues and
clients
Internal link optimization analyzed in different ways to improve content discoverability and labeling via
anchor text
Core Web Vitals to see which metrics require improvement and by content type

The next chapter will focus on using data to improve content and UX.
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Content and UX for SEO is about the quality of the experience you’re delivering to your website users,
especially when they are referred from search engines. This means a number of things including but not
limited to

Having the content your target audiences are searching for
Content that best satis�ies the user query

Content	creation: Planning landing page content
Content	consolidation: (I) Splitting content (in instances where “too much” content might be impacting
user satisfaction or hindering search engines from understanding the search intent the content is
targeting) and (II) merging content (in instances where multiple pages are competing for the same
intent)

Fast to load – ensuring you’re delivering a good user experience (UX)
Renders well on different device types

By no means do we claim that this is the �inal word on data-driven SEO from a content and UX
perspective. What we will do is expose data-driven ways of solving the most important SEO challenge using
data science techniques, as not all require data science.

For example, getting scienti�ic evidence that fast page speeds are indicative of higher ranked pages uses
similar code from Chapter 6. Our focus will be on the various �lavors of content that best satis�ies the user
query: keyword mapping, content gap analysis, and content creation.

Content	That	Best	Satis�ies	the	User	Query
An obvious challenge of SEO is deciding which content should go on which pages. Arguably, getting this right
means you’re optimizing for Google’s RankBrain (a component of Google’s core algorithm which uses
machine learning to help understand and process user search queries).

While many crawling tools provide visuals of the distributions of pages by site depth or by segment, for
example, data science enables you to bene�it from a richer level of detail. To help you work out the content
that best satis�ies the user query, you need to

Map keywords to content
Plan content sections for those landing pages
Decide what content to create for target keywords that will satisfy users searching for them

Data	Sources
Your most likely data sources will be a combination of

Site auditor URL exports
SERPs tracking tools

Keyword	Mapping
While there is so much to be gained from creating value-adding content, there is also much to be gained
from retiring or consolidating content. This is achieved by merging it with another on the basis that they
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share the same search intent. Assuming the keywords have been grouped together by search intent, the
next stage is to map them.

Keyword mapping is the process of mapping target keywords to pages and then optimizing the page
toward these – as a result, maximizing a site’s rank position potential in the search result. There are a
number of approaches to achieve this:

TF-IDF
String matching
Third-party neural network models (BERT, GPT-3)
Build your own AI

We recommend string matching as it’s fast, reasonably accurate, and the easiest to deploy.

String	Matching
String matching works to see how many strings overlap and is used in DNA sequencing. String matching can
work in two ways, which are to either treat strings as one object or strings made up of tokens (i.e., words
within a string). We’re opting for the latter because words mean something to humans and are not serial
numbers. For that reason, we’ll be using Sorensen-Dice which is fast and accurate compared to others we’ve
tested.

The following code extract shows how we use string distance to map keywords to content by seeking
the most similar URL titles to the target keyword. Let’s go, importing libraries:

import requests
from requests.exceptions import ReadTimeout
from json.decoder import JSONDecodeError
import re
import time
import random
import pandas as pd
import numpy as np
import datetime
from client import RestClient
import json
import py_stringmatching as sm
from textdistance import sorensen_dice
from plotnine import *
import matplotlib.pyplot as plt

target = 'wella'

We’ll start by importing the crawl data, which is a CSV export of website auditing software, in this case
from “Sitebulb”:

crawl_raw =
pd.read_csv('data/www_wella_com_internal_html_urls_by_indexable_status_filtere

Clean up the column heading title texts using a list comprehension:

crawl_raw.columns =
[col.lower().replace('(','').replace(')','').replace('%','').replace(' ',
'_')
  for col in crawl_raw.columns]

crawl_df = crawl_raw.copy()

We’re only interested in indexable pages as those are the URLs available for mapping:

crawl_df = crawl_df.loc[crawl_df['indexable'] == 'Yes']
crawl_df



This results in the following:

The crawl import is complete. However, we’re only interested in the URL and title as that’s all we need for
mapping keywords to URLs. Still it’s good to import the whole �ile to visually inspect it, to be more familiar
with the data.

urls_titles = crawl_df[['url', 'title']].copy()
urls_titles

This results in the following:

The dataframe is showing the URLs and titles. Let’s load the keywords we want to map that have been
clustered using techniques in Chapter 2:

keyword_discovery = pd.read_csv('data/keyword_discovery.csv)

This results in the following:



The dataframe shows the topics, keywords, number of search engine results for the keywords, topic web
search results, and the topic group. Note these were clustered using the methods disclosed in Chapter 2.

We’ll map the topic as this is the central keyword that would also rank for their topic group keywords.
This means we only require the topic column.

total_mapping_simi = keyword_discovery[['topic']].copy().drop_duplicates()

We want all the combinations of topics and URL titles before we can test each combination for string
similarity. We achieve this using the cross-product merge:

total_mapping_simi = total_mapping_simi.merge(urls_titles, how = 'cross')

A new column “test” is created which will be formatted to remove boilerplate brand strings and force
lowercase. This will make the string matching values more accurate.

total_mapping_simi['test'] = total_mapping_simi['title']
total_mapping_simi['test'] = total_mapping_simi['test'].str.lower()
total_mapping_simi['test'] = total_mapping_simi['test'].str.replace(' \|
wella', '')

total_mapping_simi

This results in the following:



Now we’re ready to compare strings by creating a new column “simi,” meaning string similarity. The scores
will take the topic and test columns as inputs and feed the sorensen_dice function imported earlier:

total_mapping_simi['simi'] = total_mapping_simi.loc[:, ['topic',
      'test']].apply(lambda x: sorensen_dice(*x), axis=1)
total_mapping_simi

The simi column has been added complete with scores. A score of 1 is identical, and 0 is completely
dissimilar. The next stage is to select the closest matching URLs to topic keywords:

keyword_mapping_grp = total_mapping_simi.copy()

The dataframe is �irst sorted by similarity score and topic in descending order so that the �irst row by
topic is the closest matching:

keyword_mapping_grp = keyword_mapping_grp.sort_values(['simi', 'topic'],
ascending = False)



After sorting, we use the �irst() function to select the top matching URL for each topic using the
groupby() function:

keyword_mapping_grp =
keyword_mapping_grp.groupby('topic').first().reset_index()

keyword_mapping_grp

This results in the following:

Each topic now has its closest matching URL. The next stage is to decide whether these matches are good
enough or not:

keyword_mapping = keyword_mapping_grp[['topic', 'url', 'title',
'simi']].copy()

At this point, we eyeball the data to see what threshold number is good enough. I’ve gone with 0.7 or
70% as it seems to do the job mostly correctly, which is to act as the natural threshold for matching test
content to URLs.

Using np.where(), which is equivalent to Excel’s IF formula, we’ll make any rows exceeding 0.7 as
“mapped” and the rest as “unmatched”:

keyword_mapping['url'] = np.where(keyword_mapping['simi'] < 0.7,
'unmatched', keyword_mapping['url'])
keyword_mapping['mapped'] = np.where(keyword_mapping['simi'] =< 0.7, 'No',
'Yes')

keyword_mapping

This results in the following:



Finally, we have keywords mapped to URLs and some stats on the overall exercise.

keyword_mapping_aggs = keyword_mapping.copy()
keyword_mapping_aggs =
keyword_mapping_aggs.groupby('mapped').count().reset_index()

Keyword_mapping_aggs

This results in the following:

String	Distance	to	Map	Keyword	Evaluation
So 65% of the 92 URLs got mapped – not bad and for the minimum code too. Those unmapped will have to
be done manually, probably because

Existing unmapped URL titles are not optimized.
New content needs to be created.

Content	Gap	Analysis
Search engines require content to rank as a response to a keyword search by their users. Content gap
analysis helps your site extend its reach to your target audiences by identifying keywords (and topics)
where your direct competitors are visible, and your site is not.

The analysis is achieved by using search analytics data sources such as SEMRush overlaying your site
data with your competitors to �ind

Core	content	set: Of which keywords are common to multiple competitors
Content	gaps: The extent to which the brand is not visible for keywords that form the content set

Without this analysis, your site risks being left behind in terms of audience reach and also appearing
less authoritative because your site appears less knowledgeable about the topics covered by your existing
content. This is particularly important when considering the buying cycle. Let’s imagine you’re booking a
holiday, and now imagine the variety of search queries that you might use as you carry out that search,
perhaps searching by destination (“beach holidays to Spain”), perhaps re�ining by a speci�ic requirement
(“family beach holidays in Spain”), and then more speci�ic including a destination (Majorca), and perhaps
(“family holidays with pool in Majorca”). Savvy SEOs think deeply about mapping customer demand (right
across the search journey) to compelling landing page (and website) experiences that can satisfy this
demand. Data science enables you to manage this opportunity at a signi�icant scale.

Warnings and motivations over, let’s roll starting with the usual package loading:

import re
import time
import random
import pandas as pd
import numpy as np

OS and Glob allow the environment to read the SEMRush �iles from a folder:

import os
import glob

from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype



import uritools

Combinations is particularly useful for generating combinations of list elements which will be used to
work out which datasets to intersect and in a given order:

from itertools import combinations

To see all columns of a dataframe and without truncation:

pd.set_option('display.max_colwidth', None)

These variables are set in advance so that when copying this script over for another site, the script can
be run with minimal changes to the code:

root_domain = 'wella.com'
hostdomain = 'www.wella.com'
hostname = 'wella'
full_domain = 'https://www.wella.com'
target_name = 'Wella'

With the variables set, we’re now ready to start importing data.

Getting	the	Data
We set the directory path where all of the SEMRush �iles are stored:

data_dir = os.path.join('data/semrush/')

Glob reads all of the �iles in the folder, and we store the output in a variable “semrush_csvs”:

semrush_csvs = glob.glob(data_dir + "/*.csv")
Semrush_csvs

Print out the �iles in the folder:

['data/hair.com-organic.Positions-uk-20220704-2022-07-05T14_04_59Z.csv',
 'data/johnfrieda.com-organic.Positions-uk-20220704-2022-07-
05T13_29_57Z.csv',
 'data/madison-reed.com-organic.Positions-uk-20220704-2022-07-
05T13_38_32Z.csv',
 'data/sebastianprofessional.com-organic.Positions-uk-20220704-2022-07-
05T13_39_13Z.csv',
 'data/matrix.com-organic.Positions-uk-20220704-2022-07-05T14_04_12Z.csv',
 'data/wella.com-organic.Positions-uk-20220704-2022-07-05T13_30_29Z.csv',
 'data/redken.com-organic.Positions-uk-20220704-2022-07-05T13_37_31Z.csv',
 'data/schwarzkopf.com-organic.Positions-uk-20220704-2022-07-
05T13_29_03Z.csv',
 'data/garnier.co.uk-organic.Positions-uk-20220704-2022-07-
05T14_07_16Z.csv']

Initialize the �inal dataframe where we’ll be storing the imported SEMRush data:

semrush_raw_df = pd.DataFrame()

Initialize a list where we’ll be storing the imported SEMRush data:

semrush_li = []

The for loop uses the pandas read_csv() function to read the SEMRush CSV �ile and extract the �ilename
which is put into a new column “�ilename.” A bit super�luous to requirements but it will help us know where



the data came from.
Once the data is read, it is added to the semrush_li list we initialized earlier:

for cf in semrush_csvs:
    df = pd.read_csv(cf, index_col=None, header=0)
    df['filename'] = os.path.basename(cf)
    df['filename'] = df['filename'].str.replace('.csv', '')
    df['filename'] = df['filename'].str.replace('_', '.')
    semrush_li.append(df)

semrush_raw_df = pd.concat(semrush_li, axis=0, ignore_index=True)

Clean up the columns to make these lowercase and data-friendly. A list comprehension can also be used,
but we used a different approach to show an alternative.

semrush_raw_df.columns =
semrush_raw_df.columns.str.strip().str.lower().str.replace(' ',
'_').str.replace('(', '').str.replace(')', '')

A site column is created so we know which content the site belongs to. Here, we used regex on the
�ilename column, but we could have easily derived this from the URL also:

semrush_raw_df['site'] = semrush_raw_df['filename'].str.extract('(.*?)\-')
semrush_raw_df.head()

This results in the following:

That’s the dataframe, although we’re more interested in the keywords and the site it belongs to.

semrush_raw_presect = semrush_raw_sited.copy()
semrush_raw_presect = semrush_raw_presect[['keyword', 'site']]
semrush_raw_presect

This results in the following:



The aim of the exercise is to �ind keywords to two or more competitors which will de�ine the core content
set.

To achieve this, we will use a list comprehension to split the semrush_raw_presect dataframe by site
into unnamed dataframes:

df1, df2, df3, df4, df5, df6, df7, df8, df9 = [x for _, x in
semrush_raw_presect.groupby(semrush_raw_presect['site'])]

Now that each dataframe has the site and keywords, we can dispense with the site column as we’re only
interested in the keywords and not where they come from.

We start by de�ining a list of dataframes, df_list:

df_list = [df1, df2, df3, df4, df5, df6, df7, df8, df9]

Here’s an example; df1 is Garnier:

df1

This results in the following:



De�ine the function drop_col, which as the name suggests
1.

Drops the column (col) of the dataframe (df)  
2.

Takes the desired column (list_col)  
3.

Converts the desired column to a list  
4.

Adds the column to a big list (master_list)

def drop_col(df, col, listcol, master_list):
    df.drop(col, axis = 1, inplace = True)
    df_tolist = df[listcol].tolist()
    master_list.append(df_tolist)

 

Our master list is initiated as follows:

keywords_lists = []

List comprehension which will go through all of the keyword sets in df_list, and these as lists to get a list
of keyword lists.

_ = [drop_col(x, 'site', 'keyword', keywords_lists) for x in df_list]

The lists within the list of lists are too long to print here; however, the double bracket at the beginning
should show this is indeed a list of lists.

keywords_lists



This results in the following:

[['garnier',
  'hair colour',
  'garnier.co.uk',
  'garnier hair color',
  'garnier hair colour',
  'garnier micellar water',
  'garnier hair food',
  'garnier bb cream',
  'garnier face mask',
  'bb cream from garnier',
  'garnier hair mask',
  'garnier shampoo',
  'hair dye',

The list of keyword lists is exported into separated lists:

lst_1, lst_2, lst_3, lst_4, lst_5, lst_6, lst_7, lst_8, lst_9 =
keywords_lists

List 1 is shown as follows:

lst_1

This results in the following:

['garnier',
 'hair colour',
 'garnier.co.uk',
 'garnier hair color',
 'garnier hair colour',
 'garnier micellar water',
 'garnier hair food',
 'garnier bb cream',
 'garnier face mask',
 'bb cream from garnier',
 'garnier hair mask',
 'garnier shampoo',
 'hair dye',
 'garnier hair dye',
 'garnier shampoo bar',
 'garnier vitamin c serum',

Now we want to generate combinations of lists so we can control how each of the site’s keywords get
intersected:

values_list = [lst_1, lst_2, lst_3, lst_4, lst_5, lst_6, lst_7, lst_8,
lst_9]

The dictionary comprehension will append each list into a dictionary we create called keywords_dict,
where the key (index) is the number of the list:

keywords_dict = {listo: values_list[listo]  for listo in
range(len(values_list))}

When we print the keywords_dict keys

keywords_dict.keys()



we get the list numbers. The reason it goes from 0 to 8 and not 1 to 9 is because Python uses zero
indexing which means it starts from zero:

dict_keys([0, 1, 2, 3, 4, 5, 6, 7, 8])

Now we’ll convert the keys to a list for ease of manipulation shortly:

keys_list = list(keywords_dict.keys())
keys_list

This results in the following:

[0, 1, 2, 3, 4, 5, 6, 7, 8]

With the list, we can construct combinations of the site's keywords to intersect. The intersection of the
website keyword lists will be the words that are common to the websites.

Creating	the	Combinations
Initialize list_combos which will be a list of the combinations generated:

list_combos = []

List comprehension using the combinations function picking four site keywords at random and storing
it in list combos using the append() function:

_ = [list_combos.append(comb) for comb in combinations(keys_list, 4)]

This line converts the combination into a list so that list_combos will be a list of lists:

list_combos = [list(combo) for combo in list_combos]

list_combos

This results in the following:

[[0, 1, 2, 3],
 [0, 1, 2, 4],
 [0, 1, 2, 5],
 [0, 1, 2, 6],
 [0, 1, 2, 7],
 [0, 1, 2, 8],
 [0, 1, 3, 4],
 [0, 1, 3, 5],
 [0, 1, 3, 6], ...

With the list of lists, we’re ready to start intersecting the keyword lists to build the core content
(keyword) set.

Finding	the	Content	Intersection
Initialize an empty list keywords_intersected:

keywords_intersected = []

De�ine the multi_intersect function which takes a list of dictionaries and their keys, then �inds the
common keywords (i.e., intersection), and adds it to the keywords_intersected list.

The function can be adapted to just compare two sites, three sites, and so on. Just ensure you rerun the
combinations function with the number of lists desired and edit the function as follows:

def multi_intersect(list_dict, combo):



    a = list_dict[combo[0]]
    b = list_dict[combo[1]]
    c = list_dict[combo[2]]
    d = list_dict[combo[3]]
    intersection = list(set(a) & set(b) & set(c) & set(d))
    keywords_intersected.append(intersection)

Using the list comprehension, we loop through the list of combinations list_combos to run the
multi_intersect function which takes the dictionary containing all the site keywords (keywords_dict), pulls
the appropriate keywords, and �inds the common ones, before adding to keywords_intersected:

_ = [multi_intersect(keywords_dict, combo) for combo in list_combos]

And we get a list of lists, because each list is an iteration of the function for each combination:

keywords_intersected

This results in the following:

[['best way to cover grey hair',
  'rich red hair colour',
  'hair dye colors chart',
  'different shades of blonde hair',
  'adding colour to grey hair',
  'cool hair colors',
  'dark red hair',
  'light brown toner',
  'medium light brown hair',
  'hair color on brown skin',
  'highlights to cover grey in dark brown hair',
  'auburn color swatch', ..

Let's turn the list of lists into a single list:

flat_keywords_intersected = [elem for sublist in keywords_intersected for
elem in sublist]

Then deduplicate it. list(set(the_list_you_want_to_de-duplicate)) is a really helpful technique to
deduplicate lists.

unique_keywords_intersected = list(set(flat_keywords_intersected))
print(len(flat_keywords_intersected), len(unique_keywords_intersected))

This results in the following:

87031 8380

There were 87K keywords originally and 8380 keywords post deduplication.

unique_keywords_intersected

This results in the following:

['hairspray for holding curls',
 'burgundy colour hair',
 'cool hair colors',
 'dark red hair',
 'color stripes hair',
 'for frizzy hair products',



 'blue purple hair',
 'autumn balayage 2021',
 'ash brown hair color',
 'blonde highlights in black hair',
 'what hair colour will suit me',
 'hair gloss treatment at home',
 'dark roots with red hair',
 'silver shoulder length hair',
 'mens curly hair',
 'ash brunette hair',
 'toners for grey hair',

That’s the list, but it’s not over yet as we need to establish the gap, which we all want to know.

Establishing	Gap
The question is which keywords are “Wella” not targeting and how many are there?

We’ll start by �iltering the SEMRush site for the target site Wella.com:

target_semrush = semrush_raw_sited.loc[semrush_raw_sited['site'] ==
root_domain]

And then we include only the keywords in the core content set:

target_on =
target_semrush.loc[target_semrush['keyword'].isin(unique_keywords_intersected)
target_on

This results in the following:

Let’s get some stats starting with the number of keywords in the preceding dataframe and the number of
keywords in the core content set:

print(target_on[['keyword'].drop_duplicates().shape[0],
len(unique_keywords_intersected))

This results in the following:

6936 8380

So just under 70% of Wella’s keyword content is in the core content set, which is about 1.4K keywords
short.



To �ind the 6.9K intersect keywords, we can use the list and set functions:

target_on_list = list(set(target_semrush['keyword'].tolist()) &
set(unique_keywords_intersected))
target_on_list[:10]

This results in the following:

['hairspray for holding curls',
 'burgundy colour hair',
 'cool hair colors',
 'dark red hair',
 'blue purple hair',
 'autumn balayage 2021',
 'ash brown hair color',
 'blonde highlights in black hair',
 'what hair colour will suit me',
 'hair gloss treatment at home']

To �ind the keywords that are not in the core content set, that is, the content gap, we’ll remove the target
SEMRush keywords from the core content set:

target_gap = list(set(unique_keywords_intersected) -
set(target_semrush['keyword'].tolist()))
print(len(target_gap), len(unique_keywords_intersected))
target_gap[:10]

This results in the following:

['bleaching hair with toner',
 'color stripes hair',
 'for frizzy hair products',
 'air dry beach waves short hair',
 'does semi permanent black dye wash out',
 'balayage for dark skin',
 'matte hairspray',
 'mens curly hair',
 'how to change hair color',
 'ginger and pink hair']

Now that we know what these gap keywords are, we can �ilter the dataframe by listing keywords:

cga_semrush =
semrush_raw_sited.loc[semrush_raw_sited['keyword'].isin(target_gap)]

cga_semrush

This results in the following:



We only want the highest ranked target URLs per keyword, which we’ll achieve with a combination of
sort_values(), groupby(), and �irst():

cga_unique =
cga_semrush.sort_values('position').groupby('keyword').first().reset_index()
cga_unique['project'] = target_name

To make the dataframe more user-friendly, we’ll prioritize keywords by

cga_unique = cga_unique.sort_values('search_volume', ascending = False)

Ready to export:

cga_unique.to_csv('exports/cga_unique.csv')
cga_unique

Now it’s time to decide what content should be on these pages.

Content	Creation:	Planning	Landing	Page	Content
Of course, now that you know which keywords belong together and which ones don’t, and which keywords
to pursue thanks to the content gap analysis, the question becomes what content should be on these pages?

One strategy we’re pursuing is to
1.

Look at the top 10 ranking URLs for each keyword  
2.

Extract the headings (<h1>, <h2>) from each ranking URL  
3.

Check the search results for each heading as writers can phrase the intent differently  
4.

Cluster the headings and label them  
5.

Count the frequency of the clustered headings for a given keyword, to see which ones are most popular
and are being rewarded by Google (in terms of rankings)

 
6.

Export the results for each search phrase  



This strategy won’t work for all verticals as there’s a lot of noise in some market sectors compared to
others. For example, with hair styling articles, a lot of the headings (and their sections) are celebrity names
which will not have the same detectable search intent as another celebrity.

In contrast, in other verticals this method works really well because there aren’t endless lists with the
same HTML heading tags shared with related article titles (e.g., “Drew Barrymore” and “54 ways to wear the
modern Marilyn”).

Instead, the headings are fewer in number and have a meaning in common, for example, “What is
account-based marketing?” and “De�ining ABM,” which is something Google is likely to understand.

With those caveats in mind, let’s go.

import requests
from requests.exceptions import ReadTimeout
from json.decoder import JSONDecodeError
import re
import time
import random
import pandas as pd
import numpy as np
import datetime
import requests
import json
from datetime import timedelta
from glob import glob
import os
from client import RestClient
from textdistance import sorensen_dice
from plotnine import *
import matplotlib.pyplot as plt
from mizani.transforms import trans
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
import uritools

This is the website we’re creating content for:

target = 'on24'

These are the keywords the target website wants to rank for. There’s only eight keywords, but as you’ll
see, this process generates a lot of noisy data, which will need cleaning up:

queries = ['webinar best practices',
           'webinar marketing guide',
           'webinar guide',
           'funnel marketing guide',
           'scrappy marketing guide',
           'b2b marketing guide',
           'how to run virtual events',
           'webinar benchmarks']

Getting	SERP	Data
Import the SERP data which will form the basis of �inding out what content is Google rewarding for the sites
to rank in the top 10:

serps_input = pd.read_csv('data/serps_input_' + target + '.csv')

serps_input

This results in the following:



The extract function from the TLD extract package is useful for extracting the hostname and domain name
from URLs:

from tldextract import extract

serps_input_clean = serps_input.copy()

Set the URL column as a string:

serps_input_clean['url'] = serps_input_clean['url'].astype(str)

Use lambda to apply the extract function to the URL column:

serps_input_clean['host'] = serps_input_clean['url'].apply(lambda x:
extract(x))

Convert the function output (which is a tuple) to a list:

serps_input_clean['host'] = [list(lst) for lst in serps_input_clean['host']]

Extract the hostname by taking the penultimate list element from the list using the string get method:

serps_input_clean['host'] = serps_input_clean['host'].str.get(-2)

The site uses a similar logic as before:

serps_input_clean['site'] = serps_input_clean['url'].apply(lambda x:
extract(x))
serps_input_clean['site'] = [list(lst) for lst in serps_input_clean['site']]

Only this time, we want both the hostname and the top-level domain (TLD) which we will join to form
the site or domain name:

serps_input_clean['site'] = serps_input_clean['site'].str.get(-2) + '.'
+serps_input_clean['site'].str.get(-1)

serps_input_clean

This results in the following:



The augmented dataframe shows the host and site columns added.
This line allows the column values to be read by setting the column widths to their maximum value:

pd.set_option('display.max_colwidth', None)

Crawling	the	Content
The next step is to get a list of top ranking URLs that we’ll crawl for their content sections:

serps_to_crawl_df = serps_input_clean.copy()

There are some sites not worth crawling because they won’t let you, which are de�ined in the following
list:

dont_crawl = ['wikipedia', 'google', 'youtube', 'linkedin', 'foursquare',
'amazon',
 'twitter', 'facebook', 'pinterest', 'tiktok', 'quora', 'reddit', 'None']

The dataframe is �iltered to exclude sites in the don’t crawl list:

serps_to_crawl_df =
serps_to_crawl_df.loc[~serps_to_crawl_df['host'].isin(dont_crawl)]

We’ll also remove nulls and sites outside the top 10:

serps_to_crawl_df =
serps_to_crawl_df.loc[~serps_to_crawl_df['domain'].isnull()]
serps_to_crawl_df = serps_to_crawl_df.loc[serps_to_crawl_df['rank'] < 10]

serps_to_crawl_df.head(10)

This results in the following:



With the dataframe �iltered, we just want the URLs to export to our desktop crawler.
Some URLs may rank for multiple search phrases. To avoid crawling the same URL multiple times, we’ll

use drop_duplicates() to make the URL list unique:

serps_to_crawl_upload = serps_to_crawl_df[['url']].drop_duplicates()
serps_to_crawl_upload.to_csv('data/serps_to_crawl_upload.csv', index=False)

serps_to_crawl_upload

This results in the following:

Now we have a list of 62 URLs to crawl, which cover the eight target keywords.
Let’s import the results of the crawl:



crawl_raw = pd.read_csv('data/all_inlinks.csv')
pd.set_option('display.max_columns', None)

Using a list comprehension, we’ll clean up the column names to make it easier to work with:

crawl_raw.columns = [col.lower().replace(' ', '_') for col in
crawl_raw.columns]

Print out the column names to see how many extractor �ields were extracted:

print(crawl_raw.columns)

This results in the following:

Index(['type', 'source', 'destination', 'form_action_link', 'indexability',
       'indexability_status', 'hreflang', 'size_(bytes)', 'alt_text',
'length',
       'anchor', 'status_code', 'status', 'follow', 'target', 'rel',
       'path_type', 'unlinked', 'link_path', 'link_position', 'link_origin',
       'extractor_1_1', 'extractor_1_2', 'extractor_1_3', 'extractor_1_4',
       'extractor_1_5', 'extractor_1_6', 'extractor_1_7', 'extractor_2_1',
       'extractor_2_2', 'extractor_2_3', 'extractor_2_4', 'extractor_2_5',
       'extractor_2_6', 'extractor_2_7', 'extractor_2_8', 'extractor_2_9',
       'extractor_2_10', 'extractor_2_11', 'extractor_2_12',
'extractor_2_13',
       'extractor_2_14', 'extractor_2_15', 'extractor_2_16',
'extractor_2_17',
       'extractor_2_18', 'extractor_2_19', 'extractor_2_20',
'extractor_2_21',
       'extractor_2_22', 'extractor_2_23', 'extractor_2_24',
'extractor_2_25',
       'extractor_2_26', 'extractor_2_27', 'extractor_2_28',
'extractor_2_29',
       'extractor_2_30', 'extractor_2_31', 'extractor_2_32',
'extractor_2_33',
       'extractor_2_34', 'extractor_2_35', 'extractor_2_36',
'extractor_2_37',
       'extractor_2_38', 'extractor_2_39', 'extractor_2_40',
'extractor_2_41',
       'extractor_2_42', 'extractor_2_43', 'extractor_2_44',
'extractor_2_45',
       'extractor_2_46', 'extractor_2_47', 'extractor_2_48',
'extractor_2_49',
       'extractor_2_50', 'extractor_2_51', 'extractor_2_52',
'extractor_2_53',
       'extractor_2_54', 'extractor_2_55', 'extractor_2_56',
'extractor_2_57',
       'extractor_2_58', 'extractor_2_59', 'extractor_2_60',
'extractor_2_61',
       'extractor_2_62', 'extractor_2_63', 'extractor_2_64',
'extractor_2_65'],
      dtype='object')

There are 6 primary headings (H1 in HTML) and 65 H2 headings altogether. These will form the basis of
our content sections which tell us what content should be on those pages.

crawl_raw

This results in the following:



Extracting	the	Headings
Since we’re only interested in the content, we’ll �ilter for it:

crawl_headings = crawl_raw.loc[crawl_raw['link_position'] ==
'Content'].copy()

The dataframe also contains columns that are super�luous to our requirements such as link_position
and link_origin. We can remove these by listing the columns by position (saves space and typing out the
names of which there are many!).

drop_cols = [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20]

Using the .drop() method, we can drop multiple columns in place (i.e., without having to copy the result
onto itself):

crawl_headings.drop(crawl_headings.columns[drop_cols], axis = 1, inplace =
True)

Rename the columns from source to URL, which will be useful for joining later:

crawl_headings = crawl_headings.rename(columns = {'source': 'url'})

crawl_headings

This results in the following:



With the desired columns of URL and their content section columns, these need to be converted to long
format, where all of the sections will be in a single column called “heading”:

crawl_headings_long = crawl_headings.copy()

We’ll want a list of the extractor column names (again to save typing) by subsetting the dataframe from
the second column onward using .iloc and extracting the column names (.columns.values):

heading_cols = crawl_headings_long.iloc[:, 1:].columns.values.tolist()

Using the .melt() function, we’ll pivot the dataframe to reshape the content sections into a single column
“heading” using the preceding list:

crawl_headings_long = pd.melt(crawl_headings_long, id_vars='url', value_name
= 'heading', var_name = 'position',
           value_vars= heading_cols)

Remove the null values:

crawl_headings_long =
crawl_headings_long.loc[~crawl_headings_long['heading'].isnull()]

Remove the duplicates:

crawl_headings_long = crawl_headings_long.drop_duplicates()

crawl_headings_long

This results in the following:



The resulting dataframe shows the URL, the heading, and the position where the �irst number denotes
whether it was an h1 or h2 and the second number indicates the order of the heading on the page. The
heading is the text value.

You may observe that the heading contains some values that are not strictly content but boilerplate
content that is sitewide, such as Company, Resources, etc. These will require removal at some point.

serps_headings = serps_to_crawl_df.copy()

Let’s join the headings to the SERPs data:

serps_headings = serps_headings.merge(crawl_headings_long, on = 'url', how =
'left')

Replace null headings with ‘’ so that these can be aggregated:

serps_headings['heading'] = np.where(serps_headings['heading'].isnull(), '',
serps_headings['heading'])

serps_headings['project'] = 'target'

serps_headings

This results in the following:



With the data joined, we’ll take the domain, heading, and the position:

headings_tosum = serps_headings[['domain', 'heading', 'position']].copy()

Split position by underscore and extract the last number in the list (using -1) to get the order the
heading appears on the page:

headings_tosum['pos_n'] = headings_tosum['position'].str.split('_').str[-1]

Convert the data type into a number:

headings_tosum['pos_n'] = headings_tosum['pos_n'].astype(float)

Add a count column for easy aggregation:

headings_tosum['count'] = 1
headings_tosum

This results in the following:



Cleaning	and	Selecting	Headings
We’re ready to aggregate and start removing nonsense headings.

We’ll start by removing boilerplate headings that are particular to each site. This is achieved by
summing the number of times a heading appears by domain and removing any that appear more than once
as that will theoretically mean the heading is not unique.

domsheadings_tosum_agg = headings_tosum.groupby(['domain',
'heading']).agg({'count': sum,
'pos_n': 'mean'
           }).reset_index().sort_values(['domain', 'count'],
           ascending = False)
domsheadings_tosum_agg['heading'] =
domsheadings_tosum_agg['heading'].str.lower()
domsheadings_tosum_agg.head(50)

Stop headings is a list containing headings that we want to remove.
Include those that appear more than once:

stop_headings = domsheadings_tosum_agg.loc[domsheadings_tosum_agg['count'] >
1]

and contain line break characters like “\n”:

stop_headings =
stop_headings.loc[stop_headings['heading'].str.contains('\n')]
stop_headings = stop_headings['heading'].tolist()

stop_headings

This results in the following:

['\n  \n    the scrappy guide to marketing\n  \n',
 '\n                \n                    danny goodwin                \n     
 '\n         \n             how to forecast seo with better precision & transp
 '\n         \n             should you switch to ga4 now? what you need to kno
 '\n            the ultimate guide to webinars: 41 tips for successful webinar



 '\n        \n        \n            \n            \n                \n        
timely updates and fresh ideas delivered to your inbox.
\n                \n                \n                \n                \n    
 '4 best webinar practices for marketing and promotion in 2020\n',
 '\n    company\n  ',
 '\n    customers\n  ',
 '\n    free tools\n  ',
 '\n    partners\n  ',
 '\n    popular features\n  ']

The list of boilerplate has been reasonably successful on a domain level, but there is more work to do.
We’ll now analyze the headings per se, starting by counting the number of headings:

headings_tosum_agg = headings_tosum.groupby(['heading']).agg({'count': sum,
'pos_n': 'mean'
           }).reset_index().sort_values('count',
           ascending = False)
headings_tosum_agg['heading'] = headings_tosum_agg['heading'].str.lower()

Remove the headings containing the boilerplate items:

headings_tosum_agg =
headings_tosum_agg.loc[~headings_tosum_agg['heading'].isin(stop_headings)]

Subset away from headings containing nothing (‘’):

headings_tosum_agg = headings_tosum_agg.loc[headings_tosum_agg['heading'] !=
'']

headings_tosum_agg.head(10)

This results in the following:

The dataframe looks to contain more sensible content headings with the exception of “company,” which
also is much further down the order of the page at 25.

Let’s �ilter further:



headings_tosum_filtered = headings_tosum_agg.copy()

Remove headings with a position of 10 or above as these are unlikely to contain actual content sections.
Note 10 is an arbitrary number and could be more or less depending on the nature of content.

headings_tosum_filtered =
headings_tosum_filtered.loc[headings_tosum_filtered['count'] < 10 ]

Measure the number of words in the heading:

headings_tosum_filtered['tokens'] =
headings_tosum_filtered['heading'].str.count(' ') + 1

Clean up the headings by removing spaces on either side of the text:

headings_tosum_filtered['heading'] =
headings_tosum_filtered['heading'].str.strip()

Split heading using colons as a punctuation mark and extract the right-hand side of the colon:

headings_tosum_filtered['heading']
=  headings_tosum_filtered['heading'].str.split(':').str[-1]

Apply the same principle to the full stop:

headings_tosum_filtered['heading']
=  headings_tosum_filtered['heading'].str.split('.').str[-1]

Remove headings containing pagination, for example, 1 of 9:

headings_tosum_filtered =
headings_tosum_filtered.loc[~headings_tosum_filtered['heading'].str.contains('
9] of [0-9]', regex = True)]

Remove headings that are less than 5 words long or more than 12:

headings_tosum_filtered =
headings_tosum_filtered.loc[headings_tosum_filtered['tokens'].between(5,
12)]
headings_tosum_filtered = headings_tosum_filtered.sort_values('count',
ascending = False)

headings_tosum_filtered =
headings_tosum_filtered.loc[headings_tosum_filtered['heading'] != '' ]

headings_tosum_filtered.head(10)

This results in the following:



Now we have headings that look more like actual content sections. These are now ready for clustering.

Cluster	Headings
The reason for clustering is that writers will describe the same section heading using different words and
deliberately so as to avoid copyright infringement and plagiarism. However, Google is smart enough to
know that “webinar best practices” and “best practices for webinars” are the same.

To make use of Google’s knowledge, we’ll make use of the SERPs to see if the search results of each
heading are similar enough to know if they mean the same thing or not (i.e., whether the underlying
meaning or intent is the same).

We’ll create a list and use the search intent clustering code (see Chapter 2) to categorize the headings
into topics:

headings_to_cluster = headings_tosum_filtered[['heading']].drop_duplicates()
headings_to_cluster =
headings_to_cluster.loc[~headings_to_cluster['heading'].isnull()]
headings_to_cluster = headings_to_cluster.rename(columns = {'heading':
'keyword'})

headings_to_cluster

This results in the following:



With the headings clustered by search intent, we’ll import the results:

topic_keyw_map = pd.read_csv('data/topic_keyw_map.csv')

Let’s rename the keyword column to heading, which we can use to join to the SERP dataframe later:

topic_keyw_map = topic_keyw_map.rename(columns = {'keyword': 'heading'})

topic_keyw_map

This results in the following:



The dataframe shows the heading and the meaning of the heading as “topic.” The next stage is to get some
statistics and see how many headings constitute a topic. As the topics are the central meaning of the
headings, this will form the core content sections per target keyword.

topic_keyw_map_agg = topic_keyw_map.copy()
topic_keyw_map_agg['count'] = 1
topic_keyw_map_agg = topic_keyw_map_agg.groupby('topic').agg({'count':
'sum'}).reset_index()
topic_keyw_map_agg = topic_keyw_map_agg.sort_values('count', ascending =
False)

topic_keyw_map_agg

This results in the following:

“Creating effective webinars” was the most popular content section.
These will now be merged with the SERPs so we can map suggested content to target keywords:

serps_topics_merge = serps_headings.copy()



For a successful merge, we’ll require the heading to be in lowercase:

serps_topics_merge['heading'] = serps_topics_merge['heading'].str.lower()

serps_topics_merge = serps_topics_merge.merge(topic_keyw_map, on =
'heading', how = 'left')

serps_topics_merge

This results in the following:

keyword_topics_summary = serps_topics_merge.groupby(['keyword',
'topic']).agg({'count': 'sum'}).reset_index().sort_values(['keyword',
'count'], ascending = False)

The count will be reset to 1, so we can count the number of suggested content sections per target
keyword:

keyword_topics_summary['count'] = 1

keyword_topics_summary

This results in the following:



The preceding dataframe shows the content sections (topic) that should be written for each target
keyword.

keyword_topics_summary.groupby(['keyword']).agg({'count':
'sum'}).reset_index()

This results in the following:



Webinar best practices will have the most content, while other target keywords will have around two core
content sections on average.

Re�lections
For B2B marketing, it works really well as it’s a good way of automating a manual process most SEOs go
through (i.e., seeing what content the top 10 ranking pages cover) especially when you have a lot of
keywords to create content for.

We used the H1 and H2 because using even more copy from the body (such as H3 or <p> paragraphs
even after �iltering out stop words) would introduce more noise into the string distance calculations.

Sometimes, you get some reliable suggestions that are actually quite good; however, the output should
be reviewed �irst before raising content requests from your creative team or agency.

Summary
There are many aspects of SEO that go into delivering content and UX better than your competitors. This
chapter focused on

Keyword	mapping: Assigning keywords to existing content and identifying opportunities for new content
creation
Content	gap	analysis: Identifying critical content and the gaps in your website
Content	creation: Finding the core content common to top ranking articles for your target search phrases

The next chapter deals with the third major pillar of SEO: authority.
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Authority is arguably 50% of the Google algorithm. You could optimize your site to your heart’s content by
creating the perfect content and deliver it with the perfect UX that’s hosted on a site with the most perfect
information architecture, only to �ind it’s nowhere in Google’s search results when searching by the title of
the page – assuming it’s not a unique search phrase, so what gives?

You’ll �ind out about this and the following in this chapter:
What site authority is and how it impacts SEO
How brand searches could impact search visibility
Review single and multiple site analysis

Some	SEO	History
To answer the question, one must appreciate the evolution of search engines and just how wild things were
before Google came along in 1998. And even when Google did come along, things were still wild and
evolving quickly.

Before Google, most of the search engines like AltaVista, Yahoo!, and Ask (Jeeves) were primarily
focused on the keywords embedded within the content on the page. This made search engines relatively
easy to game using all kinds of tricks including hiding keywords in white text on white backgrounds or
substantial repetition of keywords.

When Google arrived, they did a couple of things differently, which essentially turned competing search
engines on their heads.

The �irst thing is that their algorithm ranked pages based on their authority, in other words, how
trustworthy the document (or website) was, as opposed to only matching a document on keyword
relevance. Authority in those days was measured by Google as the amount of links from other sites linking
to your site. This was much in the same way as citations in a doctoral dissertation. The more links (or
citations), the higher the probability a random surfer on the Web would �ind your content. This made SEO
harder to game and the results (temporarily yet signi�icantly) more reliable relative to the competition.

The second thing they did was partner with Yahoo! which openly credited Google for powering their
search results. So what happened next? Instead of using Yahoo!, people went straight to Google, bypassing
the intermediary Yahoo! Search engine, and the rest is history – or not quite.

A	Little	More	History
Although Google got the lion’s share of searches, the SEO industry worked out the gist of Google’s algorithm
and started engineering link popularity schemes such as swapping links (known as reciprocal linking) and
creating/renting links from private networks (still alive and well today, unfortunately). Google responded
with antispam algorithms, such as Panda and Penguin, which more or less decimated these schemes to the
point that most businesses in the brand space resorted to advertising and digital PR. And it works.

Authority,	Links,	and	Other
While there is a widespread confusion in that back links are authority. We’ve seen plenty of evidence to
show that authority is the effect of links and advertising, that is, authority is not only measured in links.
Refer to Figure 5-1.
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Figure	5-1 Positive relationship between rankings and authority

Figure 5-1 is just one example of many showing a positive relationship between rankings and authority.
In this case, the authority is the product of nonsearch advertising. And why is that? It’s because good links
and effective advertising drive brand impressions, which are also positively linked.

What we will set out to do is show how data science can help you:
Examine your own links
Analyze your competitor’s links
Find power networks
Determine the key ingredients for a good link

Examining	Your	Own	Links
If you’ve ever wanted to analyze your site’s backlinks, the chances are you’d use one of the more popular
tools like AHREFs and SEMRush. These services trawl the Web to get a list of sites linking to your website
with a domain rating and other info describing the quality of your backlinks, which they store in vast
indexes which can be queried.

It’s no secret that backlinks play a big part in Google’s algorithm so it makes sense as a minimum to
understand your own site before comparing it with the competition, of which the former is what we will do
today.

While most of the analysis can be done on a spreadsheet, Python has certain advantages. Other than the
sheer number of rows it can handle, it can also look at the statistical side more readily such as distributions.

Importing	and	Cleaning	the	Target	Link	Data
We’re going to pick a small website from the UK furniture sector (for no particular reason) and walk
through some basic analysis using Python.

So what is the value of a site’s backlinks for SEO? At its simplest, I’d say quality and quantity. Quality is
subjective to the expert yet de�initive to Google by way of metrics such as authority and content relevance.

We’ll start by evaluating the link quality with the available data before evaluating the quantity. Time to
code.

import re
import time
import random
import pandas as pd
import numpy as np
import datetime
from datetime import timedelta



from plotnine import *
import matplotlib.pyplot as plt
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
import uritools

pd.set_option('display.max_colwidth', None)
%matplotlib inline

root_domain = 'johnsankey.co.uk'
hostdomain = 'www.johnsankey.co.uk'
hostname = 'johnsankey'
full_domain = 'https://www.johnsankey.co.uk'
target_name = 'John Sankey'

We start by importing the data and cleaning up the column names to make it easier to handle and
quicker to type, for the later stages.

target_ahrefs_raw = pd.read_csv(
    'data/johnsankey.co.uk-refdomains-subdomains__2022-03-18_15-15-47.csv')

List comprehensions are a powerful and less intensive way to clean up the column names.

target_ahrefs_raw.columns = [col.lower() for col in
target_ahrefs_raw.columns]

The list comprehension instructs Python to convert the column name to lowercase for each column
(“col”) in the dataframe columns.

target_ahrefs_raw.columns = [col.replace(' ','_') for col in
target_ahrefs_raw.columns]
target_ahrefs_raw.columns = [col.replace('.','_') for col in
target_ahrefs_raw.columns]
target_ahrefs_raw.columns = [col.replace('__','_') for col in
target_ahrefs_raw.columns]
target_ahrefs_raw.columns = [col.replace('(','') for col in
target_ahrefs_raw.columns]
target_ahrefs_raw.columns = [col.replace(')','') for col in
target_ahrefs_raw.columns]
target_ahrefs_raw.columns = [col.replace('%','') for col in
target_ahrefs_raw.columns]

An alternative to repeating the preceding lines of code would be to chain the function calls to process
the columns in a single line:

target_ahrefs_raw.columns = [col.lower().replace('
','_').replace('.','_').replace('__','_').replace('(','').replace(')','').repl
for col in target_ahrefs_raw.columns]

Though not strictly necessary, I like having a count column as standard for aggregations and a single
value column “project” should I need to group the entire table:

target_ahrefs_raw['rd_count'] = 1
target_ahrefs_raw['project'] = target_name
Target_ahrefs_raw

This results in the following:



Now we have a dataframe with clean column names. The next step is to clean the actual table values and
make them more useful for analysis.

Make a copy of the previous dataframe and give it a new name:

target_ahrefs_clean_dtypes = target_ahrefs_raw.copy()

Clean the dofollow_ref_domains column which tells us how many ref domains the sitelinking has. In this
case, we’ll convert the dashes to zeros and then cast the whole column as a whole number.

Start with referring domains:

target_ahrefs_clean_dtypes['dofollow_ref_domains'] =
np.where(target_ahrefs_clean_dtypes['dofollow_ref_domains'] == '-',
                        0,
target_ahrefs_clean_dtypes['dofollow_ref_domains'])
target_ahrefs_clean_dtypes['dofollow_ref_domains'] =
target_ahrefs_clean_dtypes['dofollow_ref_domains'].astype(int)

then linked domains:

target_ahrefs_clean_dtypes['dofollow_linked_domains'] =
np.where(target_ahrefs_clean_dtypes['dofollow_linked_domains'] == '-',
                     0,
target_ahrefs_clean_dtypes['dofollow_linked_domains'])
target_ahrefs_clean_dtypes['dofollow_linked_domains'] =
target_ahrefs_clean_dtypes['dofollow_linked_domains'].astype(int)

“First seen” tells us the date when the link was �irst found (i.e., discovered and then added to the index of
ahrefs). We’ll convert the string to a date format that Python can process and then use this to derive the age
of the links later on:

target_ahrefs_clean_dtypes['first_seen'] =
pd.to_datetime(target_ahrefs_clean_dtypes['first_seen'], format='%d/%m/%Y
%H:%M')

Converting �irst_seen to a date also means we can perform time aggregations by month year, as it’s not
always the case that links for a site will get acquired on a daily basis:

target_ahrefs_clean_dtypes['month_year'] =
target_ahrefs_clean_dtypes['first_seen'].dt.to_period('M')



The link age is calculated by taking today’s date and subtracting the �irst seen date. Then it’s converted
to a number format and divided by a huge number to get the number of days:

target_ahrefs_clean_dtypes['link_age'] = dt.datetime.now() -
target_ahrefs_clean_dtypes['first_seen']
target_ahrefs_clean_dtypes['link_age'] =
target_ahrefs_clean_dtypes['link_age']
target_ahrefs_clean_dtypes['link_age'] =
target_ahrefs_clean_dtypes['link_age'].astype(int)
target_ahrefs_clean_dtypes['link_age'] =
(target_ahrefs_clean_dtypes['link_age']/(3600 * 24 * 1000000000)).round(0)

target_ahrefs_clean_dtypes

This results in the following:

With the data types cleaned, and some new data features created (note columns added earlier), the fun can
begin.

Targeting	Domain	Authority
The �irst part of our analysis evaluates the link quality, which starts by summarizing the whole dataframe
using the describe function to get descriptive statistics of all the columns:

target_ahrefs_analysis = target_ahrefs_clean_dtypes
target_ahrefs_analysis.describe()

This results in the following:



So from the preceding table, we can see the average (mean), the number of referring domains (107), and the
variation (the 25th percentiles and so on).

The average domain rating (equivalent to Moz’s Domain Authority) of referring domains is 27. Is that a
good thing? In the absence of competitor data to compare in this market sector, it’s hard to know, which is
where your experience as an SEO practitioner comes in. However, I’m certain we could all agree that it could
be much higher – given that it falls on a scale between 0 and 100. How much higher to make a shift is
another question.

The preceding table can be a bit dry and hard to visualize, so we’ll plot a histogram to get more of an
intuitive understanding of the referring domain authority:

dr_dist_plt = (
    ggplot(target_ahrefs_analysis,
           aes(x = 'dr')) +
    geom_histogram(alpha = 0.6, fill = 'blue', bins = 100) +
    scale_y_continuous() +
    theme(legend_position = 'right'))

dr_dist_plt

The distribution is heavily skewed, showing that most of the referring domains have an authority rating
of zero (Figure 5-2). Beyond zero, the distribution looks fairly uniform with an equal amount of domains
across different levels of authority.

Figure	5-2 Distribution of domain rating in the backlink pro�ile

Domain	Authority	Over	Time



We’ll now look at the domain authority as a proxy for the link quality as a time series. If we were to plot the
number of links by date, the time series would look rather messy and less useful as follows:

dr_firstseen_plt = (
    ggplot(target_ahrefs_analysis, aes(x = 'first_seen', y = 'dr', group =
1)) +
    geom_line(alpha = 0.6, colour = 'blue', size = 2) +
    labs(y = 'Domain Rating', x = 'Month Year') +
    scale_y_continuous() +
    scale_x_date() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         )
)

dr_firstseen_plt.save(filename = 'images/1_dr_firstseen_plt.png',
                           height=5, width=10, units = 'in', dpi=1000)

dr_firstseen_plt

The plot looks very noisy as you’d expect and only really shows you what the DR (domain rating) of a
referring domain was at a point in time (Figure 5-3). The utility of this chart is that if you have a team
tasked with acquiring links, you can monitor the link quality over time in general.

Figure	5-3 Backlink domain rating acquired over time

For a more smoother view:

dr_firstseen_smooth_plt = (
    ggplot(target_ahrefs_analysis, aes(x = 'first_seen', y = 'dr', group =
1)) +
    geom_smooth(alpha = 0.6, colour = 'blue', size = 3, se = False) +
    labs(y = 'Domain Rating', x = 'Month Year') +
    scale_y_continuous() +
    scale_x_date() +



    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         ))

dr_firstseen_smooth_plt.save(filename =
'images/1_dr_firstseen_smooth_plt.png',
 height=5, width=10, units = 'in', dpi=1000)

dr_firstseen_smooth_plt

The use of geom_smooth() gives a somewhat less noisy view and shows the variability of the domain
rating over time to show how consistent the quality is (Figure 5-4). Again, this correlates to the quality of
the links being acquired.

Figure	5-4 Backlink domain rating acquired smoothed over time

What this doesn’t quite describe is the overall site authority over time, because the value of links
acquired is retained over time; therefore, a different math approach is required.

To see the site’s authority over time, we will calculate a running average of the domain rating by month
of the year. Note the use of the expanding() function which instructs Pandas to include all previous rows
with each new row:

target_rd_cummean_df = target_ahrefs_analysis
target_rd_mean_df = target_rd_cummean_df.groupby(['month_year'])
['dr'].sum().reset_index()

target_rd_mean_df['dr_runavg'] = target_rd_mean_df['dr'].expanding().mean()

target_rd_mean_df.head(10)

This results in the following:



We now have a table which we can use to feed the graph and visualize.

dr_cummean_smooth_plt = (
    ggplot(target_rd_mean_df, aes(x = 'month_year', y = 'dr_runavg', group =
1)) +
    geom_line(alpha = 0.6, colour = 'blue', size = 2) +
    #labs(y = 'GA Sessions', x = 'Date') +
    scale_y_continuous() +
    scale_x_date() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         ))

dr_cummean_smooth_plt

So the target site started with high authority links (which may have been a PR campaign announcing the
business brand), which faded soon after for four years and then rebooted with new acquisition of high
authority links again (Figure 5-5).



Figure	5-5 Cumulative average domain rating of backlinks over time

Most importantly, we can see the site’s general authority over time, which is how a search engine like
Google may see it too.

A really good extension to this analysis would be to regenerate the dataframe so that we would plot the
distribution over time on a cumulative basis. Then we could not only see the median quality but also the
variation over time too.

That’s the link quality, what about quantity?

Targeting	Link	Volumes
Quality is one thing; the volume of quality links is quite another, which is what we’ll analyze next.

We’ll use the expanding function like the previous operation to calculate a cumulative sum of the links
acquired to date:

target_count_cumsum_df = target_ahrefs_analysis
print(target_count_cumsum_df.columns)
target_count_cumsum_df = target_count_cumsum_df.groupby(['month_year'])
['rd_count'].sum().reset_index()

target_count_cumsum_df['count_runsum'] =
target_count_cumsum_df['rd_count'].expanding().sum()
target_count_cumsum_df['link_velocity'] =
target_count_cumsum_df['rd_count'].diff()

target_count_cumsum_df

This results in the following:



That’s the data, now the graphs.

target_count_plt = (
    ggplot(target_count_cumsum_df, aes(x = 'month_year', y = 'rd_count',
group = 1)) +
    geom_line(alpha = 0.6, colour = 'blue', size = 2) +
    labs(y = 'Count of Referring Domains', x = 'Month Year') +
    scale_y_continuous() +
    scale_x_date() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         ))

target_count_plt.save(filename = 'images/3_target_count_plt.png',
                           height=5, width=10, units = 'in', dpi=1000)

target_count_plt

This is a noncumulative view of the amount of referring domains. Again, this is useful for evaluating how
effective a team is at acquiring links (Figure 5-6).



Figure	5-6 Count of referring domains over time

But perhaps it is not as useful for how a search engine would view the overall number of referring
domains a site has.

target_count_cumsum_plt = (
    ggplot(target_count_cumsum_df, aes(x = 'month_year', y = 'count_runsum',
group = 1)) +
    geom_line(alpha = 0.6, colour = 'blue', size = 2) +
    scale_y_continuous() +
    scale_x_date() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         ))

target_count_cumsum_plt

The cumulative view shows us the total number of referring domains (Figure 5-7). Naturally, this isn’t
the entirely accurate picture as some referring domains may have been lost, but it’s good enough to get the
gist of where the site is at.



Figure	5-7 Cumulative sum of referring domains over time

We see that links were steadily added from 2017 for the next four years before accelerating again
around March 2021. This is consistent with what we have seen with domain rating over time.

A useful extension to correlate that with performance may be to layer in
Referring domain site traf�ic
Average ranking over time

Analyzing	Your	Competitor’s	Links
Like last time, we de�ined the value of a site’s backlinks for SEO as a product of quality and quantity – quality
being the domain authority (or AHREF’s equivalent domain rating) and quantity as the number of referring
domains.

Again, we’ll start by evaluating the link quality with the available data before evaluating the quantity.
Time to code.

import re
import time
import random
import pandas as pd
import numpy as np
import datetime
from datetime import timedelta
from plotnine import *
import matplotlib.pyplot as plt
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
import uritools

pd.set_option('display.max_colwidth', None)
%matplotlib inline

root_domain = 'johnsankey.co.uk'
hostdomain = 'www.johnsankey.co.uk'



hostname = 'johnsankey'
full_domain = 'https://www.johnsankey.co.uk'
target_name = 'John Sankey'

Data	Importing	and	Cleaning
We set up the �ile directories so we can read multiple AHREF exported data �iles in one folder, which is much
faster, less boring, and more ef�icient than reading each �ile individually, especially when you have over ten
of them:

ahrefs_path = 'data/'

The listdir() function from the OS module allows us to list all of the �iles in a subdirectory:

ahrefs_filenames = os.listdir(ahrefs_path)

ahrefs_filenames

This results in the following:

['www.davidsonlondon.com--refdomains-subdomain__2022-03-13_23-37-29.csv',
 'www.stephenclasper.co.uk--refdomains-subdoma__2022-03-13_23-47-28.csv',
 'www.touchedinteriors.co.uk--refdomains-subdo__2022-03-13_23-42-05.csv',
 'www.lushinteriors.co--refdomains-subdomains__2022-03-13_23-44-34.csv',
 'www.kassavello.com--refdomains-subdomains__2022-03-13_23-43-19.csv',
 'www.tulipinterior.co.uk--refdomains-subdomai__2022-03-13_23-41-04.csv',
 'www.tgosling.com--refdomains-subdomains__2022-03-13_23-38-44.csv',
 'www.onlybespoke.com--refdomains-subdomains__2022-03-13_23-45-28.csv',
 'www.williamgarvey.co.uk--refdomains-subdomai__2022-03-13_23-43-45.csv',
 'www.hadleyrose.co.uk--refdomains-subdomains__2022-03-13_23-39-31.csv',
 'www.davidlinley.com--refdomains-subdomains__2022-03-13_23-40-25.csv',
 'johnsankey.co.uk-refdomains-subdomains__2022-03-18_15-15-47.csv']

With the �iles listed, we’ll now read each one individually using a for loop and add these to a dataframe.
While reading in the �ile, we’ll use some string manipulation to create a new column with the site name of
the data we’re importing:

ahrefs_df_lst = list()
ahrefs_colnames = list()

for filename in ahrefs_filenames:
    df = pd.read_csv(ahrefs_path + filename)
    df['site'] = filename
    df['site'] = df['site'].str.replace('www.', '', regex = False)
    df['site'] = df['site'].str.replace('.csv', '', regex = False)
    df['site'] = df['site'].str.replace('-.+', '', regex = True)
    ahrefs_colnames.append(df.columns)
    ahrefs_df_lst.append(df)

comp_ahrefs_df_raw = pd.concat(ahrefs_df_lst)

comp_ahrefs_df_raw

This results in the following:



Now we have the raw data from each site in a single dataframe, the next step is to tidy up the column names
and make them a bit more friendlier to work with. A custom function could be used, but we’ll just chain the
function calls with a list comprehension:

competitor_ahrefs_cleancols = comp_ahrefs_df_raw.copy()
competitor_ahrefs_cleancols.columns = [col.lower().replace('
','_').replace('.','_').replace('__','_').replace('(','')
 .replace(')','').replace('%','')
 for col in competitor_ahrefs_cleancols.columns]

Having a count column and a single value column (“project”) is useful for groupby and aggregation
operations:

competitor_ahrefs_cleancols['rd_count'] = 1
competitor_ahrefs_cleancols['project'] = target_name

competitor_ahrefs_cleancols

This results in the following:



The columns are now cleaned up, so we’ll now clean up the row data:

competitor_ahrefs_clean_dtypes = competitor_ahrefs_cleancols

For referring domains, we’re replacing hyphens with zero and setting the data type as an integer (i.e.,
whole number). This will be repeated for linked domains, also:

competitor_ahrefs_clean_dtypes['dofollow_ref_domains'] =
np.where(competitor_ahrefs_clean_dtypes['dofollow_ref_domains'] == '-',
                     0,
competitor_ahrefs_clean_dtypes['dofollow_ref_domains'])
competitor_ahrefs_clean_dtypes['dofollow_ref_domains'] =
competitor_ahrefs_clean_dtypes['dofollow_ref_domains'].astype(int)

# linked_domains
competitor_ahrefs_clean_dtypes['dofollow_linked_domains'] =
np.where(competitor_ahrefs_clean_dtypes['dofollow_linked_domains'] == '-',
                     0,
competitor_ahrefs_clean_dtypes['dofollow_linked_domains'])
competitor_ahrefs_clean_dtypes['dofollow_linked_domains'] =
competitor_ahrefs_clean_dtypes['dofollow_linked_domains'].astype(int)

First seen gives us a date point at which links were found, which we can use for time series plotting and
deriving the link age. We’ll convert to date format using the to_datetime function:

competitor_ahrefs_clean_dtypes['first_seen'] =
pd.to_datetime(competitor_ahrefs_clean_dtypes['first_seen'],
                        format='%d/%m/%Y %H:%M')
competitor_ahrefs_clean_dtypes['first_seen'] =
competitor_ahrefs_clean_dtypes['first_seen'].dt.normalize()
competitor_ahrefs_clean_dtypes['month_year'] =
competitor_ahrefs_clean_dtypes['first_seen'].dt.to_period('M')

To calculate the link_age, we’ll simply deduct the �irst seen date from today’s date and convert the
difference into a number:

competitor_ahrefs_clean_dtypes['link_age'] = dt.datetime.now() -
competitor_ahrefs_clean_dtypes['first_seen']



competitor_ahrefs_clean_dtypes['link_age'] =
competitor_ahrefs_clean_dtypes['link_age']
competitor_ahrefs_clean_dtypes['link_age'] =
competitor_ahrefs_clean_dtypes['link_age'].astype(int)
competitor_ahrefs_clean_dtypes['link_age'] =
(competitor_ahrefs_clean_dtypes['link_age']/(3600 * 24 *
1000000000)).round(0)

The target column helps us distinguish the “client” site vs. competitors, which is useful for visualization
later:

competitor_ahrefs_clean_dtypes['target'] =
np.where(competitor_ahrefs_clean_dtypes['site'].str.contains('johns'),
                            1, 0)
competitor_ahrefs_clean_dtypes['target'] =
competitor_ahrefs_clean_dtypes['target'].astype('category')

competitor_ahrefs_clean_dtypes

This results in the following:

Now that the data is cleaned up both in terms of column titles and row values, we’re ready to set forth and
start analyzing.

Anatomy	of	a	Good	Link
When we analyzed the one target website earlier (“John Sankey”), we assumed (like the rest of the SEO
industry the world over) that domain rating (DR) was the best and most reliable measure of the link quality.

But should we? Let’s do a quick and dirty analysis to see if that is indeed the case or whether we can �ind
something better. We’ll start by aggregating the link features at the site level:

competitor_ahrefs_aggs =
competitor_ahrefs_analysis.groupby('site').agg({'link_age': 'mean',
          'dofollow_links': 'mean',    'domain': 'count', 'dr': 'mean',
'dofollow_ref_domains': 'mean',  'traffic_': 'mean',
'dofollow_linked_domains': 'mean',    'links_to_target':
'mean',  'new_links': 'mean',     'lost_links': 'mean'}).reset_index()

competitor_ahrefs_aggs

This results in the following:



The resulting table shows us aggregated statistics for each of the link features. Next, read in the list of
SEMRush domain level data (which by way of manual data entry was literally typed in since it’s only 11
sites):

semrush_viz = [10100, 2300, 931, 2400, 911, 2100, 1800, 136, 838, 428, 1100,
1700]

competitor_ahrefs_aggs['semrush_viz'] = semrush_viz

competitor_ahrefs_aggs

This results in the following:

The SEMRush visibility data has now been appended, so we’re ready to �ind some r-squared, known as the
coef�icient of determination, which will tell which link feature can best explain the variation in SEMRush
visibility:

competitor_ahrefs_r2 = competitor_ahrefs_aggs.corr() ** 2
competitor_ahrefs_r2 = competitor_ahrefs_r2[['semrush_viz']].reset_index()
competitor_ahrefs_r2 = competitor_ahrefs_r2.sort_values('semrush_viz',
ascending = False)

competitor_ahrefs_r2

This results in the following:



Naturally, we’d expect the semrush_viz to correlate perfectly with itself. DR (domain rating) surprisingly
doesn’t explain the difference in SEMRush very well with an r_squared of 21%.

On the other hand, “traf�ic_” which is the referring domain’s traf�ic value correlates better. From this
alone, we’re prepared to disregard “dr.” Let’s inspect this visually:

comp_correl_trafficviz_plt = (
    ggplot(competitor_ahrefs_aggs,
           aes(x = 'traffic_', y = 'semrush_viz')) +
    geom_point(alpha = 0.4, colour = 'blue', size = 2) +
    geom_smooth(method = 'lm', se = False, colour = 'red', size = 3, alpha =
0.4)
)

comp_correl_trafficviz_plt.save(filename =
'images/2_comp_correl_trafficviz_plt.png',
                    height=5, width=10, units = 'in', dpi=1000)

comp_correl_trafficviz_plt

This is not terribly convincing (Figure 5-8), due to the lack of referring domains beyond 2,000,000. Does
this mean we should disregard traf�ic_ as a measure?



Figure	5-8 Scatterplot of the SEMRush visibility (semrush_viz) vs. the total AHREFs backlink traf�ic (traf�ic_) of the site’s backlinks

Not necessarily. The outlier data point with 10,000 visibility isn’t necessarily incorrect. The site does
have superior visibility and more referring traf�ic in the real world, so it doesn’t mean the site’s data should
be removed.

If anything, more data should be gathered with more domains in the same sector. Alternatively, pursuing
a more thorough treatment would involve obtaining SEMRush visibility data at the page level and
correlating this with page-level link feature metrics.

Going forward, we will use traf�ic_ as our measure of quality.

Link	Quality
We start with link quality, which we’ve very recently discovered should be measured by “traf�ic_” as
opposed to the industry accepted.

Let’s start by inspecting the distributive properties of each link feature using the describe() function:

competitor_ahrefs_analysis = competitor_ahrefs_clean_dtypes
competitor_ahrefs_analysis[['traffic_']].describe()

The resulting table shows some basic statistics including the mean, standard deviation (std), and
interquartile metrics (25th, 50th, and 75th percentiles), which give you a good idea of where most referring
domains fall in terms of referring domain traf�ic.



So unsurprisingly, if we look at the median, then most of the competitors’ referring domains have zero
(estimated) traf�ic. Only domains in the 75th percentile or above have traf�ic.

We can also plot (and con�irm visually) their distribution using the geom_boxplot function to compare
sites side by side:

comp_dr_dist_box_plt = (
    ggplot(competitor_ahrefs_analysis,
#.loc[competitor_ahrefs_analysis['dr'] > 0],
           aes(x = 'reorder(site, traffic_)', y = 'traffic_', colour =
'target')) +
    geom_boxplot(alpha = 0.6) +
    scale_y_log10() +
    theme(legend_position = 'none',
          axis_text_x=element_text(rotation=90, hjust=1)
         ))

comp_dr_dist_box_plt.save(filename =
'images/4_comp_traffic_dist_box_plt.png',
 height=5, width=10, units = 'in', dpi=1000)

comp_dr_dist_box_plt

comp_dr_dist_box_plt compares a site’s distribution of referring domain traf�ic side by side (Figure 5-9)
and most notably the interquartile range (IQR). The competitors are in red, and the client is in blue.



Figure	5-9 Box plot of each website’s backlink traf�ic (traf�ic_)

The interquartile range is the range of data between its 25th percentile and 75th percentile. The
purpose is to tell us

Where most of the data is
How much of the data is away from the median (the center)

In this case, the IQR is quantifying how much traf�ic each site’s referring domains get and its variability.
We also see that “John Sankey” has the third highest median referring domain traf�ic which compares

well in terms of link quality against their competitors. The size of the box (its IQR) is not the longest (quite
consistent around its median) but not as short as Stephen Clasper (more consistent, with a higher median
and more backlinks from referring domain sites higher than the median).

“Touched Interiors” has the most diverse range of DR compared with other domains, which could
indicate an ever so slightly more relaxed criteria for link acquisition. Or is it the case that as your brand
becomes more well known and visible online, this brand has naturally attracted more links from zero traf�ic
referring domains? Maybe both.

Let’s plot the domain quality over time for each competitor:

comp_traf_timeseries_plt = (
    ggplot(competitor_ahrefs_analysis,
           aes(x = 'first_seen', y = 'traffic_',
               group = 'site', colour = 'site')) +
    geom_smooth(alpha = 0.4, size = 2, se = False,
                method='loess'
               ) +
    scale_x_date() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         )
)



comp_traf_timeseries_plt.save(filename =
'images/4_comp_traffic_timeseries_plt.png',
 height=5, width=10, units = 'in', dpi=1000)

comp_traf_timeseries_plt

We deliberately avoided using scale_y_log10() which would have transformed the vertical axis using
logarithmic scales. Why? Because it would look very noisy and dif�icult to see any standout competitors.

Figure 5-10 shows the quality of links acquired over time of which the standout sites are David Linley, T
Gosling, and John Sankey.

Figure	5-10 Time series plot showing the amount of traf�ic each referring domain has over time for each website

The remaining sites are more or less �lat in terms of their link acquisition performance. David Linley
started big, then dive-bombed in terms of link quality before improving again in 2020 and 2021.

Now that we have some concept of how the different sites perform, what we really want is a cumulative
link quality by month_year as this is likely to be additive in the way search engines evaluate the authority of
websites.

We’ll use our trusted groupby() and expanding().mean() functions to compute the cumulative stats we
want:

competitor_traffic_cummean_df = competitor_ahrefs_analysis.copy()

competitor_traffic_cummean_df =
competitor_traffic_cummean_df.groupby(['site', 'month_year'])
['traffic_'].sum().reset_index()

competitor_traffic_cummean_df['traffic_runavg'] =
competitor_traffic_cummean_df['traffic_'].expanding().mean()

competitor_traffic_cummean_df

This results in the following:



Scienti�ic formatted numbers aren’t terribly helpful, nor is a table for that matter, but at least the dataframe
is in a ready format to power the following chart:

competitor_traffic_cummean_plt = (
    ggplot(competitor_traffic_cummean_df, aes(x = 'month_year', y =
'traffic_runavg', group = 'site', colour = 'site')) +
    geom_line(alpha = 0.6, size = 2) +
    labs(y = 'Cumu Avg of traffic_', x = 'Month Year') +
    scale_y_continuous() +
    scale_x_date() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         ))

competitor_traffic_cummean_plt.save(filename =
'images/4_competitor_traffic_cummean_plt.png',
 height=5, width=10, units = 'in', dpi=1000)

competitor_traffic_cummean_plt

The code is color coding the sites to make it easier to see which site is which.
So as we might expect, David Linley’s link acquisition team has done well as their authority has made

leaps and bounds over all of the competitors over time (Figure 5-11).



Figure	5-11 Time series plot of the cumulative average backlink traf�ic for each website

All of the other competitors have pretty much �latlined. This is re�lected in David Linley’s superior
SEMRush visibility (Figure 5-12).

Figure	5-12 Column chart showing the SEMRush visibility for each website

What can we learn? So far in our limited data research, we can see that slow and steady does not win the
day. By contrast, sites need to be going after links from high traf�ic sites in a big way.



Link	Volumes
That’s quality analyzed; what about the volume of links from referring domains?

Our approach will be to compute a cumulative sum of referring domains using the groupby() function:

competitor_count_cumsum_df = competitor_ahrefs_analysis

competitor_count_cumsum_df = competitor_count_cumsum_df.groupby(['site',
'month_year'])['rd_count'].sum().reset_index()

The expanding function allows the calculation window to grow with the number of rows, which is how
we achieve our cumulative sum:

competitor_count_cumsum_df['count_runsum'] =
competitor_count_cumsum_df['rd_count'].expanding().sum()

competitor_count_cumsum_df

This results in the following:

The result is a dataframe with the site, month_year, and count_runsum (the running sum), which is in the
perfect format to feed the graph – which we will now run as follows:

competitor_count_cumsum_plt = (
    ggplot(competitor_count_cumsum_df, aes(x = 'month_year', y =
'count_runsum',
     group = 'site', colour = 'site')) +
    geom_line(alpha = 0.6, size = 2) +
    labs(y = 'Running Sum of Referring Domains', x = 'Month Year') +
    scale_y_continuous() +
    scale_x_date() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         ))



competitor_count_cumsum_plt.save(filename =
'images/5_count_cumsum_smooth_plt.png',
 height=5, width=10, units = 'in', dpi=1000)

competitor_count_cumsum_plt

The competitor_count_cumsum_plt plot (Figure 5-13) shows the number of referring domains for each
site since 2014. What is quite interesting are the different starting positions for each site when they start
acquiring links.

Figure	5-13 Time series plot of the running sum of referring domains for each website

For example, William Garvey started with over 5000 domains. I’d love to know who their digital PR team
is.

We can also see the rate of growth, for example, although Hadley Rose started link acquisition in 2018,
things really took off around mid-2021.

Link	Velocity
Let’s take a look at link velocity:

competitor_velocity_cumsum_plt = (
    ggplot(competitor_count_cumsum_df, aes(x = 'month_year', y =
'link_velocity',
     group = 'site', colour = 'site')) +
    geom_line(alpha = 0.6, size = 2) +
    labs(y = 'Running Sum of Referring Domains', x = 'Month Year') +
    scale_y_log10() +
    scale_x_date() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         ))

competitor_velocity_cumsum_plt.save(filename =
'images/5_competitor_velocity_cumsum_plt.png',
                           height=5, width=10, units = 'in', dpi=1000)

competitor_velocity_cumsum_plt

The view shows the relative speed at which the sites are acquiring links (Figure 5-14). This is an
unusual but useful view as for any given month you can see which site is acquiring the most links by virtue



of the height of their lines.

Figure	5-14 Time series plot showing the link velocity of each website

David Linley was winning the contest throughout the years until Hadley Rose came along.

Link	Capital
Like most things that are measured in life, the ultimate value is determined by the product of their rate and
volume. So we will apply the same principle to determine the overall value of a site’s authority and call it
“link capital.”

We’ll start by merging the running average stats for both link volume and average traf�ic (as our
measure of authority):

competitor_capital_cumu_df =
competitor_count_cumsum_df.merge(competitor_traffic_cummean_df,
                          on = ['site', 'month_year'], how = 'left'
                         )

competitor_capital_cumu_df['auth_cap'] =
(competitor_capital_cumu_df['count_runsum'] *
competitor_capital_cumu_df['traffic_runavg']).round(1)*0.001

competitor_capital_cumu_df['auth_velocity'] =
competitor_capital_cumu_df['auth_cap'].diff()

competitor_capital_cumu_df

This results in the following:



The merged table is produced with new columns auth_cap (measuring overall authority) and auth_velocity
(the rate at which authority is being added).

Let’s see how the competitors compare in terms of total authority over time in Figure 5-15.

Figure	5-15 Time series plot of authority capital over time by website

The plot shows the link capital of several sites over time. What’s quite interesting is how Hadley Rose
emerged as the most authoritative with the third most consistently highest traf�icked backlinking sites with
a ramp-up in volume in less than a year. This has allowed them to overtake all of their competitors in the
same time period (based on volume while maintaining quality).

What about the velocity in which authority has been added? In the following, we’ll plot the authority
velocity over time for each website:

competitor_capital_veloc_plt = (
    ggplot(competitor_capital_cumu_df, aes(x = 'month_year', y =
'auth_velocity',
     group = 'site', colour = 'site')) +
    geom_line(alpha = 0.6, size = 2) +
    labs(y = 'Authority Capital', x = 'Month Year') +
    scale_y_continuous() +
    scale_x_date() +
    theme(legend_position = 'right',



          axis_text_x=element_text(rotation=90, hjust=1)
         ))

competitor_capital_veloc_plt.save(filename =
'images/6_auth_veloc_smooth_plt.png',
                           height=5, width=10, units = 'in', dpi=1000)

competitor_capital_veloc_plt

The only standouts are David Linley and Hadley Rose (Figure 5-16). Should David Linley maintain the
quality and the velocity of its link acquisition program?

Figure	5-16 Link capital velocity over time by website

We’re in no doubt that it will catch up and even surpass Hadley Rose, all other things being equal.

Finding	Power	Networks
A power network in SEO parlance is a group of websites that link to the top ranking sites for your desired
keyword(s). So, getting a backlink from these websites to your website will improve your authority and
thereby improve your site’s ranking potential.

Does it work? From our experience, yes.
Before we go into the code, let’s discuss the theory. In 1996, the quality of web search was in its infancy

and highly dependent on the keyword(s) used on the page.
In response, Jon Kleinberg, a computer scientist, invented the Hyperlink-Induced Topic Search (HITS)

algorithm which later formed the core algorithm for the Ask search engine.
The idea, as described in his paper “Authoritative sources in a hyperlinked environment” (1999), is a

link analysis algorithm that ranks web pages for their authority and hub values. Authorities estimate the
content value of the page, while hubs estimate the value of its links to other pages.

From a data-driven SEO perspective, we’re not only interested in acquiring these links, we’re also
interested in �inding out (in a data-driven manner) what these hubs are.

To achieve this, we’ll group the referring domains and their traf�ic levels to calculate the number of sites:

power_doms_strata = competitor_ahrefs_analysis.groupby(['domain',
'traffic_']).agg({'rd_count': 'count'})
power_doms_strata = power_doms_strata.reset_index().sort_values('traffic_',
ascending = False)

A referring domain can only be considered a hub or power domain if it links to more than two domains,
so we’ll �ilter out those that don’t meet the criteria. Why three or more? Because one is random, two is a

http://www.cs.cornell.edu/home/kleinber/auth.pdf


coincidence, and three is directed.

power_doms_strata = power_doms_strata.loc[power_doms_strata['rd_count'] > 2]

power_doms_strata

This results in the following:

The table shows referring domains, their traf�ic, and the number of (our furniture) sites that these
backlinking domains are linking to.

Being data driven, we’re not satis�ied with a list, so we’ll use statistics to help understand the
distribution of power before �iltering the list further:

pd.set_option('display.float_format', str)
power_doms_stats = power_doms_strata.describe()

power_doms_stats

This results in the following:



We see the distribution is heavily positively skewed where most of the highly traf�icked referring domains
are in the 75th percentile or higher. Those are the ones we want. Let’s visualize:

power_doms_stats_plt = (
    ggplot(power_doms_strata, aes(x = 'traffic_')) +
    geom_histogram(alpha = 0.6, binwidth = 10) +
    labs(y = 'Power Domains Count', x = 'traffic_') +
    scale_y_continuous() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation = 90, hjust=1)
         ))

power_doms_stats_plt.save(filename = 'images/7_power_doms_stats_plt.png',
                           height=5, width=10, units = 'in', dpi=1000)

power_doms_stats_plt

As mentioned, the distribution is massively skewed, which is more apparent from the histogram. Finally,
we’ll �ilter the domain list for the most powerful:

power_doms = power_doms_strata.loc[power_doms_strata['traffic_'] >
power_doms_stats['traffic_'][-2]]

Although we’re interested in hubs, we’re sorting the dataframe by traf�ic as these have the most
authority:

power_doms = power_doms.sort_values('traffic_', ascending = False)

power_doms

This results in the following:



By far, the most powerful is the daily mail, so in this case start budgeting for a good digital PR consultant or
full-time employee. There are also other publisher sites like the Evening Standard (standard.co.uk) and The
Times.

Some links are easier and quicker to get such as the yell.com and Thomson local directories.
Then there are more market-speci�ic publishers such as the Ideal Home, Homes and Gardens, Livingetc,

and House and Garden.
This should probably be your �irst port of call.
This analysis could be improved further in a number of ways, for example:

Going more granular by looking for power pages (single backlink URLs that power your competitors)
Checking the relevance of the backlink page (or home page) to see if it impacts visibility and �iltering for
relevance
Combining relevance with traf�ic for a combined score for hub �iltering

Taking	It	Further
Of course, the preceding discussion is just the tip of the iceberg, as it’s a simple exploration of one site so
it’s very dif�icult to infer anything useful for improving rankings in competitive search spaces.

The following are some areas for further data exploration and analysis:



Adding social media share data to destination URLs, referring domains, and referring pages
Correlating overall site visibility with the running average referring domain traf�ic over time
Plotting the distribution of referring domain traf�ic over time
Adding search volume data on the hostnames to see how many brand searches the referring domains
receive as an alternative measure of authority
Joining with crawl data to the destination URLs to test for

Content relevance
Whether the page is indexable by con�irming the HTTP response (i.e., 200)

Naturally, the preceding ideas aren’t exhaustive. Some modeling extensions would require an
application of the machine learning techniques outlined in Chapter 6.

Summary
Backlinks, the expression of website authority for search engines, are incredibly in�luential to search result
positions for any website. In this chapter, you have learned about

What site authority is and how it impacts SEO
How brand searches could impact search visibility
Single site analysis
Competitor authority analysis

Link	anatomy: How R2 showed referring domain traf�ic was more of a predictor than domain rating for
explaining visibility
How analyzing multiple sites adds richness and context to authority insights

In both single and multiple site analyses
Authority – distribution and over time
Link volumes and velocity

In the next chapter, we will use data science to analyze keyword search result competitors.
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What self-respecting SEO doesn’t do competitor analysis to �ind out what they’re missing? Back in 2007,
Andreas recalls using spreadsheets collecting data on SERPs with columns representing aspects of the
competition, such as the number of links to the home page, number of pages, word counts, etc. In hindsight,
the idea was right, but the execution was near hopeless because of the dif�iculty of Excel to perform a
statistically robust analysis in the short time required – something you will now learn shortly using
machine learning.

And	Algorithm	Recovery	Too!
The applications are not only useful for general competitor SEO analysis but also recovering from Google
updates, especially when you don’t have copies of SERPs data preceding the update to contrast what worked
before to what works now.

If you did have the SERPs data leading up to the update, then you’d simply repeat the analysis for the
before SERPs and compare the analysis results to the after SERPs.

De�ining	the	Problem
Before we rush in, let’s think about the challenge. With over 10,000 ranking factors, there isn’t enough time
nor budget to learn and optimize for the high-priority SEO items.

We propose to �ind the ranking factors that will make the decisive difference to your SEO campaign by
cutting through the noise and using machine learning on competitor data to discover

Which ranking factors can best explain the differences in rankings between sites
What the winning benchmarks are
How much a unit change in the factor is worth in terms of rank

Outcome	Metric
Let it be written that the outcome variable should be search engine ranking in Google. This approach can be
adapted for any other search engine (be it Bing, Yandex, Baidu, etc.) as long as you can get the data from a
reliable rank checking tool.

Why	Ranking?
Because unlike user sessions, it doesn’t vary according to the weather, the time of year, and so on – Query
Freshness excepted. It’s probably the cleanest metric. In any case, the ranking represents the order in which
content of the ranking URL best satis�ies the search query – the point of RankBrain, come to think of it. So in
effect, we are working out how to optimize for any Google update informed by RankBrain.

From a data perspective, the ranking position must be a �loating numeric data type known as a “�loat” in
Python (“double” in R).

Features
Now that we have established the outcome metric, we must now determine the independent variables, the
model inputs also known as features. The data types for the feature will vary, for example:

�irst_paint_ms would be numeric.

https://doi.org/10.1007/978-1-4842-9175-7_6


�lesch_kincaid_reading_ease would be a character.
Naturally, you want to cover as many meaningful features as possible, including technical, content/UX,

and offsite, for the most comprehensive competitor research.

Data	Strategy
Now that we know the outcome and features, what to do? Given that rankings are numeric and that we want
to explain the difference in rank which is a continuous variable (i.e., one �lows into two, then into three,
etc.), then competitor analysis in this instance is a regression problem. This means in mathematical terms

rank ~ w_1*feature_1 + w_2*feature_2 + … + w_n*feature_n

~ means explained by.
n is the nth feature.
w is the weighting of the feature.
To be clear, this is not always a linear regression exercise. Linear regression assumes all features will

behave in a linear fashion – data points will all �it along a straight line. While this may be true in most cases
for some features like PageSpeed, this will not be true for other features.

For example, a lot of ranking factors behave nonlinearly for some sectors. For example, the number of
characters for a title tag is usually nonlinear such that there is a sweet spot.

As shown in Figure 6-1, we can see that the line of best �it is n-shaped showing the rank to get higher as
we approach 28% of title characters featuring the site title and lower the further a website deviates from
that winning benchmark for title tag branding proportion.

Figure	6-1 Scatterplot of title tags branded (as a proportion of total characters) and average Google rank position

In terms of what to collect features on, search engines rank URLs, not domains, and therefore we will
focus on the former. This will save you money and time in terms of data collection costs as well as putting
the actual data together. However, the downside is that you won’t be able to include domain-wide features
such as ranking URL distance from the home page.



To that end, we will be using a decision tree–based algorithm known as “random forest.” There are other
algorithms such as decision tree, better ones like AdaBoost, and XGBoost. A data scientist will typically
experiment with a number of models and then pick the best one in terms of model stability and predictive
accuracy.

However, we’re here to get you started; the models are likely to produce similar results, and so we’re
saving you time while delivering you, most importantly, the intuition behind the machine learning
technique for analyzing your SERP competitors for SEO.

Data	Sources
Although we’re not privy to Google’s internal data (unless you work for Google), we rely heavily on third-
party tools to provide the data. The reason the tools are third party and not �irst party is that the data for all
websites in the data study must be comparable to each other – unless in the unlikely event you have access
to your competitors’ data. No? Moving on.

Your data sources will depend on the type of features you wish to test for modeling the SERP
competitors.

Rank: This will come from your rank checking tool and not Google Search Console. So that’s getSTAT,
SEO Monitor, Rank Ranger or the DataForSEO SERPs API. There are others, although we have or have no
direct experience of testing their APIs and thus cannot be mentioned. Why those three? Because they all
allow you to export the top 100 URLs for every keyword you’re including in your research. This is important
because from the outset we don’t want to assume who your SERPs competitors are. We just want to extract
the data and interrogate it.

For the features:
Onsite: To test whether onsite factors can explain the differences in rank for your keyword set, use

features like title tag length, page speed, number of words, reading ease, and anything your rank checking
tool can tell you about a URL. You can also derive your own features such as title relevance by calculating the
string distance between the title tag and the target keyword. Rest assured, we’ll show you how later.

For less competitive industries and small datasets (less than 250,000 URLs per site), a tool like
Screaming Frog or Sitebulb will do. For large datasets and competitive industries, it’s most likely that your
competitors will block desktop site auditors, so you will have to resort to an enterprise-grade tool that
crawls from the cloud and has an API. We have personally found Botify, not only to have both but also to
work well because most enterprise brands use them so they won’t get blocked, when it comes to crawling!

Offsite: To test the impact of offsite factors, choose a reliable source with a good API. In our experience,
AHREFs and BuzzSumo work well, yielding metrics such as the domain rating, number of social shares by
platform, and number of internal links on the backlinking URLs. Both have APIs which allow you to automate
the collection of offsite data into your R workspace.

Explore,	Clean,	and	Transform
Now that you have the data, data science practice dictates that you explore the data to

Understand	the	distribution: Is it skewed or multimodal (i.e., multiple peaks in the distribution)?
Examine	the	quality	of	data: Are there too many NAs? Single-level factors?
Discover new features for derivation

The idea is to improve the quality of the data you’re going to feed into your model by discarding features
and rows as not all of them will be informative or useful. Exploring the data will also help you understand
the limits of your model for explaining the ranking factors in your search query space.

Before joining onto the SERPs data, let’s explore.
To summarize the overall approach

1.
Import data – both rankings and features  

2.
Focus on the competitors  

3.
Join the data  



4. Derive new features  
5.

Single-level factors (SLFs)  
6.

Rescale your data  
7.

Near Zero Variance (NZVs)  
8.

Median impute  
9.

One hot encoding (OHE)  
10.

Eliminate NAs  
11.

Model the SERPs  
12.

Evaluate the SERPs ML model  
13.

The most predictive drivers of rank  
14.

How much rank a ranking factor is worth  
15.

The winning benchmark for a ranking factor 
Naturally, there is a lot to cover, so we will explain each of these brie�ly and go into more detail over the

more interesting secrets ML can uncover on your competitors.

Import	Data	–	Both	SERPs	and	Features
This can be done by importing CSV downloads from the relevant SEO tools or, for a more automated
experience, using your tool provider’s API into dataframes (Python’s version of a spreadsheet). Some
starter code is shown as follows for importing CSV data:

For regular expressions (regex), although string methods include regex by default:

import re
import time
import random
import pandas as pd
import numpy as np
import datetime
import re
import time
import requests
import json
from datetime import timedelta

For importing multiple �iles:

from glob import glob
import os

String methods used to compute the overlap between two text strings:

from textdistance import sorensen_dice

To extract parts of a URL:



import uritools
from tldextract import extract

For visualizing data:

from plotnine import *
import matplotlib.pyplot as plt
pd.set_option('display.max_colwidth', None)
%matplotlib inline

Some variables are initiated at the start, so that when you reuse the script on another client or site, you
simply overwrite the following variable values:

root_url = 'https://www.johnsankey.co.uk'
target_site = 'www.johnsankey.co.uk'
root_domain = 'johnsankey.co.uk'
hostname = 'johnsankey'
target_name = 'sankey'
geo_market = 'uk'

A list of social sites used for subsetting or �iltering the data:

social_sites = ['facebook.com', 'instagram.com', 'linkedin.com',
'twitter.com', 'pinterest.com', 'tiktok.com', 'foursquare.com',
'reddit.com']

Start	with	the	Keywords
As with virtually all things in SEO, start with the end in mind. That usually means the target keywords you
want your site to rank for and therefore their SERPs which we will load into a Pandas dataframe:

serps_raw = pd.read_csv('data/keywords_serps.csv')

To make the dataframe easier to handle, we’ll use a list comprehension to turn the column names into
lowercase and replace punctuation marks and spaces with underscores:

serps_raw.columns = [x.lower().replace(' ', '_').replace(',',
'_').replace('__', '_') for x in serps_raw.columns]

The rank_absolute column is replaced by the more simpli�ied and familiar “rank”:

serps_raw = serps_raw.rename(columns = {'rank_absolute': 'rank'})

serps_raw

This results in the following:



The serps_raw dataframe has over 25,000 rows of SERPs data with 6 columns, covering all of the keywords:

serps_df = serps_raw.copy()

The URL column is set as a string for easier data manipulation:

serps_df['url'] = serps_df['url'].astype(str)

The �irst manipulation is to extract the domain for the “site” column. The site column will apply the
uritools API function to strip of the slug and then split the URL into a list of its components using a list
comprehension:

serps_df['site'] = [uritools.urisplit(x).authority if uritools.isuri(x) else
x for x in serps_df['url']]

Once split, we will extract everything in the list, taking the last three components:

serps_df['site'] = ['.'.join(s.split('.')[-3:]) for s in serps_df['site']]

Next, we want to pro�ile the rank into strata, so that we can have rank categories. While this may not be
used in this particular exercise, it’s standard practice when working with SERPs data.

serps_df['rank_profile'] = np.where(serps_df['rank'] < 11, 'page_1',
'page_2')
serps_df['rank_profile'] = np.where(serps_df['rank'] < 3, 'top_3',
                                              serps_df['rank_profile'])

Rather than have zero search_volumes, we’ll set these to one to avoid divide by zero errors using
np.where():

serps_df['se_results_count'] = np.where(serps_df['se_results_count'] == 0,
1, serps_df['se_results_count'])

We’ll set a “count” column for quicker aggregation:

serps_df['count'] = 1

We’ll also count the number of keywords in a search string, known in the data science world as tokens:

serps_df['token_count'] = serps_df['keyword'].str.count(' ') + 1



These will then be categorized into head, middle, and tail, based on the token length:

before_length_conds = [
    serps_df['token_count'] == 1,
    serps_df['token_count'] == 2,
    serps_df['token_count'] > 2]

length_vals = ['head', 'middle', 'long']

serps_df['token_size'] = np.select(before_length_conds, length_vals)

serps_df

This results in the following:

Focus	on	the	Competitors
The SERPs data effectively tells us what content is being rewarded by Google where the rank is the outcome
metric. However, much of this data is likely to be noisy, and a few of the columns are likely to have ranking
factors that explain the difference in ranking between content.

The content is noisy because SERPs are likely to contain content from sites (such as reviews and
references) which will prove very dif�icult for the commercial sites to learn from. Ultimately, when
conducting this exercise, SEO is primarily interested in outranking competitor sites before these other sites
become a consideration.

So, you’ll want to select your competitors to make your study more meaningful. For example, if your
client or your brand is in the webinar technology space, it won’t make sense to include Wikipedia.com or
Amazon.com in your dataset as they don’t directly compete with your brand.

What you really want are near-direct to direct competitors, that is, doppelgangers, so that you can
compare what it is they do or don’t do to rank higher or lower than you.

The downside of this approach is that you don’t get to appreciate what Google wants from the SERPs by
stripping out noncompetitors. That’s because the SERPs need to be analyzed as a whole, which is covered to
an extent in Chapter 10. However, this chapter is about competitor analysis, so we shall proceed.

To �ind the competitors, we’ll have to perform some aggregations starting with calculating reach (i.e.,
the number of content with positions in the top 10):

major_players_reach = serps_df.loc[serps_df['rank'] < 10]



With the SERPs �iltered or limited to the top 10, we’ll aggregate the total number of top 10s by site, using
groupby site and summing the count column:

major_players_reach = major_players_reach.groupby('site').agg({'count':
sum}).reset_index()

Then we’ll sort the sites in descending order of reach:

major_players_reach = major_players_reach.sort_values('count', ascending =
False)

The reach metric is most of the story by giving us the volume, but we also want the rank which is
calculated by taking the median. This will help order sites with comparable levels of reach.

major_players_rank = serps_df.groupby('site').agg({'rank':
'median'}).reset_index()
major_players_rank = major_players_rank.sort_values('rank')

Aggregating by search engine result count helps to give a measure of the competitiveness of the
keyword overall, which is aggregated by the mean value. This data is uniquely provided by DataForSEO’s
SERPs API. However, you could easily substitute this with the more usual search volume metric provided by
other SERPs trackers such as SEO Monitor.

major_players_searches = serps_df.groupby('site').agg({'se_results_count':
'mean'}).reset_index()
major_players_searches =
major_players_searches.sort_values('se_results_count')

The rank and search result aggregations are joined onto the reach data to form one table using the
merge() function. This is equivalent to a vlookup using the site column as the basis of the merge:

major_players_stats = major_players_reach.merge(major_players_rank, on =
'site', how = 'left')
major_players_stats = major_players_stats.merge(major_players_searches, on =
'site', how = 'left')

Using all the data, we’ll compute an overall visibility metric which divides the reach squared by the rank.
The reach is squared to avoid sites with a few top 10s and very high rankings appearing at the top of the list.

The rank is the divisor because the higher the rank, the lower the number; therefore, dividing by a lower
number will increase the value of the site’s visibility should it rank higher:

major_players_stats['visibility'] = ((major_players_stats['reach'] ** 2) /
major_players_stats['rank']).round()

The social media sites are excluded to focus on commercial competitors:

major_players_stats =
major_players_stats.loc[~major_players_stats['site'].str.contains('|'.join(soc

Rename count to reach:

major_players_stats = major_players_stats.rename(columns = {'count':
'reach'})

Remove sites with nan values:

major_players_stats = major_players_stats.loc[major_players_stats['site'] !=
'nan']



major_players_stats.head(10)

This results in the following:

The dataframe shows the top 20 feature sites we would expect to see dominating the SERPs. A few of the
top sites are not direct competitors (will probably be uncrawlable!), so these will be removed, as we’re
interested in learning from the most direct competitors to see their most effective SEO.

As a result, we will select the most direct competitors and store these in a list “player_sites_lst”:

player_sites_lst = ['sofology.co.uk', 'www.designersofas4u.co.uk',
'www.heals.com', 'darlingsofchelsea.co.uk', 'www.made.com',
'www.sofasandstuff.com', 'www.arloandjacob.com', 'loaf.com', 'www.made.com',
'theenglishsofacompany.co.uk', 'willowandhall.co.uk', root_domain]

The list will be used to �ilter the SERPs to contain only content from these direct competitors:

direct_players_stats =
major_players_stats.loc[major_players_stats['site'].isin(player_sites_lst)]

direct_players_stats

This results in the following:



The dataframe shows that Darlings of Chelsea is the leading site to “beat” with the most reach and the
highest rank on average.

Let’s visualize this:

major_players_stats_plt = (
    ggplot(direct_players_stats,
           aes(x = 'reach', y = 'rank', fill = 'site', colour = 'site',
                               size = 'se_results_count')) +
    geom_point(alpha = 0.8) +
    geom_text(direct_players_stats, aes(label = 'site'),
position=position_stack(vjust=-0.08)) +
    labs(y = 'Google Rank', x = 'Google Reach') +
    scale_y_reverse() +
  scale_size_continuous(range = [5, 20]) +
    theme(legend_position = 'none', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

major_players_stats_plt.save(filename =
'images/1_major_players_stats_plt.png',
                             height=5, width=8, units = 'in', dpi=1000)
major_players_stats_plt

Although Darlings of Chelsea leads the luxury sector, Made.com has the most presence on the more
highly competitive keywords as signi�ied by the size of their data point (se_results_count) (Figure 6-2).



Figure	6-2 Bubble chart comparing Google’s top 10s (reach) of each website and their average Google ranking position. Circle size represents the
number of search results of the queries each site appears for

John Sankey on the other hand is the lowest ranking and has the least reach.
Filtering the SERPs data for just the direct competitors, this will make the data less noisy:

player_serps = serps_df[serps_df['site'].isin(player_sites_lst)]

player_serps

This results in the following:



We end with a dataframe with far less rows from 25,000 to 1,294. Although machine learning algorithms
would generally work best with 10,000 rows or more, the methods are still superior (in terms of insight
speed and consistency) to working manually in a spreadsheet.

We’re analyzing the most relevant sites, and we can proceed to collect data on those sites. These will
form our hypotheses which will form the possible ranking factors that explain the differences in ranking
between sites.

Site crawls provide a rich source of data as they contain information about the content and technical
SEO characteristics of the ranking pages, which will be our starting point.

We’ll start by de�ining a function to export the URLs for site crawling to a CSV �ile:

def export_crawl(df):
    dom_name = df.domain.iloc[0]
    df = df[['url']]
    df = df[['url']].drop_duplicates()
    df.to_csv('data/1_to_crawl/' + dom_name + '_crawl_urls.csv',
index=False)

The function is applied to the �iltered SERPs dataframe using the groupby() function:

direct_players_stats.groupby(site).apply(export_crawl)

This results in the following:



Once the data is crawled, we can store the exports in a folder and read them in, one by one.
In this instance, we set the �ile path as a variable named “crawl_path”:

crawl_path = 'data/2_crawled/'
crawl_filenames = os.listdir(crawl_path)
crawl_filenames

['www_johnsankey_co_uk.csv',
 'www_sofasandstuff_com.csv',
 'loaf_com.csv',
 'www_designersofas4u_co_uk.csv',
 'www_theenglishsofacompany_co_uk.csv',
 'www_willowandhall_co_uk.csv',
 'www_darlingsofchelsea_co_uk.csv',
 'www_sofology_co_uk.csv',
 'www_arloandjacob_com.csv']

crawl_df_lst = list()
crawl_colnames = list()

A for loop is used to go through the list of website auditor CSV exports and read the data into a list:

for filename in crawl_filenames:
    df = pd.read_csv(crawl_path + filename)
    df['sitefile'] = filename
    df['sitefile'] = df['sitefile'].str.replace('_', '.', regex = False)
    df['sitefile'] = df['sitefile'].str.replace('.csv', '', regex = False)
    crawl_colnames.append(df.columns)
    crawl_df_lst.append(df)

This list “crawl_df_lst” is then combined into a dataframe:

crawl_raw = pd.concat(crawl_df_lst)

The column names are made more data-friendly by removing formatting and converting the column
names to lowercase:

crawl_raw.columns = [col.lower().replace(' ', '_').replace(')',
'_').replace('(', '_').replace(',', '_').replace(':', '_').replace('.',



'_').replace('__', '_') for col in crawl_raw.columns]

crawl_raw

This results in the following:

crawl_df = crawl_raw.copy()

Getting the site name will help us aggregate the data by site. Using a list comprehension, we’ll loop
through the dataframe URL column and apply the urisplit() function:

crawl_df['site'] = [uritools.urisplit(uri).authority if uritools.isuri(uri)
else uri for uri in crawl_df['url']]

Filter for HTML URLs only:

crawl_df = crawl_df.loc[crawl_df['content_type'] == 'HTML']

crawl_df

This results in the following:



Printing the data types using the .dtypes property helps us see which columns require potential conversion
into more usable data types:

print(crawl_df.dtypes)

We can see from the following printed list highlighted in blue that there are numeric variables that are in
object format but should be a �loat64 and will therefore require conversion.

This results in the following:

We’ll create a copy of the dataframe to create a new one that will have converted columns:

cleaner_crawl = crawl_df.copy()

Starting with reading time, we’ll replace no data with the current timing format using np.where():

cleaner_crawl['reading_time_mm_ss_'] =
np.where(cleaner_crawl['reading_time_mm_ss_'] == 'No Data',
'00:00',cleaner_crawl['reading_time_mm_ss_'])



cleaner_crawl['reading_time_mm_ss_'] = '00:'
+cleaner_crawl['reading_time_mm_ss_']

And convert it to a timing format:

cleaner_crawl['reading_time_mm_ss_'] =
pd.to_timedelta(cleaner_crawl['reading_time_mm_ss_']).dt.total_seconds()

We’ll convert other string format columns to �loat, by �irst de�ining a list of columns to be converted:

float_cols = ['cumulative_layout_shift', 'first_contentful_paint',
'largest_contentful_paint', 'performance_score',
        'time_to_interactive', 'total_blocking_time']

Using the list, we’ll use the apply column and the to_numeric() function to convert the columns:

cleaner_crawl[float_cols] = cleaner_crawl[float_cols].apply(pd.to_numeric,
errors='coerce')

We’ll now view the recently converted columns:

cleaner_crawl[['url', 'reading_time_mm_ss_'] + float_cols]

This results in the following:

The columns are correctly formatted. For more advanced features, you may want to try segmenting the
different types of content according to format, such as blogs, guides, categories, subcategories, items, etc.

For further features, we shall import backlink authority data. First, we’ll import the data by reading all of
the AHREFs data in the folder:

# read loop files in folder
authority_path = 'data/4_ahrefs/'
authority_filenames = os.listdir(authority_path)

authority_filenames

The list of AHREFs �iles is set ready to iterate through:

['darlingsofchelsea.co.uk-best-pages-by-links-subdomains-12-Sep-2022_19-17-
56.csv',
 'sofology.co.uk-best-pages-by-links-subdomains-12-Sep-2022_19-24-00.csv',
 'sofasandstuff.com-best-pages-by-links-subdomains-12-Sep-2022_19-23-
42.csv',



 'willowandhall.co.uk-best-pages-by-links-subdomains-12-Sep-2022_19-17-
03.csv',
 'theenglishsofacompany.co.uk-best-pages-by-links-subdomains-12-Sep-2022_19-
24-53.csv',
 'arloandjacob.com-best-pages-by-links-subdomains-12-Sep-2022_19-23-19.csv',
 'designersofas4u.co.uk-best-pages-by-links-subdomains-12-Sep-2022_19-16-
38.csv',
 'johnsankey.co.uk-best-pages-by-links-subdomains-12-Sep-2022_19-16-04.csv',
 'heals.com-best-pages-by-links-subdomains-12-Sep-2022_19-17-32.csv',
 'loaf.com-best-pages-by-links-subdomains-12-Sep-2022_19-25-17.csv']

Initialize lists to contain the outputs of the for loop:

auth_df_lst = list()
auth_colnames = list()

The for loop reads in the data using the read_csv function, stores the �ilename as a column (so we know
which �ile the data comes from), cleans up the column names, and adds the data to the lists created earlier:

for filename in authority_filenames:
    df = pd.read_csv(authority_path + filename, encoding = 'UTF-16', sep =
'\t')
    df['sitefile'] = filename
    df['sitefile'] = df['sitefile'].str.replace('.csv', '', regex = False)
    df.columns = [x.lower().replace(' ', '_').replace('(', '_').replace(')',
'_').replace(' ', '_').
                  replace('__', '_') for x in df.columns]
    df['sitefile'] = df['sitefile'].str.extract('(.*?)\-')
    auth_colnames.append(df.columns)
    print(df['sitefile'][0])
    auth_df_lst.append(df)

Once the loop has run, the lists are combined into a single dataframe using the concat() function:

auth_df_raw = pd.concat(auth_df_lst)
auth_df_raw = auth_df_raw.rename(columns = {'page_url': 'url'})
auth_df_raw.drop(['#', 'size', 'code', 'crawl_date', 'language',
'page_title',
                  'first_seen'], axis = 1, inplace = True)
auth_df_raw

The resulting auth_df_raw dataframe is shown as follows with the site pages and their backlink metrics.



Join	the	Data
Now that the data from their respective tool sources are imported, they are now ready to be joined. Usually,
the common column (known as the “primary key”) between datasets is the URL as that is what search
engines rank.

We’ll start by joining the SERPs data to the crawl data. Before we do, we only require the SERPs
containing the competitor sites.

player_serps = serps_df[serps_df['site'].isin(player_sites_lst)]

The vlookup to join competitor SERPs and the crawl data of the ranking URLs is achieved by using the
.merge() function:

player_serps_crawl = player_serps.merge(cleaner_crawl, on = ['url'], how =
'left')
player_serps_crawl = player_serps_crawl.rename(columns = {'site_x': 'site'})

Drop unnecessary columns using the .drop() function:

player_serps_crawl.drop(['site_y', 'sitefile'], axis = 1, inplace = True)
player_serps_crawl

This results in the following:

The next step is to join the backlink authority data to the dataset containing SERPs and crawl metrics, again
using the merge() function:

player_serps_crawl_auth = player_serps_crawl.copy()
player_serps_crawl_auth = player_serps_crawl_auth.merge(auth_df_raw, on =
['url'], how = 'left')
player_serps_crawl_auth.drop(['sitefile'], axis = 1, inplace = True)
player_serps_crawl_auth

The data has now been joined such that each SERP URL has its onsite and offsite SEO data in a single
dataframe:



Derive	New	Features
The great thing about combining the data is that you can derive new features that you wouldn’t perhaps get
from the individual datasets. For example, a highly useful feature would be to compare the similarity (or
dissimilarity) of the title tag to the target search phrase. This uses the title tag of the ranking URL from the
crawl data and the SERPs keyword. The new features give us additional hypotheses to test using the
machine learning processes later on.

We’ll start by making a new dataframe and derive a number of new data features which will be stored as
additional columns:

hypo_serps_features = player_serps_crawl_auth.copy()

Add regional_tld which denotes whether the ranking URL is regionalized or not:

regional_tlds = ['.uk']
hypo_serps_features['regional_tld'] =
np.where(hypo_serps_features['site'].str.contains('|'.join(regional_tlds)),
1, 0)

Add a metric for measuring how much of the target keyword is used in the title tag using the
sorensen_dice() function:

hypo_serps_features['title'] = hypo_serps_features['title'].astype(str)
hypo_serps_features['title_relevance'] = hypo_serps_features.loc[:,
['title', 'keyword']].apply(
    lambda x: sorensen_dice(*x), axis=1)

We’re also interested in measuring the extent to which title tags and H1 heading consistency are
in�luential:

hypo_serps_features['h1'] = hypo_serps_features['h1'].astype(str)
hypo_serps_features['title_h1'] = hypo_serps_features.loc[:, ['title',
'h1']].apply(
    lambda x: sorensen_dice(*x), axis=1)

Does having a brand in your title tag matter? Let’s �ind out:



hypo_serps_features['site'] = hypo_serps_features['site'].astype(str)
hypo_serps_features['hostname'] = hypo_serps_features['site'].apply(lambda
x: extract(x))
hypo_serps_features['hostname'] = hypo_serps_features['hostname'].str.get(1)
hypo_serps_features['title'] = hypo_serps_features['title'].str.lower()
hypo_serps_features['title_branded'] = hypo_serps_features.loc[:,
                                                               ['title',
'hostname']].apply(
    lambda x: sorensen_dice(*x), axis=1)

Another useful feature is URL parameters, that is, question marks in the ranking URL:

hypo_serps_features['url_params'] =
np.where(hypo_serps_features['url'].str.contains('\?'), '1', '0')
hypo_serps_features['url_params'] =
hypo_serps_features['url_params'].astype('category')

Another test is whether the ranking URL has Google Analytics code. It’s unlikely to amount to anything,
but if the data is available, why not?

hypo_serps_features['google_analytics_code'] = np.where(hypo_serps_features[
    'google_analytics_code'].str.contains('UA'), '1', '0')
hypo_serps_features['google_analytics_code'] =
hypo_serps_features['google_analytics_code'].astype('category')

The same goes for Google Tag Manager code:

hypo_serps_features['google_tag_manager_code'] = np.where(
    hypo_serps_features['google_tag_manager_code'].str.contains('GTM'), '1',
'0')
hypo_serps_features['google_tag_manager_code'] =
hypo_serps_features['google_tag_manager_code'].astype('category')

While tracking code in itself is unlikely to explain differences in rank, having a duplicate instance of the
same tracking code might:

hypo_serps_features['google_tag_manager_code_second_'] = np.where(
    hypo_serps_features['google_tag_manager_code_second_'].str.contains('GTM')
'1', '0')
hypo_serps_features['google_tag_manager_code_second_'] = hypo_serps_features[
    'google_tag_manager_code_second_'].astype('category')

A test for cache control is added to check for whether it’s private, public, or other and converted to a
category:

hypo_serps_features['cache_privacy'] = np.where(
    hypo_serps_features['cache-control'].str.contains('private'), 'private',
'0')
hypo_serps_features['cache_privacy'] = np.where(
    hypo_serps_features['cache-control'].str.contains('public'), 'public',
hypo_serps_features['cache_privacy'])
hypo_serps_features['cache_privacy'] = np.where(
    hypo_serps_features['cache-control'].str.contains('0'), 'other',
hypo_serps_features['cache_privacy'])
hypo_serps_features['cache_privacy'] =
hypo_serps_features['cache_privacy'].astype('category')

A cache age has also been added by extracting the numerical component of the cache-control string.
This is achieved by splitting the string on the “=” sign and then using the .get() function, before converting



to a numerical �loat data type:

hypo_serps_features['cache_age'] = hypo_serps_features['cache-
control'].str.split('\=')
hypo_serps_features['cache_age'] =
hypo_serps_features['cache_age'].str.get(-1)
hypo_serps_features['cache_age'] =
np.where(hypo_serps_features['cache_age'].isnull(), 0,
                                            hypo_serps_features['cache_age'])
hypo_serps_features['cache_age'] =
np.where(hypo_serps_features['cache_age'].str.contains('[a-z]'),
                                            0,
hypo_serps_features['cache_age'])
hypo_serps_features['cache_age'] =
hypo_serps_features['cache_age'].astype(float)

Here’s a test for whether the ranking URL is canonical or not:

hypo_serps_features['self_canonicalised'] = np.where(hypo_serps_features[
    'canonical_url'] == hypo_serps_features['url'], 1, 0)

We drop identi�iers such as the canonical URL as these are individual records that identify a single row
which will add nothing to the analysis.

We’re only interested in the characteristics or trend of this unique data value in itself.
We also drop hypotheses which are likely to be redundant or not interested in testing, such as the HTTP

protocol. This relies on your own SEO experience and judgment.

hypo_serps_features.drop(['cache-control', 'canonical_url', 'base_url',
'crawl_status', 'host', 'encoding', 'indexable_status',
'meta_robots_response_', 'title', 'title_response_', 'title_second_',
'title_render_status', 'meta_description',
'meta_description_response_',  'h1', 'h1_second_', 'h2', 'h2_second_',
'open_graph_audio', 'twitter_card_site', 'twitter_card_creator',
'twitter_card_description', 'twitter_card_image_url', 'twitter_card_title',
'content-security-policy', 'referrer-policy', 'hostname',
'open_graph_description', 'open_graph_image_url', 'open_graph_locale',
'open_graph_site_name', 'open_graph_title' , 'open_graph_url',
'meta_robots_rendered_', 'twitter_card_description', 'twitter_card_title',
'http_protocol', 'http_status_code' ], axis = 1, inplace = True)

Once done, we’ll create another copy of the dataframe and export as CSV in preparation for machine
learning, starting with single-level factors:

hypo_serps_pre_slf = hypo_serps_features.copy()

hypo_serps_pre_slf.to_csv('data/'+ geo_market +'_hypo_serps_pre_slf.csv',
index = False)

hypo_serps_pre_slf

This results in the following:



Single-Level	Factors	(SLFs)
A single-level factor is any column which has the same value throughout, which would not only be
redundant, the machine learning code would fail. For example, all of the ranking URL titles might be
branded, in which case, these should be removed.

To remove SLFs, we’ll iterate through the dataframe column by column to identify any column that has
data containing 70% or more of the same value and store the column names in a list. 70% is an arbitrary
threshold; you could choose 80% or 90%, for example; however, that comes with a risk of removing some
insightful ranking factors – even if it only applies to a smaller number of URLs which might ironically be the
top ranking URLs.

slf_cols = []
slf_limit = .7

for col in hypo_serps_pre_slf.columns:
    if hypo_serps_pre_slf[col].value_counts().iat[0] >=
(hypo_serps_pre_slf.shape[0] * slf_limit):
        slf_cols.append(col)

slf_cols

The columns with 70% identical data are printed as follows and will be removed from the dataset:

['location_code',
 'language_code',
 'rank_profile',
 'branded',
 'count',
 'crawl_depth',
 'is_subdomain',
 'no_query_string_keys',
 'query_string_contains_filtered_parameters',
 'query_string_contains_more_than_three_keys',
 'query_string_contains_paginated_parameters',



 'query_string_contains_repetitive_parameters',
 'query_string_contains_sorted_parameters',
 'scheme',...

Let’s examine a few of these SLF ranking factors using the groupby() function. Starting with branded, we
can see all of the ranking URL titles are branded, so these can be removed:

hypo_serps_pre_slf.groupby('branded')['count'].sum().sort_values()

branded
generic    1294
Name: count, dtype: int64

hypo_serps_pre_slf.groupby('url_params')['count'].sum().sort_values

Parameterized URLs also appear to be redundant with only 17 URLs that are parameterized. However,
these may still provide insight in unexpected ways.

<bound method Series.sort_values of url_params
0    1277
1      17
Name: count, dtype: int64>

Having identi�ied the SLFs, we’ll process these in a new dataframe where these will be removed using a
list comprehension:

hypo_serps_pre_mlfs = hypo_serps_pre_slf.copy()

The list of columns to be removed is nuanced further as we’d like to keep url_params as mentioned
earlier and the count column for further aggregation in future processes:

slf_cols = [elem for elem in slf_cols if not elem in ['count',
'url_params']]

Drop the SLF columns:

hypo_serps_pre_mlfs.drop(slf_cols, axis = 1, inplace = True)

hypo_serps_pre_mlfs

The resulting hypo_serps_pre_mlfs dataframe has the SLF columns removed:



Rescale	Your	Data
Whether you’re using linear models like linear regression or decision trees, both bene�it from rescaling the
data, because the data becomes “normalized,” making it easier for the ML to detect variation when
comparing rank with page speed, for example:

hypo_serps_preml_prescale = hypo_serps_pre_mlfs.copy()

Separate columns into numeric and nonnumeric so we can rescale the numeric columns using .dtypes:

hypo_serps_preml_num =
hypo_serps_preml_prescale.select_dtypes(include=np.number)
hypo_serps_preml_num_colnames = hypo_serps_preml_num.columns

Nonnumeric columns are saved into a separate dataframe, which will be used for joining later:

hypo_serps_preml_nonnum =
hypo_serps_preml_prescale.select_dtypes(exclude=np.number)

hypo_serps_preml_num

The resulting hypo_serps_preml_num is shown as follows, which includes the numeric columns only,
ready for rescaling:



We’ll make use of the MinMaxScaler() from the preprocessing functions of the sklearn API:

from sklearn import preprocessing

Convert the column values into a numpy array and then use the MinMaxScaler() function to rescale the
data:

x = hypo_serps_preml_num.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
hypo_serps_preml_num_scaled = pd.DataFrame(x_scaled,
index=hypo_serps_preml_num.index, columns = hypo_serps_preml_num_colnames)

hypo_serps_preml_num_scaled

This results in the following:

Near	Zero	Variance	(NZVs)
The next stage is to eliminate redundant numerical data columns which are similar to SLFs known as Near
Zero Variance (NZVs). While the values are different, there may not be much variation that can reliably
explain the differences in ranking positions, and we will therefore want these removed.

To identify NZVs, we’ll use the VarianceThreshold function from the SK Learn API:

from sklearn.feature_selection import VarianceThreshold

variance = hypo_serps_preml_num_scaled.var()
columns = hypo_serps_preml_num_scaled.columns



Save the names of variables having variance more than a threshold value:

highvar_variables = [ ]
nz_variables = [ ]

We’ll iterate through the numeric columns setting the threshold at 7% such that there must be at least
7% variation in the data to remain in the dataset. Again, 7% is an arbitrary choice. The high variation
columns are stored in the list we created earlier called highvar_variables:

for i in range(0,len(variance)):
    if variance[i]>=0.07:
        highvar_variables.append(columns[i])
    else:
        nz_variables.append(columns[i])

highvar_variables

The highvar_variables are shown as follows:

['rank',
 'no_canonical_links',
 'total_canonicals',
 'no_internal_followed_linking_urls',
 'no_internal_followed_links',
 'no_internal_linking_urls',
 'no_internal_links_to_url',
 'url_rank', ...]

nz_variables

This results in the following:

['se_results_count',
 'count',
 'token_count',
 'expires_date',
 'no_cookies',
 'file_size_kib_',
 'total_page_size_kib_', ...]

The NZVs identi�ied and stored in nz_variables are shown earlier. We can see that more web pages, for
example, have highly similar numbers of keywords in the search query (“token count”) and HTML page
sizes (“total_page_size_kib_”), so we’ll be happy to remove these.

Here’s a quick sanity check to ensure there are no columns that are listed as both high variation and
NZV:

[x for x in highvar_variables if x in nz_variables]

An empty list is returned, so thankfully there is no crossover:

[]

Let’s examine a couple of the NZV columns identi�ied. Although identi�ied as an NZV, the title relevance
has some variation as shown in the following using the describe() function. We can see the data ranges from
0 to 1 and has an interquartile range of 0.32 to 0.62, which is of course after rescaling. We’ll keep
“title_relevance” as from SEO experience, it is an important ranking factor:

hypo_serps_preml_num_scaled['title_relevance'].describe()



This results in the following:

count    1294.000000
mean        0.478477
std         0.199106
min         0.000000
25%         0.323529
50%         0.512712
75%         0.622487
max         1.000000
Name: title_relevance, dtype: float64

The scaled_images column on the other hand is NZV, as shown in the following, where most values are
zero until the 75th percentile of 0.17 showing very little variation and should therefore be excluded:

hypo_serps_preml_num_scaled['scaled_images'].describe()

This results in the following:

count    977.000000
mean       0.114348
std        0.163530
min        0.000000
25%        0.000000
50%        0.000000
75%        0.179487
max        1.000000
Name: scaled_images, dtype: float64

We’ll rede�ine the highvar_variables list to include some NZVs we think should remain in the dataset:

highvar_variables = highvar_variables + ['title_relevance', 'title_branded',
'no_content_words', 'first_contentful_paint', 'scaled_images',
'no_outgoing_links']

Save a new dataframe to include only columns listed in highvar_variables:

hypo_serps_preml_num_highvar =
hypo_serps_preml_num_scaled[highvar_variables]
hypo_serps_preml_num_highvar

The hypo_serps_preml_num_highvar df is shown as follows and has gone from 136 to 38 columns,
removing 98 columns.



Next, we’ll also remove ranking factors that are highly correlated to each other (known as multicollinearity),
using the variance_in�lation_factor() function from the statsmodels API to detect large variance in�lation
factors (VIF).

Multicollinearity is an issue because it reduces the statistical signi�icance of the ranking features used to
model the search result rankings.

A large variance in�lation factor (VIF) on a ranking feature or any modeling variable hints at a highly
correlated relationship to other ranking factors. Removing those variables will improve the model’s
predictive consistency, that is, more stable and less degree of error when making forecasts.

from statsmodels.stats.outliers_influence import variance_inflation_factor

Remove rows with missing values (np.nan) and in�inite values (np.inf, -np.inf):

vif_input =
hypo_serps_preml_num_highvar[~hypo_serps_preml_num_highvar.isin([np.nan,
np.inf, -np.inf]).any(1)]

Store in X_variables.

X_variables = vif_input

Determine columns that are highly correlated by applying the variance_in�lation_factor() function:

vif_data = pd.DataFrame()
vif_data["feature"] = X_variables.columns
vif_data["vif"] = [variance_inflation_factor(X_variables.values, i) for i in
range(len(X_variables.columns))]
vif_data.sort_values('vif')

The VIF data distribution using the describe() function is printed to get an idea of what level of
intercolumn correlation is and act as our threshold for rejecting columns:

vif_data['vif'].describe()

This results in the following:

count      38.000000
mean             inf
std              NaN
min         3.254763
25%        26.605281
50%        76.669063
75%      3504.833113
max              inf
Name: vif, dtype: float64

Having determined the VIF range, we’ll discard any ranking factor with a VIF above the median.
Technically, best practice is that a VIF of �ive or above is highly correlated; however, in this case, we’re just
looking to remove excessively correlated ranking factors, which is still an improvement:

hypo_serps_preml_lowvif = hypo_serps_preml_num_highvar.copy()

vif_exclude_df = vif_data.loc[vif_data['vif'] > vif_data['vif'].median()]
vif_exclude_cols = vif_exclude_df['feature'].tolist()

hypo_serps_preml_lowvif.drop(vif_exclude_cols, inplace = True, axis = 1)

hypo_serps_preml_lowvif



We’ve now gone from 38 to 19 columns. As you may come to appreciate by now, machine learning is not
simply a case of plugging in the numbers to get a result as much work must be done to get the numbers into
a usable format.

Median	Impute
We want to retain as many rows of data as possible as any rows with missing values in any column will have
to be removed.

One technique is to use median impute where the median value for a given column of data will be
estimated to replace the missing value.

Of course, the median is likely to be more meaningful if it is calculated at the domain level rather than an
entire column, as we’re pitting sites against each other. So where possible, we will use median impute at the
domain level, otherwise at the column level.

Import libraries to detect data types used in the for loop to detect columns that are not numeric for
median imputation:

from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype

hypo_serps_preml_median = hypo_serps_preml_lowvif.copy()

Variables are set so that the for loop can groupby() the entire column and at the domain level (“site”):

hypo_serps_preml_median['site'] = hypo_serps_preml_prescale['site']
hypo_serps_preml_median['project'] = 'competitors'

for col, col_val in hypo_serps_preml_median.iteritems():
    if col in ['http_status_code'] or not
is_numeric_dtype(hypo_serps_preml_median[col]):
        continue
    hypo_serps_preml_median[col].fillna(hypo_serps_preml_median.groupby('site'
[col].transform('median'), inplace=True)
    hypo_serps_preml_median[col].fillna(hypo_serps_preml_median.groupby('proje
[col].transform('median'), inplace=True)

hypo_serps_preml_median.drop(['site', 'project'], axis = 1, inplace = True)

hypo_serps_preml_median

The result is a dataframe with less missing values, improving data retention.



One	Hot	Encoding	(OHE)
One hot encoding (OHE) is a technique to help statistical models convert categorical data into binary
format (1s and 0s) that they can interpret more easily. It achieves this by creating additional columns for
each value of a given categorical data column. Then depending on the data point, they will have a value of
one or zero assigned to the appropriate column. Rather than give an example here, we’ll run the code, which
will hopefully be obvious in the resulting dataframe.

We don’t want to create OHEs out of columns such as keywords and URLs as these are not ranking
factors, so we’ll drop these from the dataframe:

stop_cols = ['keyword', 'url', 'site']

hypo_serps_preml_cat = hypo_serps_preml_nonnum.drop(stop_cols, axis = 1)

Store the categorical data columns in a list:

categorical_cols = hypo_serps_preml_cat.columns.tolist()

Use a list comprehension to update the categorical_cols list and ensure the stop columns are not in
there:

categorical_cols = [feat for feat in categorical_cols if feat not in
stop_cols]

categorical_cols

The following are the categorical columns that will now be one hot encoded:

['token_size',
 'compression',
 'connection',
 'charset',
 'canonical_status',
 'canonical_url_render_status',
 'flesch_kincaid_reading_ease',
 'sentiment',
 'contains_paginated_html', ... ]

hypo_serps_preml_cat

The following is the dataframe with only the OHE columns selected.



The get_dummies() will be used to create the OHE columns for each categorical rank factor:

hypo_serps_preml_ohe = pd.get_dummies(hypo_serps_preml_cat, columns =
categorical_cols)

hypo_serps_preml_ohe

This results in the following:

With OHE, the category columns have now expanded from 38 to 95 columns. For example, the compression
column has been replaced by two new columns compression_Brotli and compression_Gzipped, as there
were only two values for that ranking factor.

Eliminate	NAs
With the numeric and category data columns cleaned and transformed, we’re now ready to combine the
data and eliminate the missing values.

Combine the dataframes using concat():

hypo_serps_preml_ready = pd.concat([hypo_serps_preml_ohe,



hypo_serps_preml_median], axis = 1)

hypo_serps_preml_ready

The dataframes are now combined into a single dataframe “hypo_serps_preml_ready.”

The next preparation step is to eliminate “NA” values as ML algorithms don’t cope very well with cell values
that have “not available” as a value.

First of all, check which columns have a proportion of NAs, by taking the sum of null values in each
column and dividing by the total number of rows:

percent_missing = hypo_serps_preml_ready.isnull().sum() * 100 /
len(hypo_serps_preml_ready)

We put our calculations of missing data into a separate dataframe and then sort values:

missing_value_df = pd.DataFrame({'column_name':
hypo_serps_preml_ready.columns,
                                 'percent_missing': percent_missing})
missing_value_df.sort_values('percent_missing')

We can see that there are no columns with missing values, which is great news, onto the next stage.
If there were missing values, the columns would be removed as we’ve done what we can to improve the

data to get to this point.



Modeling	the	SERPs
A quick reminder, modeling the SERPs is a formula that will predict rank based on the features of SEO, that
is

rank ~ w_1*feature_1 + w_2*feature_2 + … + w_n*feature_n

~ means explained by.
n is the nth feature.
w is the weighting of the feature.
Here are some points worth mentioning:

Split the dataset into test (20%) and train (80%). The model will learn from the most of the dataset
(train) and will be applied to the test dataset (data the model has not seen before). We do this to see how
the model really performs in a real-world situation.
We will use a decision tree–based model, that is, random forest. A random forest uses a number of
decision trees and takes the average of all the decision trees to arrive at the �inal model that best
generalizes over the dataset and is therefore likely to perform well on unseen data. A random forest can
also handle nonlinearities, which linear models can’t.
Set Seed is there to control the randomness of the model to make the results reproducible should another
SEO/data scientist wish to evaluate the research with the same data and get the same results you were
getting.
Cross-validation will be used to make the model as robust as possible with no hyperparameter tuning.
Typically, a random forest model (or any machine learning model) performs best with 10,000 rows or
more, but it can still deliver useful insight with much less.

Import the relevant APIs and libraries which are mostly from scikit-learn, a free machine learning
software library for Python:

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedKFold
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import category_encoders as ce
from sklearn import metrics



hypo_serps_ml = hypo_serps_preml_ready.copy()

Encode the data:

encoder = ce.HashingEncoder()
serps_features_ml_encoded = encoder.fit_transform(hypo_serps_ml)
serps_features_ml_encoded

This results in the following:

Set the target variable as rank, which is the outcome we’re looking to explain and guide our SEO
recommendations:

target_var = 'rank'

Assign the ranking factor data to X and rank to y:

X, y = serps_features_ml_encoded.drop(target_var, axis=1),
serps_features_ml_encoded[target_var]

To train our model, we’re using RandomForestRegressor because it tends to deliver better results than
linear regression models. Alternatives you may wish to trial in parallel are XGBoost, LightGBM (especially
for much larger datasets), and AdaBoost.

Instantiate the model:

regressor = RandomForestRegressor(n_estimators=20, random_state=1231)

Cross-validate the model. When a model is cross-validated, what is happening is that the model is being
evaluated by splitting the train dataset further to see how well the model generalizes across all of the
training data and hopefully the real world too.

In our case, we’re splitting the model �ive times and storing the result in n_scores:

n_scores = cross_val_score(regressor, X, y,
scoring='neg_mean_absolute_error', cv=5, n_jobs=-1)
n_scores

Split the data randomly into train and test:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=1231)

Fit the machine learning model based on the training set:



regressor.fit(X_train, y_train)

Test the model on the test dataset and store the forecasts into y_pred:

y_pred = regressor.predict(X_test)

Evaluate	the	SERPs	ML	Model
Now that we have our model, we can now use it to test its ef�icacy. The general principles are

Feeding the predict command, the test dataset, and the model
Calculating the Root Mean Squared Error (RMSE) and r-squared

Given the modeling and prediction of rank is a regression problem, we use RMSE and r-squared as
evaluation metrics. So what do they tell us?

The RMSE tells us what the average margin of error is for a predicted rank. For example, an RMSE of 5
would tell us that the model will predict ranking positions + or – 5 from the true value on average.

The r-squared has the formal title of “coef�icient of determination.” What does that mean? In practical
terms, the r-squared represents the proportion of data points in the dataset that can be explained by the
model. It is computed by taking the square of the correlation coef�icient (r), hence r-squared. An r-squared
of 0.4 means that 40% of the data can be explained by the model.

Beware of models with an r-squared of 1 or anything remotely close, especially in SEO. The chances are
there’s an error in your code or it’s over�itting or you work for Google. Either way, you need to debug.

The r-squared is nowhere near as useful as the RMSE, so we won’t be covering it here. However, if you
still wish to get an idea of what the r-squared is, then you can view the r-squared of your training model
(i.e., based on the training data) by running

print('MAE: %.3f (%.3f)' % (np.mean(n_scores), np.std(n_scores)))
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test,
y_pred)))

MAE: -0.222 (0.010)
Mean Absolute Error: 0.23340777636881724
Mean Squared Error: 0.0861631648297419
Root Mean Squared Error: 0.2935356278712039

You might be wondering what good or reasonable values for each of these metrics are. The truth is it
depends on how good you need your model to be and how you intend to use it.

If you intend to use your model as part of an automated SEO system that will directly make changes to
your content management system (CMS), then the RMSE needs to be really accurate, so perhaps no more
than �ive ranking positions. Even then, that depends on the starting position of your rankings, as �ive is a
signi�icant difference for a page already ranking on page 1 compared to a ranking on page 3!

If the intended use case for the model is simply to gain insight into what is driving the rankings and
what you should prioritize for split A/B testing or optimization, then an RMSE of 20 or less is acceptable.

The	Most	Predictive	Drivers	of	Rank
So what secrets can machine learning model tell us? We’ll extract the ranking factors and the model
importance data into a single dataframe:

df_imp = pd.DataFrame({"feature": X.columns.values,
                       "importance": regressor.feature_importances_,
                      })
df_imp = df_imp.sort_values('importance', ascending = False)

df_imp = df_imp



df_imp

The following dataframe result shows the most in�luential SERP features or ranking factors in
descending order of importance.

Plot the importance data in a bar chart using the plotnine library:

RankFactor_plt = (ggplot(df_imp.head(7), aes(x = 'reorder(feature,
importance)', y = 'importance')) +
 geom_bar(stat = 'identity', fill = 'blue', alpha = 0.6) +
 labs(y = 'Google Influence', x = '') +
 theme_classic() +
 coord_flip() +
 theme(legend_position = 'none')
)

RankFactor_plt.save(filename = 'images/1_RankFactor_plt.png', height=5,
width=5, units = 'in', dpi=1000)
RankFactor_plt

In this particular case, Figure 6-3 shows that the most important factor was “title_relevance” which
measures the string distance between the title tag and the target keyword. This is measured by the string
overlap, that is, how much of the title tag string is taken up by the target keyword.



Figure	6-3 Variable importance chart showing the most in�luential ranking factors identi�ied by the machine learning algorithm

No surprise there for the SEO practitioner; however, the value here is providing empirical evidence to
the nonexpert business audience that doesn’t understand the need to optimize the title tags. Data like this
can also be used to secure buy-in from non-SEO colleagues such as developers to prioritize SEO change
requests.

Other factors of note in this industry are as follows:
no_cookies: The number of cookies
dom_ready_time_ms: A measure of page speed
no_template_words: The number of words outside the main body content section
link_root_domains_links: Count of links to root domains
no_scaled_images: Count of images scaled that need scaling by the browser to render

Every market or industry is different, so the preceding text is not a general result for the whole of SEO!

How	Much	Rank	a	Ranking	Factor	Is	Worth
Now that you have your model, you’ll probably want to communicate your �indings to colleagues and clients
alike. We’ll examine one of the ranking factors as an example of how to communicate the �indings of the
machine learning model.

Store the most in�luential ranking factors in a list:

influencers = ['title_relevance', 'no_outgoing_navigation_links',
'title_branded', 'performance_score', 'first_contentful_paint', 'title_h1',
'no_content_words']

Select performance_score as the ranking factor we want to examine. According to Python’s zero
indexing, that would be three for the fourth item in the list:

i = 3

Calculate the stats to average the site CWV performance and Google rank:

num_factor_agg =



hypo_serps_features.groupby(['site']).agg({str(influencers[i]): 'mean',
'rank': 'mean', 'se_results_count': 'sum', 'count': 'sum'}).reset_index()
num_factor_agg = num_factor_agg.sort_values(str(influencers[i]))

To show the client in a different color to the competitors, we’ll create a new column “target,” such that if
the website is the client, then it’s 1, otherwise 0:

num_factor_agg['target'] =
np.where(num_factor_agg['site'].str.contains(hostname), 1, 0)

num_factor_agg

The following is the dataframe that will be used to power the chart in Figure 6-4.

This function returns a polynomial line of best �it according to whether you’d like it straight (degree 1) or
curved (2 or more degrees):

def poly(x, degree=1):
    """
    Fit Polynomial
    These are non orthogonal factors, but it may not matter if
    we only need this for smoothing and not extrapolated
    predictions.
    """
    d = {}
    for i in range(degree+1):
        if i == 1:
            d['x'] = x
        else:
            d[f'x**{i}'] = np.power(x, i)
    return pd.DataFrame(d)

Plot the chart:

num_factor_viz_plt = (
    ggplot(num_factor_agg,
           aes(x = str(influencers[i]), y = 'rank', fill = 'target', colour
= 'target', #shape = 'cat_item',
                               size = 'se_results_count')) +



    geom_point(alpha = 0.3) +
    geom_smooth(method = 'lm', se = False, formula = 'y ~ poly(x,
degree=1)', colour = 'blue', size = 1.5) +
    labs(y = 'Google Rank', x = str(influencers[i])) +
    scale_y_reverse() +
  scale_size_continuous(range = [5, 20]) +
    theme(legend_position = 'none', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))

)

num_factor_viz_plt

Plotting the average Core Web Vitals (CWV) vs. average Google rank by website which also includes a
line of best �it (Figure 6-4), we can estimate the ranking impact per unit improvement in CWV. In this case,
is about 0.5 rank position gain per 1 unit improvement in CWV.

Figure	6-4 Bubble chart of websites comparing Google rank and CWV performance score

The	Winning	Benchmark	for	a	Ranking	Factor
The winning benchmark also appears to be 70, which may come as a relief to developers as achieving a
score of 90 or above may be incredibly resource intensive to attain.

Thanks to machine learning, we’re not only able to surface the most important factors, when taking a
deep dive, we can also see the winning benchmark.

Tips	to	Make	Your	Model	More	Robust
Naturally, no model is perfect and never will be. The usefulness of the model is down to

Your imagination, inventiveness, SEO knowledge, and ability to form hypotheses that are informative for
model inclusion



Your ability to translate these hypotheses into measurable metrics that can be gathered as data on your
site and your competitors
The way you structure the data that is meaningful for the model to spot patterns

Activation
With your model outputs, you’re now ready to make some decisions on your SEO strategy in terms of

Changes you’d like to make sitewide because they’re a “no-brainer,” such as site speed or increasing
brand searches (either through programmatic advertising, content marketing, or both)
Split A/B testing of factors included in your model
Further research into the ranking factor itself to guide your recommendations

Automating	This	Analysis
The preceding application of ML is great for getting some ideas to split A/B test and improve the SEO
program with evidence-driven change requests. It’s also important to recognize that this analysis is made
all the more powerful when it is ongoing. Why? Because the ML analysis is just a snapshot of the SERPs for a
single point in time. Having a continuous stream of data collection and analysis means you get a more true
picture of what is really happening with the SERPs for your industry.

This is where SEO purpose–built data warehouse and dashboard systems come in, and these products
are available today. What these systems do are

Ingest your data from your favorite SEO tools daily
Combine the data
Use ML to surface insights like before in a front end of your choice like Google Data Studio

To build your own automated system, you would deploy into a cloud infrastructure like Amazon Web
Services (AWS) or Google Cloud Platform (GCP) what is called ETL, that is, extract, transform, and load, so
that your data collection, analysis, and visualization are automated in one place. This is explained more fully
in Chapter 8.

Summary
In this chapter, you learned

The data science principles behind understanding the ranking factors for competitor analysis
How to combine data sources
How to prepare data for machine learning
How to train a machine learning model
How to use the model outputs to generate SEO recommendations

Competitor research and analysis in SEO is hard because there are so many ranking factors that are
available and so many to control for. Spreadsheet tools are not up to the task due to the amounts of data
involved, let alone the statistical capabilities that data science languages like Python offer.

When conducting SEO competitor analysis using machine learning (ML), it’s important to understand
that this is a regression problem, the target variable is Google rank, and the hypotheses are the ranking
factors.

In Chapter 7, we will cover experiments which are something that would naturally follow the outputs of
competitor statistical analysis.
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It’s quite exciting to unearth insights from data or your own thought experiments that could be
implemented on your site and drive real, signi�icant organic improvements. With the rise of split
testing platforms such as Distilled ODN and RankScience, it’s of no surprise that experimentation
is playing an ever-increasing role in SEO.

If you’re running a small site where the change leading to a negative impact is inconsequential
or the change is seemingly an obvious SEO best practice, then you may forgo formal
experimentation and simply focus on shipping the changes you believe are required.

On the other hand, if you’re working on a large enterprise website, be it in-house or as part of
an agency, then any changes will be highly consequential, and you’ll want to make sure you test
these changes in order to both understand the impact (both positive and negative) as well as help
shape your understanding to help inform new hypotheses to test.

How	Experiments	Fit	into	the	SEO	Process
To run experiments and split A/B tests successfully, you’ll need a process which starts from idea
generation (otherwise referred to as a hypothesis) all the way to implementation. We have
outlined the steps as follows:
1.

Hypothesis generation  
2.

Experiment design  
3.

Running the experiment 
4.

Evaluation  
5.

Implementation  
We will cover these steps in the following sections.

Generating	Hypotheses
Before any experiment starts, you need to base it around your hypothesis, that is, a belief in what
you believe will signi�icantly change your target variable or outcome metric, for example, organic
impressions or URLs crawled.

This step is crucially important because without clear hypotheses, you won’t begin to know
what it is you will be testing to in�luence your outcome metric. So think about what it is you want
to learn from that could help you improve your SEO performance.

https://doi.org/10.1007/978-1-4842-9175-7_7


There’s a number of areas to source hypotheses from:
Competitor analysis
Website articles and social media
You/your team’s ideas
Recent website updates
Conference events and industry peers
Past experiment failures

I usually like to use the format "We	believe	that Google will give a greater weighting to URLs
linked from by other prominent pages of a website." This statement is then expanded to consider
what you’re proposing to test and how you’ll measure (i.e., “We’ll know if the hypothesis is valid
when…”).

Competitor	Analysis
The competitor analysis that you carried out (explained in Chapter 6) will be a natural source of
ideas to test because they have some statistical foundation to them, surfacing things that your
competitors are doing or not doing to bene�it from superior organic performance. These
hypotheses have the added advantage of knowing what the metric is that you’ll be testing from the
outset. After all, you had to get the data into your analysis in the �irst place.

Website	Articles	and	Social	Media
Often, we read studies, articles, and social media memes that claim to have driven or decreased
organic performance. That’s not to say these claims are untrue or not substantiated. However,
these claims are not in the context of your situation, and if they made the news, they most
probably merit testing. As an aside, in the early days of our SEO careers before data science was
actually a thing, the best way to really know your data was to test everything we read about SEO
online, such as Webmaster World, BlackHatWorld forums, etc., and see what worked and what
didn’t work. If you didn’t have sites banned from the index in Google, you weren’t respected as an
SEO or perhaps you were just not being bold with your experiments. The very essence was
“optimizing” for search engines.

Naturally, things have moved on, and most of us in SEO are working for brands and established
businesses. So some of the creative wild experiments would be inappropriate or rather career
limiting, which we’re not advocating to do.

You/Your	Team’s	Ideas
The test hyoptheses are not limited to your immediate SEO team (in-house or agency), not even
your digital marketing team. This could be colleagues that have any exposure to the website with
any ideas. Most of them might be unviable to devote resources to an experiment. However, their
ideas, since they (should) care about the business, are worthy of some consideration. Naturally,
your immediate SEO team may have the better ideas of things to test from an SEO perspective.

Recent	Website	Updates
Usually, it’s better to test things before a large website update impacts your organic traf�ic.
However, you may not get such luxuries with other competing priorities or tight timelines.
Nevertheless, if a product update is expected to impact your organic traf�ic, good or bad, such as
the launch of a stripped back top-level navigation, you’ll ideally want to know why and get ahead of
its full launch so that you can test it to understand the impact for SEO.

Conference	Events	and	Industry	Peers
Why limit your ideas to online and your company? Attending industry events can be a great way of
not only �inding new things to test for SEO but also meeting people at the events who may be



wrestling with the same problems. Diversity of thought is highly valued and could lead to
breakthrough experiment ideas.

Past	Experiment	Failures
If and when you fail, try, try, and try again. Usually, if an experiment fails, it’s often due to the
experiment not having the required sample size or the experiment was designed or ran incorrectly.
Learn from it and reiterate. Whether it’s designing, running it correctly, or reformulating your
hypotheses, do it and keep iterating until you get the desired result. You may get taken in a
different direction to the original failed experiment, but you will have learned so much in the
process.

Experiment	Design
Having decided on what hypotheses you’re going to test, you’re now ready to design your
experiment. In the following code example, we will be designing an experiment to see the impact of
a test item (it could be anything, say a paragraph of text beneath the main heading) on organic
impressions at the URL level.

Let’s start by importing the APIs:

import re
import time
import random
import pandas as pd
import numpy as np
import datetime
import requests
import json
from datetime import timedelta
from glob import glob
import os
from plotnine import *
import matplotlib.pyplot as plt
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
from datetime import datetime, timedelta

These are required for carrying out the actual split test:

from statsmodels.discrete.discrete_model import NegativeBinomial
from statsmodels.tools.tools import add_constant
from collections import Counter
import uritools

pd.set_option('display.max_colwidth', None)
%matplotlib inline

Because we’re using website analytics data of which popular brands include Google, Looker,
Adobe, this is easily exported from a landing report by date. If this is a large site, then you may
need to use an API (see Chapter 8 for Google Analytics).

Depending on your website analytics package, the column names may vary; however, if you’re
looking to test the difference in impressions between URL groups over time, you will require

Date



Landing page URL
Sessions

Other outcomes than sessions can also be tested, such as impressions, ctr, position, etc.
Assuming you have a CSV export, read the data from your website analytics package using

pd.read_csv:

analytics_raw = pd.read_csv("data/expandable-content.csv")

Print the data types of the columns to check for numerical data that might be imported as a
character string which would need changing:

print(analytics_raw.dtypes)

landing_page     object
date             object
sessions        float64
dtype: object

The session data is a numerical �loat which is �ine, but the data is classed as “object” which
means it will need converting to a date format.

We’ll make a copy of the dataframe using the .copy() method. This is so that any changes we
make won’t affect the original imported table. That way, if we’re not happy with the change, we
don’t have to go all the way to the top and reimport.

analytics_clean = analytics_raw.copy()

The date column uses the to_datetime() function which takes the column and the format the
date is in and is then normalized to convert the string into a date format.

This will be important for �illing in missing dates and plotting data over time later:

analytics_clean['date'] = pd.to_datetime(analytics_clean['date'],
format='%d/%m/%Y').dt.normalize()

analytics_clean

The Pandas dataframe below shows ‘analytics_clean’ which now has the
data in a usable format for further manipulation such as graphing
sessions over time.



Let’s explore the sessions’ distribution using .describe():

analytics_raw.describe()

The following screenshot shows the distribution of sessions including count (number of data
points), the average (mean), and others.

We can see that the average (mean) number of sessions per URL on any given date is about 2,
which varies wildly shown by the standard deviation (sd) value of 4. Given the mean is 2 and a



landing page can’t have a session of –2 (mean of 2 less standard deviation of 4), this implies that
some outlier pages are getting extremely high sessions, which explains the variation.

Now look at the dates:

analytics_clean['date'].describe()

This results in the following:

count                  157678
unique                     28
top       2019-08-18 00:00:00
freq                     6351
first     2019-08-06 00:00:00
last      2019-09-02 00:00:00
Name: date, dtype: object

There’s not much to infer other than the data’s date range of about a month in August.

Zero	In�lation
Web analytics typically only logs data against a web page when there is an impression.

What about the days when the page doesn’t receive an impression? What then?
Zero in�lation is where we add null records for pages that didn’t record an organic impression

on a given day. If we didn’t zero-in�late, then there would be a distortion of the mean of the data for
a given web page, let alone for a group of pages, namely, A and B.

For example, URL X may have had 90 sessions on 10 days within a given day period logged in
analytics which should suggest that average impression per day is 9 per day.

However, because they happened on the 10 days, your calculations would mislead you to think
the URL is better than it is. By zero-in�lating the data, that is, adding null rows to the dataset for the
days in the 30-day period, when URL X didn’t have any organic impressions, the average calculated
would be restored to the expected 3 per day.

Zero in�lation also gives us another useful property to work from, and that is the Poisson
distribution.

It’s beyond the scope of this book to explain the Poisson distribution. Still, what you need to
know is that the Poisson distribution is common for rare events when we test for the difference
between groups A and B.

Any statistically signi�icant difference between the two groups will hopefully show that the test
group B had signi�icantly less zeros than A. Enough science, let’s go.

There is a much easier (and less comprehensible) way to �ill in missing dates. Both methods
are given in this chapter starting with the longer yet easier to read.

Here, we use the function date_range() to set the date range from the minimum and maximum
dates found in the analytics dataframe, with an interval of one day. This is saved into a variable
object called “datelist”:

datelist = pd.date_range(start=analytics_clean['date'].min(),
                         end=analytics_clean['date'].max(), freq='1d')

nd is the length of days in the date range, and nu is the unique list of landing pages we want the
dates for:

nd = len(datelist)
nu = len(analytics_clean['landing_page'].unique())



Here, we create a dataframe with all the possible landing page and date combinations by a
cross-product of the landing page and the dates:

analytics_expanded = pd.DataFrame({'landing_page':
analytics_clean['landing_page'].unique().tolist() * nd,
                         'date':np.repeat(datelist, nu)})

Then we look up which dates and landing pages have sessions logged against them:

analytics_expanded = analytics_expanded.merge(analytics_clean,
how='left')

Any that are unmatched (and thus null) are �illed with zeros:

analytics_expanded[['date','sessions']] =
analytics_expanded.groupby('landing_page')[
    ['date', 'sessions']].fillna(0)

Convert the sessions to numerical �loat for easier data handling:

analytics_expanded['sessions'] =
analytics_expanded['sessions'].astype('int64')

analytics_expanded

The resulting dataframe “analytics_expanded,” shown as follows, is our zero-in�lated dataframe
ready for split testing. Note the original analytics data had 157,678 rows, and with zero in�lation,
it’s now 807,212 rows.



Let’s explore the data using the .describe() which will tell us how the distribution of sessions has
changed having been zero-in�lated:

analytics_expanded.describe()

The following screenshot shows the distribution of sessions following zero in�lation.



And what a difference! The mean has shrunk by over 75% from 2.16 to 0.42, and hardly any pages
get over one session just under a month.

Split	A/A	Analysis
A/A testing is the process by which we test the same items against themselves over a time period.
This is the type of split test popularized by SearchPilot (formerly Distilled ODN) as illustrated in
Figure 7-1.

Figure	7-1 Split A/B analysis by SearchPilotSource: www.searchpilot.com/features/seo-a-b-testing/

For example, we take a sample of URLs and benchmark the performance before implementing a
test on said URL sample to see if a signi�icant impact results or not.

The main motivation for us to conduct A/A testing is to determine whether the A/B test design
is reliable enough to proceed with or not. What we’re looking for are no differences between A
before and A after.

We’ll test a period of 13 days, assuming now changes have been made, although in a real
setting, you would check nothing has changed before testing.

Why 13 days? This is an arbitrary number; however, methods are given later on determining
sample size for a robust A/B test to ensure any differences detected are signi�icant. The same
methods could be applied here.

This A/A test is just an illustration of how to create the data structures and test. So if you
wanted to conduct a “SearchPilot” style of split testing, then sample size and testing period
determination aside, the following code would help you run it:

aa_test_period = 13

Set the cutoff date to be the latest date less the test period:

cutoff = analytics_expanded['date'].max() -  timedelta(days =
aa_test_period)

Create a dataframe copy for A/A testing “analytics_phased”:

http://www.searchpilot.com/features/seo-a-b-testing/


analytics_phased = analytics_expanded.copy()

Set the A/A group based on the date before or after the cutoff:

analytics_phased['aa_group'] = np.where(analytics_expanded['date'] <
cutoff, "pre_test", "test_period")

analytics_phased

This should result in the following output:

Before testing, let’s determine analytically the statistical properties of both A/A groups, which is
indicative of what the actual split A/A test result might be.

The �irst function is day_range() which returns the number of days in the date range which is
the latest date less the earliest date:

def day_range(date):
    return (max(date) - min(date)).days

First, we calculate the means by �iltering the data for nonzero sessions and then aggregate the
date range and average by A/A group:

aa_means = (
    analytics_phased.loc[analytics_phased["sessions"] != 0]
    .groupby(["aa_group"])
    .agg({"date": ["min", "max", day_range], "sessions": "mean"})
)

aa_means



The resulting aa_means dataframe shows the following output:

We can see that the day ranges and the date range are correct, and the averages per group are
roughly the same when rounded to whole numbers.

aa_means = analytics_phased.loc[analytics_phased['sessions'] != 0]

Let’s determine the variation between groups:

aa_zeros = analytics_phased.copy()

Create a zeros column so we can count zeros and the ratio:

aa_zeros['zeros'] = np.where(aa_zeros['sessions'] == 0, 1, 0)
aa_zeros['rows'] = 1

Aggregate the number of zeros and data points by A/A group:

aa_means_sigmas = aa_zeros.groupby('aa_group').agg({'zeros': sum,
'rows': sum}).reset_index()

Calculate the variation “sigma” which is 99.5% of the ratio of zeros to the total possible
sessions:

aa_means_sigmas['sigma'] =
aa_means_sigmas['zeros']/aa_means_sigmas['rows'] * 0.995

aa_means_sigmas

This should result in the following output:

We can see the variation is very similar before and after the cutoff, so that gives us some
con�idence that the URLs are stable enough for A/B testing.

Put it together using the .merge() function (the Python equivalent of Excel’s vlookup):

aa_means_stats.merge(aa_means_sigmas, on = 'aa_group', how = 'left')

This should result in the following output:



If you were conducting an A/A test to see the effect of an optimization, then you’d want to see the
test_period group report a higher session rate with the same sigma or lower. That would indicate
your optimization succeeded in increasing SEO traf�ic.

Let’s visualize the distributions using the histogram plotting capabilities of plotnine:

aa_test_plt = (
    ggplot(analytics_phased,
           aes(x = 'sessions', fill = 'aa_group')) +
    geom_histogram(alpha = 0.8, bins = 30) +
    labs(y = 'Count', x = '') +
    theme(legend_position = 'none',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),
          legend_title = element_blank()
         ) +
    facet_wrap('aa_group')
)

aa_test_plt.save(filename = 'images/2_aa_test_plt.png',
                             height=5, width=8, units = 'in',
dpi=1000)
aa_test_plt

The chart shown in Figure 7-2 con�irms visually there is no difference between the groups.



Figure	7-2 Histogram plots of pretest and test period A/A group data

The box plot gives more visual detail of the two groups’ distribution which will now be used:

aa_test_box_plt = (
    ggplot(analytics_phased,
           aes(x = 'aa_group', y = 'sessions',
               fill = 'aa_group', colour = 'aa_group')) +
    geom_boxplot(alpha = 0.8) +
    labs(y = 'Count', x = '') +
    theme(legend_position = 'none',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),
          legend_title = element_blank()
         )
)

aa_test_box_plt.save(filename = 'images/2_aa_test_box_plt.png',
                             height=5, width=8, units = 'in',
dpi=1000)
aa_test_box_plt

Figure 7-3 shows again in aa_test_box_plt that there is no difference between the groups other
than the pretest group having a larger number of higher value outliers.

Figure	7-3 Box plots of pretest and test period groups

Let’s perform the actual A/A test using a statistical model. We’ll create an array, which is a list
of numbers marking data points as either 0 (for pretest) or 1 (test_period), which will then be
assigned to X:

X = np.where(analytics_phased['aa_group'] == 'pre_test', 0.0, 1.0)



X = add_constant(X)
X = np.asarray(X)
X

This results in the following:

array([[1., 0.],
       [1., 0.],
       [1., 0.],
       ...,
       [1., 1.],
       [1., 1.],
       [1., 1.]])

X is used to feed the NegativeBinomial() model which will be used to test the difference in the
number of sessions between the two A/A groups.

The arguments are the outcome metric (sessions) and the independent variable (aa_group):

aa_model = NegativeBinomial(analytics_phased['sessions'], X).fit()

Then we’ll see the model results using the .summary() attribute:

aa_model.summary()

The resulting aa_model.summary() is shown as follows:

Optimization terminated successfully.
         Current function value: 0.762045
         Iterations: 3
         Function evaluations: 8
         Gradient evaluations: 8



The printout shows that p-value (LLR p-value) is zero, which means there is signi�icance. However,
the x1 is –0.31, indicating there is a small difference between groups.

Is that enough of a difference to stop the A/B test? That’s a business question. In this case, it
isn’t; however, this is subjective; the graphs and analytical tables would support the claim that
there is no real difference – onward.

Determining	the	Sample	Size
Getting the sample size right is absolutely key because it can really make or break the reliability of
your test results. Some basic principles are to ensure you have enough to get conclusive results in
a reasonable time period and to ensure you don’t terminate a test early like many software do
when signi�icant changes are observed before the experiment has run its course.

We won’t be going into more detail into the factors that determine the appropriate sample size
for your SEO experiment, such as power, because this isn’t a statistics textbook (and there are
plenty of really good textbooks that teach statistics such as the OpenIntro	Statistics).

The main factor that determines your required sample size is the required level of statistical
signi�icant difference between test and control. The typical and most conventional level of cutoff is
95%. That is, there’s a 5% (or less) chance that the test results are the same as the control results
due to random noise, and therefore you may reject the null hypothesis that there is no difference
between test (B) and control (A).

The reality is that the 95% rule, while conventional, is not set in stone. You can decide what is
good enough. For example, you may wish to go for 89%, which is absolutely �ine, because 89 times
out of 100, your test will beat control. That’s the way to think about it.

The following is some code to do exactly that. We’ll estimate some parameters which will be
used to help us determine the required sample size based on the minimum number of sessions:

num_rows = analytics_phased["sessions"].count()
mu = analytics_phased[analytics_phased["sessions"] !=
0].agg({"sessions": "mean"})
sigma = get_sigma(analytics_phased["sessions"])



print(num_rows, mu, sigma)

807212 sessions    2.155976
dtype: float64 0.8006401416232662

With the parameters set, these will feed the following functions. python_rzip will generate and
return a random Poisson distribution based on the parameters:

def python_rzip(n, mu, sigma):
    rng = np.random.default_rng()
    P = rng.poisson(mu, n)

    return [p if random.random() > sigma else 0 for p in P]

simulate_sample uses the python_rzip function to return a split test between two groups of
data assuming there is a difference of 20% or more:

def simulate_sample(n, difference=0.2):
    control = python_rzip(n, mu, sigma)
    test = python_rzip(n, mu + difference, sigma)
    test = stats.ttest_ind(control, test)
    return test[1]

Finally, run_simulations uses simulate_sample to estimate the signi�icance of a sample size of a
given level of traf�ic:

def run_simulations(n, difference=0.2, n_simulations=100):
    p_values = [simulate_sample(n, difference) for i in
range(n_simulations)]
    significant = sum(map(lambda x: x <= 0.05, p_values))
    return significant / n_simulations

With the three functions de�ined, we can test for signi�icance at varying levels of traf�ic. If you
fancy a challenge to avoid repetitive code and stretch your Python skills, try implementing the
run_simulations function as part of a list comprehension:

print(run_simulations(n=100), ": 100")
print(run_simulations(n=1000), ": 1000")
print(run_simulations(n=10000), ": 10000")
print(run_simulations(n=15000), ": 15000")
print(run_simulations(n=18000), ": 16000")
print(run_simulations(n=18000), ": 18000")
print(run_simulations(n=20000), ": 20000")
print(run_simulations(n=25000), ": 25000")
print(run_simulations(n=30000), ": 30000")
print(run_simulations(n=50000), ": 50000")

This results in the following:

0.04 : 100
0.08 : 1000
0.74 : 10000
0.85 : 15000
0.86 : 16000



0.9 : 18000
0.96 : 20000
0.97 : 25000
1.0 : 30000
1.0 : 50000

The preceding output shows the levels of signi�icance (p-value) achieved at different sample
size levels, which in our case are the required number of sessions. If we would be happy with a
90% (or higher) chance that a 20% difference would be observed, then we’d require 18,000
sessions per group or more.

So we’ll set the experiment sample size as appropriate:

exp_sample_size = 18000

Test	and	Control	Assignment
Once you’ve set your sample size at the desired level of statistical signi�icance, you’re now ready to
start assigning URLs for test and control at random.

We aggregate the average sessions and number of days by landing page and store this as a
dataframe “urls_agg”:

urls_agg = analytics_clean.groupby('landing_page').agg({'sessions':
'mean', 'date': 'count'}).reset_index()

The testing_days, which is the maximum number of days to run the test, will be set at 30, which
is an arbitrary number set by the business. This of course can be lower.

testing_days = 30

With the max period of testing days set, we’ll need the minimum URLs for the test group to hit
the required number of user sessions in that time period. Dividing the sample session size of
18,000 by the number of testing days will give us that approximate number.

Bear in mind that it can take up to two weeks (and sometimes longer) for Google to register the
site changes and re�lect these in the search results (i.e., they have to crawl, index, and rerank their
results). So to limit the risk of ending the experiment early, we’ll double the minimum URLs
required for testing, in order to increase the likelihood of Google, in the �irst instance, crawling the
test URLs (those with the change(s)):

url_sample_size = int(exp_sample_size / testing_days) * 2

print(url_sample_size)

1200

1200 URLs are required for the test group. Note that it’s implicitly assumed that the test URLs
are much smaller than the control such that there are plenty of URLs in the control group to hit the
minimum sessions during the testing period.

urls_agg

Our resulting dataframe shows each landing page and their average sessions and number of
days where sessions are generated. Some URLs get more than one day of sessions as shown by the
date column.



We will now sample the dataframe based on the required 1200 URLs and assign these to the “test”
group:

urls_test = urls_agg.sample(url_sample_size).assign(ab_group="test")

Drop the sessions and date column as we only need the URLs to send to the web developer
team for allocation:

urls_test.drop(['sessions', 'date'], axis = 1, inplace = True)

urls_test

The urls_test is shown as follows:



Our dataframe shows the test landing pages:

urls_test_list = urls_test["landing_page"]
urls_test_list

This results in the following:

7129               https://www.next.com/shop/henrik-vibskov-coats/
16561    https://www.next.com/shop/mens-le-mont-st-michel-jackets/
13017                https://www.next.com/shop/mens-cartier-belts/
16169         https://www.next.com/shop/mens-jw-anderson-t-shirts/
8949                       https://www.next.com/shop/kensie-totes/
                                   ...
9813     https://www.next.com/shop/lizzie-fortunato-shoulder-bags/
12857             https://www.next.com/shop/mens-buscemi-sneakers/
18681                 https://www.next.com/shop/mens-raey-jackets/
6000                https://www.next.com/shop/forever-21-knitwear/
20060          https://www.next.com/shop/mens-the-quiet-life-hats/
Name: landing_page, Length: 1200, dtype: object

Test landing pages are converted to a list which will be used to mark the other (non test
allocated) URLs as control:

urls_control =
urls_agg[~urls_agg["landing_page"].isin(urls_test_list.values)].assign(
    ab_group="control"
)

urls_control.drop(['sessions', 'date'], axis = 1, inplace = True)

urls_control



The urls_control dataframe shows the control groups:

Both test and control groups will now be combined into a single dataframe showing which URLs
are test and control:

split_ab_dev = pd.concat([urls_control, urls_test],
axis=0).sort_index()
split_ab_dev

The following shows the split_ab_dev dataframe:



split_ab_dev.to_csv("data/split_ab_developers.csv")

The �inal dataframe is combined and exported into a CSV for the software development team’s
reference.

Running	Your	Experiment
So far, we have assumed near perfect lab conditions, and there are quite a number of pitfalls that
could scupper your experiment. We’ll deal with these in turn.

Ending	A/B	Tests	Prematurely
Whatever you do, ensure you run your tests to the full sample size. Just because your test group
might reach a statistically signi�icant difference before the required sample size, it doesn’t mean
the test result is conclusive.

What can and does happen is that the test could regress back to similar levels of performance
as the control group after outperforming control. However, if you end the experiment prematurely,
you won’t know and therefore end up wasting your time and company resources on an invalid
experiment.

So if your experiment requires 20,000 pageviews, make sure your experiment reaches 20,000
pageviews for both groups.

Not	Basing	Tests	on	a	Hypothesis
If you’ve got this far and you haven’t based this on a hypothesis, start again and form a hypothesis.
Having a hypothesis helps frame the outcome of your experiment, so that you can be certain of
what it is you’ve actually learned from the experiment. For example, if you’re testing whether 100
worded body copy below the H1 will increase SEO impressions, then simply state it so. Just make
sure you do it from the outset. This will help you to be more precise about what it is you are
testing, how you will test it, and what it is you have learned.



Simultaneous	Changes	to	Both	Test	and	Control
This happens more often than you might think. We were once asked by a few CTOs whether it
would be acceptable to make changes to both test and control while the experiment was running.

We advised it would not because even though the change may be applied equally to both
groups, one or both of them may have an interaction with the simultaneous change and not
necessarily in the same direction. Of course, it sounds unlikely, so if you’re ever tempted or get
asked if the simultaneous change is okay, avoid or refuse it.

One thing you can do is to make the control group for your experiment be the control group for
other experiments. Just ensure the test group is left intact and untouched.

So if you wanted to run another experiment, assuming you have plenty of control URLs to hit
the minimum sessions for the �irst experiment, some could be allocated to a second test.

Non-QA	of	Test	Implementation	and	Experiment	Evaluation
It may be obvious, but we shall state it nonetheless: do check and QA the implementation of the
test across all browsers, operating systems, and device types to avoid any kind of bias in the
experiment results.

With the experiment having run, you’re now ready to evaluate the experiment. How do you
know it’s run? When both groups have reached the required number set earlier, in this case, 18,000
pageviews.

To repeat, it can take up to two weeks to crawl the changes on your test group pages and
another two weeks to recalculate the effects of those changes before re�lecting them in the SERPs,
be they better, worse, or no change.

With the experiment run, we’ll import data from our website analytics. Just as before, the data
is a CSV extract from a website analytics software:

test_analytics = pd.read_csv('data/sim_split_ab_data.csv')

Convert the date to date format:

test_analytics["date"] = pd.to_datetime(test_analytics["date"],
format="%Y/%m/%d")

test_analytics

You’ll see that you now have a dataframe with all the URLs by date and outcomes labeled as test
and control. As is the nature of analytics data, some dates are missing:



Add missing dates as some URLs from either group will not have logged a pageview. We’ll use the
list comprehension technique to �ill in the missing dates where for every unique landing page, we’ll
create a new date row where none exists:

test_analytics_expand = pd.DataFrame(
    [(x, y)
     for x in test_analytics['landing_page'].unique()
     for y in test_analytics['date'].unique()], columns=
("landing_page", "date"),)

test_analytics_expand

The following is a screenshot of test_analytics_expand:



Note that there are more rows than before because of the added missing dates. These will need to
have session data added, which will be achieved by merging the original analytics data:

test_analytics_expanded = test_analytics_expand.merge(
    split_ab_dev, how="left", on=['landing_page'])
test_analytics_expanded = test_analytics_expanded.merge(
    test_analytics, how="left", on=["date", "landing_page",
'ab_group'])

Post merge, any landing pages with missing dates will have “NaNs” (not a number), which is
dealt with by �illing those with zeros and converting the data type to an integer:

test_analytics_expanded['sessions'] =
test_analytics_expanded['sessions'].fillna(0).astype(int)
test_analytics_expanded

The following is a screenshot of test_analytics_expanded which has the landing pages labeled
by their ab_group:



Our dataset is ready for some data exploration before �inally testing. We explore the data to
observe the distribution of sessions, which helps with our model selection.

Split	A/B	Exploratory	Analysis
We’ll estimate the parameters including the average sessions and their variation by A/B group:

ab_means = (
    test_analytics_expand[test_analytics_expand["sessions"] != 0]
    .groupby(["ab_group"])
    .agg({"date": ["min", "max", day_range], "sessions": "mean"})
)
ab_sigmas =
test_analytics_expand.groupby(["ab_group"]).agg({"sessions":
[get_sigma]})

pd.concat([ab_means, ab_sigmas], axis=1)

The pd.concat([ab_means, ab_sigmas], axis=1) dataframe is shown as follows:

The dataframe shows that the minimum sample sessions were comfortably hit and that it looks
like the test group has made a signi�icant difference, that is, a statistically signi�icant higher
number of sessions.



Let’s plot the data by test and control groups to explore it more, starting with an overall time
trend. The data will be aggregated by date and ab_group with the sessions averaged:

simul_abgroup_trend = sim_split_ab_data.groupby(["date",
'ab_group']).agg({"sessions": "mean"}).reset_index()
simul_abgroup_trend.head()

The simul_abgroup_trend.head() is shown as follows:

Once aggregated, we can now plot:

simul_abgroup_trend_plt = (
    ggplot(simul_abgroup_trend,
           aes(x = 'date', y = 'sessions', colour = 'ab_group', group
= 'ab_group')) +
    geom_line(alpha = 0.6, size = 3) +
    labs(y = 'Count', x = '') +
    theme(legend_position = 'right',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),
          legend_title = element_blank()
         )
)

simul_abgroup_trend_plt.save(filename =
'images/3_simul_abgroup_trend_plt.png',
                             height=5, width=8, units = 'in',
dpi=1000)
simul_abgroup_trend_plt

Figure 7-4 shows the resulting time series plot of simul_abgroup_trend_plt. Both groups
experienced dips during that period; however, the test group has outperformed the control group.



Figure	7-4 Time series plot of both test and control group sessions over time

Next, we’ll inspect the distribution of sessions overall, starting with a histogram:

ab_assign_plt = (
    ggplot(test_analytics_expanded,
           aes(x = 'sessions', fill = 'ab_group')) +
    geom_histogram(alpha = 0.6, bins = 30) +
    labs(y = 'Count', x = '') +
    #scale_y_log10() +
    #coord_flip() +
    theme(legend_position = 'none',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),
          legend_title = element_blank()
         ) +
    facet_wrap('ab_group', scales = 'free')
)

ab_assign_plt.save(filename = 'images/4_ab_test_plt.png',
                             height=5, width=8, units = 'in',
dpi=1000)
ab_assign_plt

Figure 7-5 shows ab_assign_plt, which is a side-by-side comparison of both control and test
distributions of sessions. The chart shows that the distribution of the test group has much more
data points above zero, which looks promising.



Figure	7-5. Histogram distribution plots of both Control and Test

The box plot method will be used to contrast the distributions further:

ab_assign_box_plt = (
    ggplot(test_analytics_expand,
           aes(x = 'ab_group', y = 'sessions',
               fill = 'ab_group', colour = 'ab_group')) +
    geom_boxplot(alpha = 0.8) +
    labs(y = 'Count', x = '') +
    theme(legend_position = 'none',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),
          legend_title = element_blank()
         )
)

ab_assign_box_plt.save(filename = 'images/4_ab_test_box_plt.png',
                             height=5, width=8, units = 'in',
dpi=1000)
ab_assign_box_plt

Figure 7-6 shows ab_assign_box_plt, which is a box plot comparison of the control and test
groups.



Figure	7-6 Box plot of test and control sessions

The control group has many more outliers, but the test group has much less zeros than the
control group.

The scales make this hard to distinguish, so we’ll take a logarithm of the session scale to
visualize this further:

ab_assign_log_box_plt = (
    ggplot(test_analytics_expanded,
           aes(x = 'ab_group', y = 'sessions',
               fill = 'ab_group', colour = 'ab_group')) +
    geom_boxplot(alpha = 0.6) +
    labs(y = 'Count', x = '') +
    scale_y_log10() +
    theme(legend_position = 'none',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),
          legend_title = element_blank()
         )
)

ab_assign_log_box_plt.save(filename =
'images/4_ab_assign_log_box_plt.png',
                             height=5, width=8, units = 'in',
dpi=1000)
ab_assign_log_box_plt

Figure 7-7 shows ab_assign_log_box_plt, which is a box plot comparison of the control and test
groups, only this time with a logarized vertical axis for an easier visual comparison.



Figure	7-7 Box plot of test and control

In all cases, we can see that the average sessions are close to zero, and there are many landing
pages on any given day with zero sessions, which indicates that sessions are a rare event. This
type of distribution is known as “Poisson.”

As a consequence, we’ll use a negative binomial distribution to test the differences between
test and control for signi�icance.

First, we’ll mark up the data as being test (1.0) or control (0.0), then convert it to an array:

X = np.where(test_analytics_expand['ab_group'] == 'control', 0.0, 1.0)
X = add_constant(X)
X = np.asarray(X)
X

array([[1., 0.],
       [1., 0.],
       [1., 0.],
       ...,
       [1., 1.],
       [1., 1.],
       [1., 1.]])

Fit a model of sessions by ab_group using negative binomial:

ab_model = NegativeBinomial(test_analytics_expand['sessions'],
    X).fit()

Print the model summary:

ab_model.summary()



The following is a screenshot of ab_model.summary():

Optimization terminated successfully.
         Current function value: 1.155104
         Iterations: 9
         Function evaluations: 10
         Gradient evaluations: 10

From the preceding result, we can conclude that the change was indeed signi�icant. The test group
(shown by x1) exhibited 2.24 more pageviews on average compared to control.

In terms of signi�icance, the LLR p-value is zero, so the chances of the difference occurring due
to random noise are incredibly slim.

Interestingly, the pseudo r-squared which measures the extent to which ab_group can explain
the sessions per se is very low at 0.029, which means the model is very noisy and would require
many more other factors to predict levels of traf�ic other than ab_group.

Inconclusive	Experiment	Outcomes
Experiments may not go the way you expected for a number of reasons:

The expected difference is too high – so consider revising and rerunning the experiment.
The hypothesis needs to be tested differently – perhaps using a different measure or a different
test.
You need a different time period – despite meeting the sample size requirements, it could be
down to seasonal effects such as the time of year or the data ful�illing the sample requirement
before a full week is run or Google wasn’t given a chance to process the changes (see the
previous discussion).
Other external forces.

By setting your hypothesis in the �irst instance, regardless of the outcome, you will have
learned something, and you will be able to move forward with a sensible plan, be it your next test



or a sitewide implementation of your test.

Summary
Experiments have always been a part of the SEO expert’s skill in determining what tactics are likely
to work, even if sometimes the scienti�ic rigor is missing. In the enterprise setting, a rigorous
experiment design is essential due to the impact on revenue and the need to prove
recommendations are bene�icial, before rolling out changes sitewide. While there are tools that
assist in this area, it is also useful to understand the data science behind SEO split tests and the
considerations that must be borne in mind. In this chapter, we covered

The importance of experiments in SEO
Generating hypotheses
Experiment design
Running your experiments
Evaluating your experiments
And what to do if your experiment “fails”

In the next chapter, we will cover SEO reporting in the form of dashboards.
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Although a performance dashboard system in itself doesn’t solve SEO problems directly, having the
infrastructure can be a very useful repository for data to support SEO science as well as create visuals that
communicate useful trends, changes, threats, and opportunities.

Even more importantly, SEO is data rich, and there are numerous data sources and a good many number
of things you can possibly measure in SEO, so the picture can look very noisy and at worst can be useless if
you can’t clearly see and get to the signal.

Having a performance reporting system that uses well-designed and well-thought-out dashboards will
help highlight the most important trends from the noisy data. It will also be easier to identify causal effects.

We will be supplying some code, written in SQL, to help you understand how to achieve some of the
most valuable visuals.

Data	Sources
The types of data sources you would want for your dashboard will be anything that (a) offers an API and (b)
obviously adds information to understanding your SEO performance more effectively. These may include
(and this is by no means exhaustive)
Website	analytics: Google Analytics (GA), Adobe Analytics, Looker, Segment
Webmaster	tools: Google Search Console (GSC), Bing Webmaster
Cloud	web	crawlers: DeepCrawl, OnCrawl, and Botify
SERPs: getSTAT, SEO Monitor, DataForSEO, AWR, AccuRanker
Link	checkers: AHREFs, Majestic, DataForSEO
Social: BuzzSumo
Keywords: SEMRush, Keywords.io
Ad	platforms: Google Ads, DV360

Don’t	Plug	Directly	into	Google	Data	Studio
Google provides convenient connectors to plugging in data sources, like Google Analytics (GA) and Google
Search Console (GSC). This allows for data to be imported directly into Google Data Studio (GDS) which
makes SEO dashboards easy.

However, this is a missed opportunity because there is no way to overlay the data between the two data
sources in GDS. GDS is a front end for visualizing data.

Without a process that goes between the data source and the front end, the data is raw, undistilled, and
less useful for spotting trends and uncovering insights.

Using	Data	Warehouses
This is where a data warehouse like Google’s BigQuery or Amazon’s Redshift comes in. You store the data in
those data warehouses, and the front end, be it GDS, Tableau, DOMO, or others, will use custom Structured
Query Language (SQL) to query the data warehouse and get the data in a format ready to drive the charts
you want to show.

We will share SQL code with you and some charts to help you on your way to building your own SEO
dashboards.

https://doi.org/10.1007/978-1-4842-9175-7_8


However, before you start building, you need to get the data into the data warehouse. So, how do we
achieve that?

Extract,	Transform,	and	Load	(ETL)
Extract, transform, and load (ETL) is a method by which you literally
Extract your data from your data source APIs.
Transform is where you run calculations and create new calculated �ields from the data extracted.
Load is the part where you load the transformed data into the data warehouse.

There are numerous con�igurations you can pursue depending on which cloud stack you go with, your
team’s cloud engineering skills, and your budget.

Extracting	Data
The extract process will usually be automated where your APIs get queried on a daily basis (known as
“polling”) using a virtual machine running the script. The data gets stored either in storage or a data
warehouse.

If your cloud engineering skills are nonexistent, you can still upload data via CSV format to the data
warehouse.

The following is some code to extract data from a number of APIs which will be the main Google
products and some of (not all of) the more well-known SEO processes:

Google Analytics
Google Search Console
DataForSEO SERPs API
Google PageSpeed API

We’ll now provide Python code for you to connect to these APIs not just for reporting purposes as this
code can be adapted to support other SEO science activities covered in other chapters.

Google	Analytics
Traf�ic remains a key lever of growth, and Google Analytics is widely used as a web analytics package.
However, more organic search traf�ic will not always correlate directly with more revenue, but it may
indicate engagement through other means.

The following will detail code to extract data from the most well-known and used website analytics APIs
being Google Analytics version 4.

Import the API libraries:

import pandas as pd
from pathlib import Path
import os
from datetime import date, timedelta

Set the �ile path of the credential keys which is a JSON �ile and obtainable from your Google Cloud
Platform account under API Libraries ➤ Credentials:

credentials_path = Path("keys/xxxxx.json")
credentials_path_str = str(credentials_path.absolute())

os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentials_path_str

Import the other APIs from the other Google library:

from google.analytics.data_v1beta import BetaAnalyticsDataClient
from google.analytics.data_v1beta.types import DateRange
from google.analytics.data_v1beta.types import Dimension
from google.analytics.data_v1beta.types import Metric
from google.analytics.data_v1beta.types import RunReportRequest



client = BetaAnalyticsDataClient()

De�ine a function to run an aggregated report which will require a date range and the property ID of the
GA4 account.

In this function, we query the API using the inputs to build the request which includes the metrics we
want and store the API response.

We’ve set the dimension as landingPage because that’s how we want the traf�ic numbers broken down.
Other dimensions may be used which are listed here
(https://developers.google.com/analytics/devguides/reporting/data/v1/api-
schema).

def aggregated_run_report(client, property_id="[your-GA-property-id]",
date_ranges=[DateRange(start_date="2020-03-31", end_date="today")]):

    request = RunReportRequest(
        property=f"properties/{property_id}",
        dimensions=[Dimension(name="landingPage")],
        metrics=
            [
                Metric(name="activeUsers"),
                Metric(name="screenPageViewsPerSession"),
                Metric(name="bounceRate"),
                Metric(name="averageSessionDuration"),
                Metric(name="userConversionRate"),
                Metric(name="ecommercePurchases"),
            ],
        date_ranges=date_ranges,
    )
    response = client.run_report(request)

    return response

response = aggregated_run_report(client)
print("Report result:")
for row in response.rows:
    print(row.dimension_values[0].value, row.metric_values[0].value)

Report result:
/ 11347
/blog/sell-airtime-over-charged-your-line-dont-panic 8423
/faq 4870
/blog/sell-airtime-over-charged-your-line-dont-panic 2355
/privacy 1338

The next function uses the API response result rows and packages it into a single dataframe:

def ga4_response_to_df(response):
    dim_len = len(response.dimension_headers)
    metric_len = len(response.metric_headers)
    all_data = []
    for row in response.rows:
        row_data = {}
        for i in range(dim_len):
            row_data.update({response.dimension_headers[i].name:
row.dimension_values[i].value})
        for i in range(metric_len):
            row_data.update({response.metric_headers[i].name:
row.metric_values[i].value})
        all_data.append(row_data)

https://developers.google.com/analytics/devguides/reporting/data/v1/api-schema


    df = pd.DataFrame(all_data)
    return df

df = ga4_response_to_df(response)
df.info()

This results in the following:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 8 columns):
#   Column      Non-Null Count  Dtype
---  ------      ------------  -----
0   landingPage 418 non-null    object
1   dateRange   418 non-null    object
2   activeUsers 418 non-null    object
3   screenPageViewsPerSession  418 non-null    object
4   bounceRate  418 non-null    object
5   averageSessionDuration     418 non-null    object
6   userConversionRate         418 non-null    object
7   ecommercePurchases         418 non-null    object
dtypes: object(8)
memory usage: 26.2+ KB

Printing the dataframe’s properties via df. info() tells us the data types which all appear to be strings,
which is okay for the landing page but not for metrics, such as activeUsers, which should be converted to
numeric before the data can be processed further.

df.head()

The following resulting dataframe shows the dimensions “landingPage” along with the metrics. The data
is aggregated across the entire date range.

But suppose you wanted the data broken down by date as well.
The following function will do just that with the default number of day parameters set to two years:

def dated_run_report_to_df(client, property_id="xxxxxxxxx", n_days=365*2):

    date_ranges = []
    count = 0
    df_output = pd.DataFrame()
    for i in range(n_days):
        count += 1

        current = date.today() - timedelta(days=i)
        before = date.today() - timedelta(days=i+1)
        date_ranges.append(DateRange(start_date=before.strftime("%Y-%m-%d"),

http://df.info/


       end_date=current.strftime("%Y-%m-%d"),
       name=current.strftime("%Y-%m-%d")))

        if count == 4:
            response = aggregated_run_report(client,
property_id=property_id, date_ranges=date_ranges)
            df = ga4_response_to_df(response)
            df_output = pd.concat([df_output, df], ignore_index=True)

            # Re-initialize
            count = 0
            date_ranges = []

    return df_output

Run the function; in this case, we’ll extract the last 90 days:

df = dated_run_report_to_df(client, n_days=90)

The following function converts the column data formats from str to their appropriate formats which
are mostly numeric:

def format_df(df):
    df["dateRange"] = pd.to_datetime(df["dateRange"])
    df["activeUsers"] = df["activeUsers"].astype("float")
    df["screenPageViewsPerSession"] =
df["screenPageViewsPerSession"].astype("float")
    df["bounceRate"] = df["bounceRate"].astype("float")
    df["averageSessionDuration"] =
df["averageSessionDuration"].astype("float")
    df["userConversionRate"] = df["userConversionRate"].astype("float")
    df["ecommercePurchases"] = df["ecommercePurchases"].astype("float")

    return df

df = format_df(df)
df.info()

This results in the following:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 376 entries, 0 to 375
Data columns (total 8 columns):
#   Column      Non-Null Count  Dtype
---  ------      --------------  -----
 0   landingPage 376 non-null    object
 1   dateRange   376 non-null    datetime64[ns]
 2   activeUsers 376 non-null    float64
 3   screenPageViewsPerSession  376 non-null    float64
 4   bounceRate  376 non-null    float64
 5   averageSessionDuration     376 non-null    float64
 6   userConversionRate         376 non-null    float64
 7   ecommercePurchases         376 non-null    float64
dtypes: datetime64[ns](1), float64(6), object(1)
memory usage: 23.6+ KB

df

This results in the following:



The result is a dataframe ready for transformation.

DataForSEO	SERPs	API
The DataForSEO SERPs API is purpose built to return the Google search results for a given keyword. This is
useful for checking rankings, understanding the search intent of keywords, and other SEO research.

We start by de�ining our target keyword list:

keywords_lst

This results in the following:

['airtime app',
 'airtime to cash app',
 'airtime transfer',
 'app to sell airtime',
 'app to transfer airtime from one network to another',
 'bet with airtime and win cash',
 'buy airtime online',
 'buy airtime with discount',
 'buy recharge card online',
 'buy recharge card online with debit card',
 'can i subscribe dstv with airtime?',
 'can i use my airtime to buy electricity?',
 'can you convert airtime to cash?', ...]

With this API, you’ll need your DataForSEO client �ile which resides in the same folder as the Jupyter
notebook script �ile running this code:

from client import RestClient

client = RestClient("[your-username]", "xxxxxxxxxxxxxxx")

The API will need to know which country you’d like to see the search results for, the device, and the
language, which are de�ined as follows. The countries list may be found here
(https://docs.dataforseo.com/v3/serp/google/locations/?bash).

location = 2826
language = "en"
device_input = 'mobile'

The following are functions to query the API. set_post_data will set the parameters for the search:

def set_post_data(search_query):
    post_data = dict()
    post_data[len(post_data)] = dict(
        language_code = language,
        location_code = location,

https://docs.dataforseo.com/v3/
https://docs.dataforseo.com/v3/serp/google/locations/?bash


        device = device_input,
        keyword = search_query,
        calculate_rectangles = True)
    return post_data

The function get_api_result uses the preceding function to structure the input which will be used to
request the search results. The API result is stored in a variable named “response.”

There is a try loop in place so that should there be an issue with the API call, the function carries on and
moves on to the next keyword, to prevent holding up the entire operation or stalling:

def get_api_result(search_query):
    post_data = set_post_data(search_query)
    response = client.post("/v3/serp/google/organic/live/advanced",
post_data)

    try:
        return response
    except Exception as e:
        print(response)
        print(e)
        return None

With multiple keywords to be queried, we’ll want to call the function multiple times, so we’ll do that
using a for loop.

Initialize an empty dictionary to store the individual API results:

desktop_serps_returned = {}

Add a for loop to query the API for each and every keyword in the list:

i = 0

for search_query in set(keywords_lst):
    print(search_query, i + 1, len(keywords_lst) - i - 1)
    i += 1
    serp_dict = get_api_result(search_query)
    desktop_serps_returned[search_query] = serp_dict

Printing the entire output in this book and in the Jupyter notebook would be too impractical. Instead,
we’ll print the keys of the dictionary where the data is stored which shows the keywords that have API data:

desktop_serps_returned.keys()

dict_keys(['buy recharge card online with debit card', 'can i use my airtime
to buy electricity?', 'buy recharge card online', 'can you convert airtime
to cash?', 'airtime to cash app', 'app to sell airtime', 'bet with airtime
and win cash', 'airtime sell', 'buy airtime online', 'airtime sharing', 'can
i subscribe dstv with airtime?', 'buy mtn', 'airtime buy', 'airtime
transfer', 'buy airtime with discount', 'airtime app', 'airtime
application', 'airtime bills', 'airtime funding', 'app to transfer airtime
from one network to another'])

With the data stored, the dictionary requires unpacking into a dataframe format, which will be carried
out as follows.

Initialize an empty list:

desktop_serps_flat_df = []



Using a for loop, we’ll iterate through the dictionary keys which will be used to select parts of the
dictionary by keyword. Then we loop through the contents of the dictionary data for that keyword and add
these to the empty list initialized earlier:

for serp in desktop_serps_returned.keys():
    single_serp = desktop_serps_returned[serp]
    keyword = serp
    for task in single_serp['tasks']:
        cost = task['cost']
        task_id = task['id']
        se = task['data']['se']
        device = task['data']['device']
        os = task['data']['os']

        for res in task['result']:
            for idx, item in enumerate(res['items']):
 desktop_serps_flat_df.append(
     (
         cost, task_id, se, device, os, res['keyword'],
         res['location_code'], res['language_code'],
         res['se_results_count'], res['type'], res['se_domain'],
         res['check_url'], item['rank_group'], item['rank_absolute'],
         item.get('url', None), item.get('domain'), item.get('is_image'),
item.get('is_featured_snippet'),
         item.get('is_video'), item.get('is_malicious'),
item.get('is_web_story'),
         item.get('description'), item.get('pre_snippet'),
item.get('amp_version'),
         item.get('rating'), item.get('price'), item.get('highlighted'),
         item.get('links'), item.get('faq'),
item.get('extended_people_also_search'),
         item.get('timestamp'), item.get('rectangle'),
         res['datetime'], item.get('title'), item.get('cache_url')
     )
 )

Once the list has all the added keyword SERP data, it is converted into a dataframe:

desktop_full_df = pd.DataFrame(
    desktop_serps_flat_df,
    columns=[
      'cost', 'task_id', 'se', 'device', 'os', 'keyword',
      'location_code', 'language_code', 'se_results_count',
      'type', 'se_domain', 'check_url', 'rank_group',
      'rank_absolute', 'url', 'domain', 'is_image', 'is_featured_snippet',
      'is_video', 'is_malicious', 'is_web_story',
      'description', 'pre_snippet', 'amp_version',
      'rating', 'price', 'highlighted', 'links',
      'faq', 'extended_people_also_search', 'timestamp', 'breadcrumb',
      'datetime', 'title', 'cache_url'
    ]
)
desktop_full_df.head(2)

This results in the following:



The result is the API data in a dataframe which is ready for reporting or prereporting transformation.

Google	Search	Console	(GSC)
Google Search Console (GSC) is �irst-party data and the source of truth for most SEOs. Here, we will show
you how to extract data from the API which will provide more rows than the standard 1000 rows available
in the interface.

The API will require a Google Cloud Platform (GCP) account in which you will have to create a GCP
project and, within that project, some credentials with a JSON key.

Let’s start by importing some libraries:

from apiclient import errors
from apiclient.discovery import build

import datetime
import httplib2
import re
import pandas as pd
import numpy as np
from collections import defaultdict

from oauth2client.client import OAuth2WebServerFlow
from datetime import datetime, timedelta, date
from dateutil.relativedelta import relativedelta
import calendar
import time

The script is constructed to allow you to query multiple domains, which could be useful for an agency
reporting system where you look after more than one client or, if you’re in the client side, multiple sites:

site_list = ['https://www.babywishiest.com']
site = 'https://www.babywishiest.com'
client_name = babywishiest

The dimensions will give a breakdown of the data, while no dimensions will return summary data for the
date range:

dimensions = ['query', 'page']

To �ilter to a device, enter MOBILE, DESKTOP, or TABLET or leave it blank for all devices:

device_filter = ''

To �ilter to a search type, enter WEB, IMAGE, VIDEO, or discover. This defaults to WEB if left blank:

search_filter = ''

To �ilter to a speci�ic three-digit country code (e.g., FRA). A list of country codes is available here
(https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3). If left blank, the API will default to all:

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3


country_filter = ''

To �ilter pages which contain a string, you can use operators such as “equals,” “contains,” “notContains,”
or “notEquals”:

page_filter_string = ''
page_filter_operator = 'equals'

The same can be applied to queries:

query_filter_string = ''
query_filter_operator = ''

State your date range for the query, which will be converted in datetime format:

start_date = '2022-08-01'
end_date = '2022-11-30'

start_date_datetime = datetime.strptime(start_date, '%Y-%m-%d').date()
end_date_datetime = datetime.strptime(end_date, '%Y-%m-%d').date()
print(start_date_datetime, end_date_datetime)

Enter a date grouping to break down the data. Use D (day), W (week), M (month), or A (all):

date_grouping = 'A'

Enter API credentials obtainable from the APIs section of your GCP project:

CLIENT_ID = 'xxxxxxx'
CLIENT_SECRET = 'xxxxxx'

Add sleep time between requests. Increase this if you are hitting limits or getting errors:

sleep_time = 10

2022-08-01 2022-11-30

With the parameters speci�ied, the next block deals with authentication using the OAuth method:

OAUTH_SCOPE = 'https://www.googleapis.com/auth/webmasters.readonly'
REDIRECT_URI = 'urn:ietf:wg:oauth:2.0:oob'

Run through the OAuth �low and retrieve credentials:

flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, OAUTH_SCOPE,
redirect_uri=REDIRECT_URI)
authorize_url = flow.step1_get_authorize_url()
print ('Go to the following link in your browser: ' + authorize_url)
code = input('Enter verification code: ').strip()
credentials = flow.step2_exchange(code)

Create an httplib2.Http object and authorize it with your credentials:

http = httplib2.Http()
http = credentials.authorize(http)

webmasters_service = build('searchconsole', 'v1', http=http)

Go to the following link in your browser: https://accounts.google.com/o/oauth2
client_id=xxxxx&redirect_uri=xxxxx&scope=https%3A%2F%2Fwww.googleapis.com%2Fau



Enter verification code: xxxxxx

Once authenticated, set the custom number of rows to retrieve from the API per request:

row_limit = 25000

Create a dataframe to store the full output:

output = pd.DataFrame()

request = {
            'rowLimit': row_limit,
            'startRow': 0
        }

if dimensions:
  request['dimensions'] = dimensions

if search_filter:
  request['searchFilterGroups'] = [{'filters':
[{'dimension':'search','expression':search_filter}]}]

Build dimension �ilters from the settings:

dimension_filters = []

if device_filter:
  dimension_filters.append({'dimension':'device', 'expression':device_filter})
if country_filter:
  dimension_filters.append({'dimension':'country', 'expression':country_filter
if page_filter_string:
  dimension_filters.append({'dimension':'page','expression':page_filter_string
'operator': page_filter_operator})
if query_filter_string:
  dimension_filters.append({'dimension':'query','expression':query_filter_stri
'operator': query_filter_operator,})
request['dimensionFilterGroups'] = [{'filters':dimension_filters}]

print(f'Filter: {dimension_filters}')

Loop through all the dates from start to end, inclusive and populate the request start and end dates with
the date from the loop:

for site in site_list:
  for single_date in daterange(start_date_datetime, end_date_datetime,
date_grouping):

    request['startDate'] = f"{single_date[0].strftime('%Y')}-
{single_date[0].strftime('%m')}-{single_date[0].strftime('%d')}"
    request['endDate'] = f"{single_date[1].strftime('%Y')}-
{single_date[1].strftime('%m')}-{single_date[1].strftime('%d')}"

    print(site + ' - ' + request['startDate'] + ' to ' + request['endDate'])

    run = True
    rowstart = 0
    request['startRow'] = rowstart

    while run:



      try:
        response_page = execute_request(webmasters_service, site, request)
        scDict_results = defaultdict(list)

        try:
          for row in response_page['rows']:

            if dimensions:
              for i,dimension in enumerate(dimensions):
              scDict_results[dimension].append(row['keys'][i] or 0)

            scDict_results['clicks'].append(row['clicks'] or 0)
            scDict_results['ctr'].append(row['ctr'] or 0)
            scDict_results['impressions'].append(row['impressions'] or 0)
            scDict_results['position'].append(row['position'] or 0)

          df = pd.DataFrame(data = scDict_results)
          df['start_date'] = request['startDate']
          df['end_date'] = request['endDate']
          df['site'] = site

          frames = [output, df]
          output = pd.concat(frames)
          print(str(len(df)) + ' results')

          time.sleep(sleep_time)

          if len(df) == row_limit:
            rowstart += row_limit
            request['startRow'] = rowstart
          else:
            run=False
        except:
          print('No results found for this date range')
          run=False

      except HttpError:
        print('Got an error. Retrying in 1m.')
        time.sleep(60)

Filter: []
https://www.babywishiest.com - 2022-08-01 to 2022-11-30
1672 results

output

This results in the following:



Although it’s a large block of code, the API can be used to extract 100,000 rows of data if not much more.

Google	PageSpeed	API
The PageSpeed API is another core metric for SEOs especially with the Core Web Vitals (CWV) initiative
introduced by Google in April 2020. The API is not only useful for checking your own site’s CWV scores but
also those of your SERP competitors.

To make use of this API, a key will be required which is obtainable from Google Cloud Platform (GCP) in
the APIs section.

Start by de�ining your list of URLs to check CWV scores against:

desktop_serps_urls = ['https://pay.jumia.com.ng/services/airtime',
 'https://pay.jumia.com.ng/',
 'https://vtpass.com/',
 'https://www.gloverapp.co/products/airtime-to-cash',
 'https://www.zoranga.com/',
 'https://airtimeflip.com/',
 'https://www.tingtel.com/blog/sell-airtime-over-charged-your-line-dont-
panic',
 'https://vtpass.com/payment',
 'https://pay.jumia.com.ng/services/mobile-data/mtn-mobile-data', ...]

"https://www.googleapis.com/pagespeedonline/v5/runPagespeed?url=[test-
url]&key=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

Set the parameters for the API:

base_url = 'https://www.googleapis.com/pagespeedonline/v5/runPagespeed?url='
strategy = '&strategy=desktop'
api_url = '&key=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'

Initialize an empty dictionary to store the data and a counter to keep track of the number of URLs being
queried:

desktop_cwv = {}
i = 0



Loop through the list of URLs to query the API:

for url in desktop_serps_urls:
    request_url = base_url + url + strategy + api_url
    response = json.loads(requests.get(request_url).text)
    i += 1
    print(i, " ", request_url)
    desktop_cwv[url] = response

The keys are printed to list the URLs queried successfully:

desktop_cwv.keys()

dict_keys(['https://pay.jumia.com.ng/services/airtime',
'https://pay.jumia.com.ng/', 'https://vtpass.com/',
'https://www.tingtel.com/blog/buy-airtime-get-discount-on-every-airtime-
recharge', 'https://www.gloverapp.co/products/airtime-to-cash',
'https://www.zoranga.com/', 'https://airtimeflip.com/',
'https://www.tingtel.com/blog/sell-airtime-over-charged-your-line-dont-
panic', 'https://www.tingtel.com/', 'https://www.tingtel.com/faq/airtime-
sell', 'https://vtpass.com/payment',
'https://pay.jumia.com.ng/services/mobile-data/mtn-mobile-data',
'https://www.tingtel.com/blog/transfer-airtime-one-airtime-works-for-all-
networks', 'https://www.tingtel.com/blog/airtime-bills-settle-electricity-
cable-tv-bills-with-airtime', 'https://www.tingtel.com/blog/fund-wallet-
with-airtime'])

Iterate through the PageSpeed API JSON Response dictionary, starting with an empty list:

desktop_psi_lst = []

Loop through the dictionary by key to extract the different CWV metrics and store them in the list:

for key, data in desktop_cwv.items():
    if 'lighthouseResult' in data:
        FCP = data['lighthouseResult']['audits']['first-contentful-paint']
['numericValue']
        LCP = data['lighthouseResult']['audits']['largest-contentful-paint']
['numericValue']
        CLS = data['lighthouseResult']['audits']['cumulative-layout-shift']
['numericValue']
        FID = data['lighthouseResult']['audits']['max-potential-fid']
['numericValue']
        SIS = data['lighthouseResult']['audits']['speed-index']['score'] *
100
        desktop_psi_lst.append([key, FCP, LCP, CLS, FID, SIS])
desktop_psi_df = pd.DataFrame(desktop_psi_lst, columns = ['url', 'FCP',
'LCP', 'CLS', 'FID', 'SIS'])
desktop_psi_df

This results in the following:



The result is a dataframe showing all the CWV scores for each URL.

Transforming	Data
The purpose of transforming the data, which has been extracted by the API or other means from your data
source, is to

Clean it up for further calculated metrics
Derive meaningful stats such as month-on-month (mom) variance
Insert it (i.e., loading) into a data warehouse

The code is going to continue from the Google Analytics (GA) data extracted earlier where we will cover
the preceding points.

We start by copying the GA dataframe:

df_clean = df.copy()

Repro�ile “averageSessionDuration” to be the number of seconds:

df_clean['averageSessionDuration'] = (df_clean['averageSessionDuration'] /
60).round(1)

Create new columns for easier transformation based on time and calendar date units:

df_clean['month'] = df_clean['dateRange'].dt.strftime('%m')
df_clean['year'] = df_clean['dateRange'].dt.strftime('%Y')
df_clean['month_year'] = df_clean['dateRange'].dt.strftime('%Y-%m')

df_clean

This results in the following:



With the data formatted, we can start transforming to derive new columns of trend data such as
Averages
Standard deviations (for variation)
Periodic changes (such as month-on-month)

Let’s make a copy and rename it to re�lect that we’re aggregating by landing page and by month:

ga4_lp_agg_month = df_clean.copy()

We’ll create some basic summary statistics which will be the average (“mean”) and total (“sum”) of
various GA metrics using the groupby() and agg() functions:

ga4_lp_agg_month_basic = ga4_lp_agg_month.groupby(['landingPage',
'month_year']).agg({'activeUsers':'sum',
          'screenPageViewsPerSession':'mean',
          'bounceRate':'mean',
          'averageSessionDuration':'mean',
          'userConversionRate':'mean',
          'ecommercePurchases':'sum'
         }).reset_index()

ga4_lp_agg_month_basic

This results in the following:

The metrics as shown earlier are summarized by landing page and month_year which can be used to feed a
basic SEO dashboard reporting system.

Usually in all cases, we track the mean and standard deviation. The average gives us a useful indicator of
where a channel is at in terms of performance, as it will indicate where most data points were or will be for
a given category of data for a given point of time.

Averages, as every statistician (and many others being statistically aware) will tell you, can be
dangerous on their own when making inferences or decisions even. This is why we also track the standard
deviation as this indicator tells us something about the variation of a given metric, that is, how consistent it
is.

In practical terms, the standard deviation tells us how close the data points are to the average. And what
can we deduce from this?



We can deduce which averages we’re more likely to trust or rely on for comparing between months. So
the standard deviation can tell us a bit about the quality of the averages for the purpose of con�idence in the
data and for comparisons and also how the metric we’re tracking is behaving over time.

For example, you might �ind that the standard deviation is increasing or decreasing and should
therefore try to understand what the reason behind it is. Could it be

Changes in Google through algorithm updates?
Changes in your user behavior, search intent of the query, your brand positioning, or the market?
Changes in your site’s UX or content or an architectural change?

Tracking the standard deviation could help you see whether something is afoot for the better or worse:

ga4_lp_agg_month = df_clean.copy()

Perform an aggregation to derive various average and standard deviation statistics:

ga4_lp_agg_month_mean = ga4_lp_agg_month.groupby(['landingPage',
     'month_year']).agg({'activeUsers':'mean',
         }).reset_index()

ga4_lp_agg_month_mean = ga4_lp_agg_month_mean.rename(columns =
{'activeUsers':'activeUsers_avg'})

While “mean” calculates the average, “std” calculates the standard deviation:

ga4_lp_agg_month_std = ga4_lp_agg_month.groupby(['landingPage',
    'month_year']).agg({'activeUsers':'std',
         'bounceRate':'std',
         }).reset_index()

Rename the columns:

ga4_lp_agg_month_std = ga4_lp_agg_month_std.rename(columns =
{'activeUsers':'activeUsers_std',
  'bounceRate':'bounceRate_std'
 })

Join the data to the basic dataframe created earlier:

ga4_lp_agg_month_stats = ga4_lp_agg_month_basic.merge(ga4_lp_agg_month_mean,
        on = ['landingPage', 'month_year'], how = 'left')

ga4_lp_agg_month_stats = ga4_lp_agg_month_stats.merge(ga4_lp_agg_month_std,
         on = ['landingPage', 'month_year'], how = 'left')

ga4_lp_agg_month_stats.head()

This results in the following:

We can now see the additional columns created earlier.
The next block of code calculates the month-on-month on the various performance data.
First, we sort values to get the rows in month order for each landing page as the month-on-month

calculation will be dependent on the row positioning.:

ga4_lp_agg_month_moms = ga4_lp_agg_month_stats.sort_values(['landingPage',
'month_year'])



We’re just calculating the monthly stats for activeUsers and bounceRate; however, you can use the same
methods on all of the other metric columns.

First, we start by calculating the absolute change from the current row to the previous row (the previous
month) using the shift() function.

Note that “1” was entered as a parameter to the shift() function, which means 1 row. If you wanted to
calculate the year-on-year difference, then you would enter “12” (i.e., .shift(12)), which would look at the
value 12 rows before.

ga4_lp_agg_month_moms['activeUsers_delta'] =
ga4_lp_agg_month_moms['activeUsers'] -
ga4_lp_agg_month_moms['activeUsers'].shift(1)

The month-on-month is then calculated by dividing the absolute change by the current month value and
multiplied by 100:

ga4_lp_agg_month_moms['activeUsers_mom'] =
((ga4_lp_agg_month_moms['activeUsers_delta'] /
ga4_lp_agg_month_moms['activeUsers'].shift(1) * 100)).round(1)

This procedure is repeated for the bounce rate:

ga4_lp_agg_month_moms['bounceRate_delta'] =
ga4_lp_agg_month_moms['bounceRate'] -
ga4_lp_agg_month_moms['bounceRate'].shift(1)
ga4_lp_agg_month_moms['bounceRate_mom'] =
((ga4_lp_agg_month_moms['bounceRate_delta'] /
ga4_lp_agg_month_moms['bounceRate'].shift(1) * 100)).round(1)

ga4_lp_agg_month_moms

This results in the following:

The delta and month-on-month columns are added. Note the NaN for the �irst row which is because no
previous row existed for the shift() function to work.

To overwrite NaNs, you could use the np.where() function to replace .isnull() with zero.
An alternative approach would be to use a special function to avoid ordering the rows. However, this

could be computationally more expensive to run in the cloud if you’re planning to automate this as an all-
encompassing SEO data warehouse dashboard reporting system.

Once done, you’re ready to upload to your data warehouse of choice.

Loading	Data
As mentioned earlier in the chapter, loading involves moving the transformed data into the data warehouse.
Once uploaded, it’s a good idea to check your data schema and preview what you’ve uploaded.

The following SQL will produce user trends by month and channel:

select yearMonth, channel, sum(users) as users from (
  select yearMonth, 'organic' as channel, users_sum  as users from
  google_analytics.multichannel_ga_monthly
  where channel in ('Organic Traffic')
    and



DATE_DIFF(CURRENT_DATE(), PARSE_DATE('%Y-%m-%d',
CONCAT(SUBSTR(CAST(yearMonth AS STRING), 1, 4),"-",
       SUBSTR(CAST(yearMonth AS STRING), 5, 2),"-",'01')), MONTH) <= 12
  union all
  select yearMonth, 'non_seo' as channel, all_users - organic as users
  from (
    SELECT yearMonth
      , MAX(IF(channel = 'Organic Traffic', users_sum, 0)) organic
      , MAX(IF(channel = 'All Users', users_sum, 0)) all_users
      from google_analytics.multichannel_ga_monthly
      where channel in ('Organic Traffic', 'All Users')
      group by yearMonth
      )
   )
  where
DATE_DIFF(CURRENT_DATE(), PARSE_DATE('%Y-%m-%d',
CONCAT(SUBSTR(CAST(yearMonth AS STRING), 1, 4),"-",
       SUBSTR(CAST(yearMonth AS STRING), 5, 2),"-",'01')), MONTH) <= 12
  group by yearMonth, channel
order by yearMonth LIMIT 100;

The following SQL will produce user traf�ic stats by month with year-on-year:

select
yearMonth,
CASE
  WHEN channel = 'All Users' THEN "non_seo"
  ELSE channel
  END as channel,
users_yoy
from google_analytics.multichannel_ga_monthly
where
channel in ("All Users", "Organic Traffic")
and
DATE_DIFF(CURRENT_DATE(), PARSE_DATE('%Y-%m-%d',
CONCAT(SUBSTR(CAST(yearMonth AS STRING), 1, 4),"-", SUBSTR(CAST(yearMonth AS
STRING), 5, 2),"-",'01')), MONTH) <= 12
order by yearMonth desc LIMIT 100;

The following SQL will produce year-on-year user traf�ic stats by month with this year vs. last year, for
the months year to date:

SELECT yearMonth
      , year
      , SUBSTR(CAST(yearMonth AS STRING), 5, 6) as mon_x
      , users_sum
      from google_analytics.multichannel_ga_monthly
      where
      channel in ("Organic Traffic")
      order by mon_x, year desc;

This results in the following:
Once run, the result is generated by Google BigQuery under the “Results” tab (Figure 8-1).



Figure	8-1 Preview of Google BigQuery results following SQL execution

Visualization
If you’re satis�ied with the SQL results, you can use the same queries and visualize these in your front end
such as Looker Studio, Tableau, etc., as shown in the following. How does organic search compare to other
channels? By volume (top) and YoY (bottom) over time, shown in the Looker Studio graph (Figure 8-2).

Figure	8-2 Looker Studio graph showing organic vs. non-SEO channels over the last 12 months

How does organic search compare to other channels year-on-year? The Looker Studio graph in Figure 8-
3 visualizes the SQL statement which calculates the year-on-year traf�ic numbers for both organic and non-
SEO channels. This is useful for seeing how well the SEO is performing for the time of the year (i.e.,
independent of seasonality). It also gives some measure of how SEO has performed relative to non-SEO
channels for the same period.

Figure	8-3 Looker Studio bar chart of year-on-year traf�ic numbers for both organic and non-SEO channels by month



How do organic search users compare to last year? The Looker Studio graph in Figure 8-4 shows this
year and last year traf�ic numbers for organic traf�ic only. This is useful for comparing this year’s SEO
performance vs. last year’s SEO performance in isolation.

Figure	8-4 Looker Studio graph showing this year and last year traf�ic numbers for organic traf�ic only

Automation
Naturally, this can all be automated; you just need a team of competent cloud software engineers to
automate

Polling of data via APIs (extract)
Cleaning, restructuring, and creating new calculated �ields (transform)
Loading (into BigQuery, Amazon Redshift, or others)

The result is simple, although the execution in reality is far more complicated, which relies on cloud
engineering skills.

Summary
When putting dashboards together, it’s important to begin with the end in mind and think about what the
purpose of the dashboard is and who it is for (that is your audience). Once you know the outputs, then work
backward.

Dashboards are driven by the data, so you’ll need to consider which data sources you’ll need. Raw data is
seldom a good idea to plug straight into the front end like Looker Studio as it’s likely to overwhelm the front
end and thus load slowly or crash. Instead, you’ll want to summarize the data into meaningful trends.

Extract, transform, and load (ETL) is the process of automating the data collection, summarizing the
data, and then loading it into a system. We provided code to help you

Extract SEO data from common SEO sources including Google Analytics
Transform to summarize by channel
See what the data could look like when loaded into Looker Studio
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This chapter covers site migration mapping so that you could set the structure of your new site and
semiautomate the formation of your migration URLs. The following are some of the techniques we’ll be
using:

String manipulation
Iterating through dataframe rows by converting these into a list
Using natural language processing (NLP) to compare URL strings

While these techniques will speed up the processing of data for a site migration, they can easily be
applied to other use cases.

Verifying	Traf�ic	and	Ranking	Changes
Though the step of verifying the traf�ic and/or ranking changes following relaunch is not strictly necessary,
it’s good to go through in case any colleagues are doubtful as to whether the changes in traf�ic or rankings
were attributable to the date you claim. If you’re pushed for time however, you can skip this step.

import re
import time
import random
import pandas as pd
import numpy as np
import datetime
from textdistance import sorensen_dice
from textdistance import jaccard
pd.set_option('display.max_colwidth', None)

target_site_search = 'Saga travel'
first_gen = ['Holidays', 'Cruises', 'Travel Updates', 'Accessibility and
Support', 'Brochure Request', 'My Travel', 'Trade']
target_roots = first_gen
source_root_url = 'https://travel.saga.co.uk/'
target_root_url = 'https://www.saga.co.uk/'

The data comes from a spreadsheet which is a representation of the site taxonomy or hierarchy, that is,
folders and subfolders with the site levels organized in columns:

hierarchy_raw = pd.read_csv('data/saga_hierarchy.csv')
hierarchy_raw

This results in the following:

https://doi.org/10.1007/978-1-4842-9175-7_9


In the preceding table, we can see how the spreadsheet looks with numbers across the top denoting the site
levels and the page (we’ll call them nodes) with names per row with their immediate parent.

Let’s get the site levels for each of the parent nodes:

site_levels = pd.DataFrame(hierarchy_raw.unstack())
site_levels = site_levels.dropna().drop_duplicates()
site_levels = site_levels.rename(columns = {0 : 'node'})
site_levels = site_levels.reset_index()
site_levels = site_levels[['level_0', 'node']]
site_levels = site_levels.rename(columns = {'level_0': 'level'})
site_levels

This results in the following:



With the site nodes de�ined, which will come in handy later, we’re going to �ind the pairs of parent and child
nodes.

Identifying	the	Parent	and	Child	Nodes
Child nodes are the immediate pages that are a single click away from the parent node. To do this, we’ll need
a couple of functions. The apply_pcn function will treat the dataframe as a collection of rows and apply
the second function. This approach is faster than iterating through a dataframe row by row using
.iterrows(), which the latter is known for being very slow.

The parent_child_nodes will take the row, convert it to a list, and then use a list comprehension to
ignore blank cells (NaNs, short for “not a number”) and append the contents to the list “pairs.”

Once done, the “pairs” list will be put into a new dataframe “parent_child_map.”
Let’s iterate by row to pick pairs:

pairs = []

def parent_child_nodes(row):
    data = row.values.tolist()
    data = [e for e in data if str(e) not in ('nan')]
    print(data)
    pairs.append(data)

def apply_pcn(df):
  return df.apply(
      lambda row:
        parent_child_nodes(
          row),
      axis=1
  )

apply_pcn(hierarchy_raw)

parent_child_map = pd.DataFrame(pairs,columns=['parent', 'child'])
parent_child_map

We now have a table showing the parent and child nodes:



Of course, if we want the full URL path, we need to process the data further using a copy of hierarchy_raw.
Start with a downward �ill of the �irst column for the home page and then populate the cell should the
adjacent right cell not be blank (checked using the function has_data_right):

hierarchy_fp = hierarchy_raw

# Forward Fill HOMEPAGE
hierarchy_fp['1'] = hierarchy_fp['1'].ffill()

Here’s the function to check for cells on the right to see if populated with data or NANs:

def has_data_right(idx):
    return hierarchy_fp[hierarchy_fp.columns[idx:]].notnull().apply(any,
axis=1)

for c in hierarchy_fp.columns[1:]:
    hierarchy_fp.loc[has_data_right(int(c)), c] =
hierarchy_fp.loc[has_data_right(int(c)), c].ffill()

hierarchy_fp

The following shows the resulting hierarchy_fp dataframe with all the folder names needed to construct
a full path to the URL:



With this in mind, we can now iterate row by row in the dataframe to remove blanks (NaNs) and join them
with a forward slash (/):

min_fp_nonnan = hierarchy_fp
full_paths = []

def find_full_paths(row):
    data = row.values.tolist()
    data = [e for e in data if str(e) not in ('nan')]
    data = '/'.join(data)
    print(data)
    full_paths.append(data)

def apply_ffp(df):
  return df.apply(
      lambda row:
        find_full_paths(
          row),
      axis=1
  )

apply_ffp(min_fp_nonnan)
full_paths

This results in the following:



Now that we have the full folder names joined, a bit of string formatting is required to get them to resemble
URL paths. This is what we’ll do here:

#full_paths
full_path_df =  pd.DataFrame(full_paths,columns=['full_path'])
full_path_df['full_path'] =  full_path_df.full_path.str.replace('Homepage/',
'')
full_path_df['full_path'] =  full_path_df.full_path.str.replace('Homepage',
'')
full_path_df['full_path'] =  full_path_df.full_path.str.replace(' ', '-')
full_path_df['full_path'] =  full_path_df.full_path.str.replace('&', 'and')
full_path_df['full_path'] =  full_path_df.full_path.str.lower()
full_path_df['full_path'] =  target_root_url + full_path_df.full_path
full_path_df

This results in the following:



The full URL path has now been constructed and pushed into a dataframe, so we can now add this to the
parent_child_map dataframe created earlier:

# Join Parent nodes to Full paths
full_node_map = pd.concat([parent_child_map, full_path_df], axis=1)
full_node_map

Now we have a table with the nodes and the full path:

Separating	Migration	Documents
Often, it’s quite common in large organizations for different business units wanting separate migration
documents for their particular website. In the following, we will iterate by row to �ind all of the child nodes
for the “Travel” division and append these to a list “target_roots”:

# filter for target BU

target_node_map = full_node_map



def append_target_pairs(row):
    data = row.values.tolist()
    [target_roots.append(data[1]) for e in data if str(e) in target_roots]

def apply_atp(df):
  return df.apply(
      lambda row:
        append_target_pairs(
          row),
      axis=1
  )

apply_atp(target_node_map)
target_roots = list(set(target_roots))
target_roots

This results in the following:

Having extracted the Travel nodes in target_roots, we can now �ilter for Travel URLs only, starting with child
nodes:

#Target Children
stop_strings = ['insurance', 'breakdown-cover']
target_parent_nodes =
target_node_map[~target_node_map.full_path.str.contains('|'.join(stop_strings)
target_parent_nodes

This results in the following:



And now the parent nodes:

target_parent_nodes = target_node_map[target_node_map.child.isin(first_gen)]
target_parent_nodes

This results in the following:

The next job is to concatenate both of these into a single table:

target_node_map = pd.concat([target_parent_nodes, target_kid_nodes])
target_node_map

This results in the following:



With the Travel site URLs successfully �iltered, we will now join the site levels:

nodes_levelled = pd.merge(target_node_map, site_levels, how='left',
left_on='child', right_on='node')
del nodes_levelled['node']
nodes_levelled['child'] = np.where(nodes_levelled.child.isnull().values, '',
nodes_levelled.child)
nodes_levelled['level'] = np.where(nodes_levelled.level.isnull().values, 0,
nodes_levelled.level)
nodes_levelled

This results in the following:

The site levels were joined using Pandas Merge which is equivalent to Microsoft Excel’s vlookup function.
Because the column names were different in both tables, this had to be speci�ied under left_on and right_on
as shown earlier.

Finding	the	Closest	Matching	Category	URL
Now that we have the new category level URL structures for the travel division, we’re ready to �ind the
closest matching live site URL.



You could try using natural language processing (NLP) techniques here, but these will be quite fruitless.
That’s because the live URL strings may not re�lect the proposed URL structure, especially if you’re looking
to “clean house” and put in more sensible new ideas for the site relaunch.

The approach we take here is to let Google do the work by taking the highest ranking URL for a search
(as displayed in Google’s search results) on a combination of the parent child site names. After all, Google
has far better tools at its disposal, so it only makes sense to use them.

nodes_levelled['search_query'] = target_site_search + ' ' +
nodes_levelled.parent + ' ' + nodes_levelled.child
nodes_levelled['search_query'] = target_site_search + ' "' +
nodes_levelled.parent + ' ' + nodes_levelled.child + '"'
nodes_levelled

This results in the following:

Having taken a combination of the site name and parent and child nodes, these have formed the search
strings we will use to get SERPs data for:

serptool_queries = nodes_levelled['search_query'].to_list()
serptool_queries

This results in the following:

['Saga travel homepage holidays',
'Saga travel homepage cruises',
'Saga travel homepage travel updates',
'Saga travel homepage accessibility and support',
'Saga travel homepage brochure request',
'Saga travel homepage trade',
'Saga travel holidays destinations',
'Saga travel destinations africa',
'Saga travel africa egypt',
'Saga travel egypt ancient egypt revealed',
'Saga travel egypt ancient wonders of egypt',
'Saga travel egypt el quseir',
'Saga travel el quseir radisson blu resort',
'Saga travel africa ethiopia', ...

Using the preceding data, these could be checked using your favorite SEO rank checking tool API and
then loaded into the notebook:



saga_serps = pd.read_csv('client_serps.csv')
saga_serps

This results in the following:

Earlier, we have the SERPs loaded into the notebook, showing the keyword, rank position, and URL.
It is now time to extract the top ranking URL, by grouping the SERPs dataframe by keyword and then

selecting the top ranked URL (if it hasn’t already been selected). The reason is a single URL cannot be
simultaneously redirected to two different URLs; hence, the “while” clause used in the Python code is
checking whether the URL hasn’t already been used for a previous keyword:

serps_grp = saga_serps.groupby('keyword')

current_allocated = []

def filter_top_serp(df):
    del df['keyword']
    i = 0
    while not df.iloc[i]['url'] in current_allocated:
        if not df.iloc[i]['url'] in current_allocated:
            current_allocated.append(df.iloc[i]['url'])
            return df.iloc[i]
        else:
            i += 1

current_map = serps_grp.apply(filter_top_serp)

Concatenate with the initial dataframe:

current_map_df = pd.concat([current_map],axis=0).reset_index()
del current_map_df['rank_absolute']

current_map_df = current_map_df.rename(columns = {'keyword': 'search_query',
'url': 'current_url'})

current_map_df['current_alloc'] =
pd.DataFrame({'current_alloc':current_allocated})

current_map_df['current_url'] =
np.where(current_map_df.current_url.isnull(),
 current_map_df.current_alloc, current_map_df.current_url)

del current_map_df['current_alloc']
current_map_df['search_query'] = current_map_df.search_query.str.lower()



current_map_df

The result is a dataframe with the current URLs which we can now join to the main table:

Mapping	Current	URLs	to	the	New	Category	URLs
The following code joins the current live category level URLs to the proposed new site URLs:

nodes_levelled['search_query'] = nodes_levelled.search_query.str.lower()
ia_current_mapping = pd.merge(nodes_levelled, current_map_df, on =
'search_query', how = 'left')
ia_current_mapping = ia_current_mapping[['parent', 'child', 'level',
'current_url', 'full_path']]
ia_current_mapping

Here, we can see that neither this method nor Google is perfect. Nonetheless, it’s a good start and saves
a lot of manual work.

Let’s tidy the table up by renaming a few columns and replacing NaNs with blanks:

# rearrange columns



ia_current_mapping = ia_current_mapping[['parent', 'child',
'level','search_query', 'current_url', 'full_path']]
ia_current_mapping = ia_current_mapping.rename(columns = {'full_path':
'migration_url'})
ia_current_mapping['current_url'] =
np.where(ia_current_mapping.current_url.isnull(), '',
ia_current_mapping.current_url)
ia_current_mapping

In the following table, you can see that the �irst �ive lines have a simi value of zero, because the current
URLs are blank, so of course there is zero string similarity between the proposed migration URL and the
current URL.

With the table tidied, we will use NLP methods to compare the string similarity of the current URL:

ia_current_simi = ia_current_mapping
ia_current_simi = ia_current_simi.drop_duplicates()
ia_current_simi['simi'] = ia_current_simi.loc[
    :, ['current_url', 'migration_url']].apply(
    lambda x: sorensen_dice(*x), axis=1)

ia_current_simi

The string similarity is helpful because when we review the migration URLs in a spreadsheet app like
Microsoft Excel, we can �ilter for URLs that are not very similar, for instance, less than 0.9, which shows us
current URLs that might not be a good match for the migration URLs. Rows with missing current URLs will
need to be manually �ixed, and the ones deduced from the SERPs will require a review.

ia_current_mapping.to_csv('exports/' + target_site_search +
'_ia_current_mapping.csv')



Mapping	the	Remaining	URLs	to	the	Migration	URL
Now that the category URLs and subcategory URLs have the URL structures set, we’re ready to set the
migration URLs for the rest of the site. We’ll assume that you’ve edited the ia_current_mapping CSV
export generated earlier in Excel, corrected any errors not processed such as the missing current URLs
(now not missing), and are thus ready to import:

import re
import time
import random
import pandas as pd
import numpy as np
import datetime
from textdistance import sorensen_dice
pd.set_option('display.max_colwidth', None)
import os.path

target_site_search = 'saga'
target_bu = 'travel'
target_roots = ['Holidays', 'Cruises', 'Travel Updates', 'Accessibility and
Support', 'Brochure Request', 'My Travel', 'Trade']
source_root_url = 'https://travel.saga.co.uk/'
migration_root_url = 'https://www.saga.co.uk/'
source_hostname = 'travel.saga.co.uk'
file_path = 'cases/'+ target_site_search + '/'

latest_mapping_raw = pd.read_csv('data/Saga
travel_ia_edited_mapping_dd.csv')
latest_mapping_raw

The imported mapping is an edited Excel �ile to re�lect the business and operational requirements that
wouldn’t be adjusted for in the previous section.



With the URL structures set for the category and subcategory URLs, we’re now going to break down the
current URLs and the migration URLs, so that we can create a mapping formula.

When we import the rest of the site URLs, the script will use their folder structure to convert them to the
new migration URL structure:

latest_mapping_full_branch = latest_mapping_raw[['parent', 'child', 'level',
'current_url','migration_url']]

latest_mapping_full_branch['current_url'] =
np.where(latest_mapping_full_branch.current_url.isnull(), '',
latest_mapping_full_branch.current_url)

To create the new URL structures, create a template variable called “new_branch”; we simply take the
migration URLs and grab the folders between the root domain and the web page URL string.

For example, the new_branch value of
https://travel.saga.co.uk/holidays/destinations.aspx becomes /holidays/.

To extract the folders in between, we remove the root domain, split the string by forward slashes (‘/’),
then extract everything apart from the last element.

Set the new URL structure:

latest_mapping_full_branch['new_branch'] =
latest_mapping_full_branch['migration_url'].str.replace(migration_root_url,
'', regex = False)
latest_mapping_full_branch['new_branch'] =
latest_mapping_full_branch['new_branch'].str.split('/').str[:-1]

latest_mapping_full_branch['new_branch'] = ['/'.join(map(str, l)) for l in
latest_mapping_full_branch['new_branch']]

Similar principles are applied to the following old_branch, which is the URL structure for the current
URLs:

latest_mapping_full_branch['old_branch'] =
latest_mapping_full_branch['current_url'].str.replace(migration_root_url,
'', regex = False)

To make the new URLs more evergreen and thus without dates, we stick all of the undesirables into a list
and tell Python to remove everything from the list:

remove_strs = ['2018/', '2019/', '2020/','2021/', 'jan/', 'feb/', 'mar/',
'apr/', 'may/','jun/', 'jul/', 'aug/','sep/','oct/', 'nov/', 'dec/']

https://travel.saga.co.uk/holidays/destinations.aspx


latest_mapping_full_branch['old_branch'] =
latest_mapping_full_branch['old_branch'].str.replace('|'.join(remove_strs),
'')

Remove the node:

latest_mapping_full_branch['old_branch'] =
latest_mapping_full_branch['old_branch'].str.split('/').str[:-1]
latest_mapping_full_branch['old_branch'] =
latest_mapping_full_branch['old_branch'].apply(lambda x: '/'.join(map(str,
x)))

The node is the URL string that is speci�ic to the page itself, which we’re extracting as follows:

# set the NODE
latest_mapping_full_branch['node'] =
latest_mapping_full_branch['current_url'].str.split('/').str[-1]
latest_mapping_full_branch['node'] =
latest_mapping_full_branch['node'].str.replace('.aspx', '', regex = False)
latest_mapping_full_branch['node'] =
latest_mapping_full_branch['node'].str.replace(' ', '-', regex = False)

If any old_branch values are empty, then we just substitute the node. np.where is the Pandas equivalent
of Excel’s if statement:

latest_mapping_full_branch['old_branch'] =
np.where(latest_mapping_full_branch['old_branch'] == '',
latest_mapping_full_branch.node, latest_mapping_full_branch['old_branch'])
latest_mapping_full_branch

This results in the following:

With URL structures broken down and reconstituted, we’re ready to put a mapping together. A bit of cleanup
happens as follows, where we drop duplicate rows and remove blank rows with empty current_url values.
We don’t expect any anomalies at this stage, but just in case.

branch_map = latest_mapping_full_branchbranch_map =
branch_map.sort_values('old_branch')
branch_map = branch_map.drop_duplicates(subset = 'old_branch')
branch_map = branch_map[~branch_map['current_url'].isnull()]
branch_map = branch_map[['old_branch', 'new_branch']]



branch_map['new_branch'] = np.where(branch_map['new_branch'] == '',
'holidays', branch_map['new_branch'])
branch_map

This results in the following:

Importing	the	URLs
With the mapping in place, we’re ready to import the URLs and �it them to the new migration structure:

DETERMINE the unallocated URLs
target_crawl_raw = pd.read_csv('data/crawl_urls.csv')
target_crawl_raw

We’re removing URLs and subfolders that won’t move as part of the site relaunch:

target_crawl_urls = target_crawl_raw
stop_folders = ['/membership/', '/magazine/', '/saga-charities/', '/legal/',
 '/money/', '/my/', '/care/', '/magazine-subscriptions/',
               '/membership', '/magazine', '/saga-charities', '/legal',
                '/money', '/my', '/care', '/magazine-subscriptions', 'boardbas
               '/antiquity', '/pharaoh', '/orca', '/italy-splendour', '/walkin
'/archaeology',
                '/gardens', '/music', '/MyS', '/404', '/contentli']
target_crawl_urls =
target_crawl_urls[~target_crawl_urls['URL'].str.contains('|'.join(stop_folders
target_crawl_urls =
target_crawl_urls[target_crawl_urls['Host'].str.contains('www.saga.co.uk')]
target_crawl_urls

This results in the following:



The crawl data is in and now subsetted for the URLs we want to migrate. Next, we’re sticking these into a
list to ensure they are unique:

current_url_lst = latest_mapping_full_branch.current_url.to_list()
mapped_url_lst = list(set(current_url_lst))
print(len(mapped_url_lst))

This results in the following:

469
258

Then we create a new dataframe “target_crawl_unmigrated” which excludes URLs already mapped (i.e.,
the category and subcategory URLs):

target_crawl_unmigrated =
target_crawl_urls[~target_crawl_urls['URL'].isin(mapped_url_lst)]
target_crawl_unmigrated

At this stage, it’s sensible to check if we have any redirects (300 responses) and other non-“200” server
status URLs:

target_crawl_unmigrated.groupby('HTTP Status Code').agg({'HTTP Status Code':
'count'})

This results in the following:

We can see that all of the �iltered URLs we’ve yet to migrate all serve live pages (returning a 200 response).
If we did have 301s, we could use the following code to inspect those 301 URLs:

target_crawl_unmigrated[target_crawl_unmigrated['HTTP Status Code'] ==
'301'][[url]]



To handle redirecting URLs, we want to ensure they are included in the mapping so that we can avoid
redirect chains when migrating the site URLs. A redirect chain is when there are multiple redirects between
the initial URL requested and the �inal destination URL. We’ll achieve this by ensuring these are listed as
current URLs.

Mutate the old_branch:

target_crawl_mutate = target_crawl_unmigrated
target_crawl_mutate = target_crawl_mutate.rename(columns = {'url':
'current_url'})

Create a list of our conditions:

redirect_conds = [
    target_crawl_mutate['http_status_code'].isin(['200', '204', '404',
'410', '500']),
    target_crawl_mutate['http_status_code'].isin(['301', '302', '307',
'308'])
]

Create a list of the values we want to assign for each condition:

desturl_values = [target_crawl_mutate['current_url'],
                  target_crawl_mutate['redirected_to_url'],
                  ]

Create a new column and use np.select to assign values to it using our lists as arguments:

target_crawl_mutate['dest_url'] = np.select(redirect_conds, desturl_values)
target_crawl_mutate = target_crawl_mutate[['dest_url']]
target_crawl_mutate = target_crawl_mutate.rename(columns = {'dest_url':
'current_url'})

Redirects notwithstanding, at this point these are dealt with. The following code will now break down
the URL into structures ready for mapping using the table created in earlier steps:

target_crawl_mutate['old_branch'] =
target_crawl_mutate['current_url'].str.replace(source_root_url, '', regex =
False)

remove_strs = ['2018/', '2019/', '2020/','2021/', 'jan/', 'feb/', 'mar/',
'apr/', 'may/','jun/',
               'jul/', 'aug/','sep/','oct/', 'nov/', 'dec/']
target_crawl_mutate['old_branch'] =
target_crawl_mutate['old_branch'].str.replace('|'.join(remove_strs), '')
target_crawl_mutate['old_branch'] =
target_crawl_mutate['old_branch'].str.split('/').str[:-1]

target_crawl_mutate['node'] =
target_crawl_mutate['current_url'].str.split('/').str[-1] # node only
target_crawl_mutate['node'] =
target_crawl_mutate['node'].str.replace('.aspx', '', regex = False)
target_crawl_mutate['node'] = target_crawl_mutate['node'].str.replace(' ',
'-', regex = False)

target_crawl_mutate['old_branch'] =
target_crawl_mutate.old_branch.apply(lambda x: '/'.join(map(str, x)))

target_crawl_mutate



The following crawl data “target_crawl_mutate” now has old branches, which means after a bit of
cleanup, removing unnecessary column names, we can merge these with the branch map created earlier to
help formulate the migration URLs.

Let’s now look up a new branch as there may be old branches not quite covered in the remaining URLs, that
is, unmatched exceptions:

unallocated_branch = target_crawl_mutate[['current_url', 'http_status_code',
'old_branch', 'node']]
unallocated_branch = unallocated_branch.merge(branch_map, on = 'old_branch',
how = 'left')
unallocated_branch

This results in the following:

The unmigrated URLs now have the suggested URL structure which can be used to create a new column
forming the suggested migration URL. We will start with a bit of cleanup to handle blank new branch values:

allocated_fillnb = unallocated_branch

allocated_fillnb['new_branch'] =
np.where(allocated_fillnb.new_branch.isnull(),
                                          '',
                                          allocated_fillnb.new_branch)



allocated_fillnb['new_branch'] = np.where(allocated_fillnb.new_branch == '',
                                          allocated_fillnb.old_branch,
                                          allocated_fillnb.new_branch)
allocated_fillnb = allocated_fillnb[allocated_fillnb.new_branch != '']
allocated_fillnb.sort_values('new_branch')

This results in the following:

More cleanup ensues to handle URL nodes that contain parameter characters such as “?” and “=”. Then we
attempt to create columns showing their Parent and Child URL node folders based on the text position
within the overall URL string:

allocated_draft = allocated_fillnb

allocated_draft['node'] = np.where(allocated_draft['node'].str.contains('(\?
|=)'),
                                   '',
                                   allocated_draft['node'])

allocated_draft['Parent'] = allocated_draft['new_branch']
allocated_draft['Parent'] = allocated_draft['Parent'].str.split('/').str[0]

allocated_draft['Child'] =
allocated_draft['new_branch'].str.split('/').str[1]
allocated_draft['Child'] = np.where(allocated_draft['Child'].isnull(),
                                    allocated_draft['node'],
                                    allocated_draft['Child']
                                   )

allocated_draft

This results in the following:



The preceding table now has the Parent and Child folders. At this stage, we’re looking to ensure the new URL
structure (new_branch) fall into one of the major sections of the new travel site before putting together the
migration URLs.

Convert the root parent folder names to lowercase:

target_roots_urled = [elem.lower() for elem in target_roots]
target_roots_urled = [elem.replace(' ', '-') for elem in target_roots_urled]
print(target_roots_urled)

Sort out the branches:

sorted_branches = []

def change_urls(row):
    data = row.values.tolist()
    #print(data)
    if not data[-2] in target_roots_urled:
        data[-3] = 'holidays/' + str(data[-3])
    sorted_branches.append(data)

def apply_cip(df):
  return df.apply(lambda row: change_urls(row), axis=1)

apply_cip(allocated_draft)

allocated_drafted =  pd.DataFrame(sorted_branches,
columns=allocated_draft.columns.tolist())
pd.set_option('display.max_colwidth', 35)
allocated_drafted

This results in the following:



Any folders that didn’t have a parent node in the list printed earlier are allocated to holidays. This should be
right 90% of the time. Time to form the draft migration URL:

allocated_drafted['Migration URL'] = migration_root_url +
allocated_drafted.new_branch + '/' + allocated_drafted.node

allocated_drafted['Migration URL'] = np.where(allocated_drafted['Migration
URL'].str.endswith('/'),
                                            allocated_drafted['Migration
URL'].str[:-1],
                                            allocated_drafted['Migration
URL'])

allocated_drafted['Parent'] = allocated_drafted['Parent'].str.replace('-', '
')
allocated_drafted['Parent'] = allocated_drafted['Parent'].str.title()

allocated_drafted['Child'] = allocated_drafted['Child'].str.replace('-', '
')
allocated_drafted['Child'] = allocated_drafted['Child'].str.title()

Set to lowercase:

allocated_drafted['Migration URL'] = allocated_drafted['Migration
URL'].str.lower()
pd.set_option('display.max_colwidth', 25)

allocated_drafted

This results in the following:



By concatenating the domain, new branch, and node, the migration URLs are now fully formed:.

allocated_drafted['migration_url'] = migration_root_url + allocated_drafted.ne
'/' + allocated_drafted.node

allocated_drafted['migration_url'] =
np.where(allocated_drafted['migration_url'].str.endswith('/'),
                                            allocated_drafted['migration_url']
                                            allocated_drafted['migration_url']

allocated_drafted['Parent'] = allocated_drafted['Parent'].str.replace('-', ' '
allocated_drafted['Parent'] = allocated_drafted['Parent'].str.title()

allocated_drafted['Child'] = allocated_drafted['Child'].str.replace('-', ' ')
allocated_drafted['Child'] = allocated_drafted['Child'].str.title()

Set to lowercase:

allocated_drafted['migration_url'] =
allocated_drafted['migration_url'].str.lower()
allocated_drafted.columns = allocated_drafted.columns.str.lower()
pd.set_option('display.max_colwidth', 25)

allocated_drafted

This results in the following:



To prepare the combining of the remaining URLs to the original latest mapping, we need to add site levels
and some basic checks such as removing duplicate current URLs (after all, the same URL can’t be redirected
to two or more different URLs).

The site level is calculated by counting the number of slashes in the migration URL and subtracting one
from it. This means the home page is one, and all other pages are referenced from there.

allocated_distinct = allocated_drafted
allocated_distinct = allocated_distinct.drop_duplicates(subset =
'current_url')
allocated_distinct['migration_url'] =
allocated_distinct['migration_url'].str.replace('/holidays/cruises/',
'/cruises/')
allocated_distinct['migration_url'] =
allocated_distinct['migration_url'].str.replace(' ', '-')
allocated_level = allocated_distinct
allocated_level['level'] = allocated_level.migration_url.str.count('/') - 1
allocated_level = allocated_level[['parent', 'child', 'level',
'current_url', 'migration_url']]
pd.set_option('display.max_colwidth', 65)
allocated_level

This results in the following:

With the columns now matching the original imported travel mapping, we’re ready to combine:

total_mapping = pd.concat([latest_mapping_raw, allocated_level])



total_mapping

This results in the following:

The rows are now combined. Now we will drop duplicate rows and calculate the string similarity between
the current URL and the migration URL, which will help us in the manual review of the export �ile:

total_mapping_simi = total_mapping.drop_duplicates(subset = 'current_url')

total_mapping_simi['simi'] = total_mapping_simi.loc[
    :, ['current_url', 'migration_url']].apply(
    lambda x: sorensen_dice(*x), axis=1)

total_mapping_simi.to_csv('exports/' + target_site_search + '_' +
target_bu  + '_total_mapping_simi.csv')

total_mapping_simi

This results in the following:

We now have the migration mapping ready to review in Excel. Note the row number has reduced as
duplicate current URLs have been eliminated. We’ve also put a new column “simi” to help �lag any URLs that
have “migration URLs less than 75% similar to their current URL counterpart.” Although not foolproof, this
will help provide a quick way of �inding and sorting any anomalies.

Migration planning can inspire challenge and dread for a lot of SEOs. AI and data science have yet to
advance far enough to fully automate, let alone semiautomate, most of the site migration planning process.

Much of the advance will depend on the NLP models at the AI level available to the SEO industry to
reliably understand, reduce, and map existing content URLs to new URLs.



The next section will now address troubleshooting traf�ic losses following a site migration.

Migration	Forensics
At this point, we’re here to work out what changed and which content was affected following a migration.
We’ll be taking the following steps:
1.

Traf�ic trends  
2.

Determine the change point  
3.

Determine the winning and losing content  
4.

Gather a list of URLs before and after for crawling 
5.

Group and segment URLs  
6.

Diagnose  
7.

Road map of recommendations  
As usual, we start importing our libraries. You’ll notice that some of the packages include some string

distance functions from textdistance and timedelta to help us work with time series data:

import pandas as pd
import numpy as np
from textdistance import sorensen_dice
from plotnine import *
import datetime
from datetime import timedelta
from textdistance import sorensen_dice

root_url = 'https://www.saasforecom.com'
root_domain = 'saasforecom.com'
hostname = 'saasforecom'

Traf�ic	Trends
With the libraries imported and the variables set, we’ll import the data from Google Analytics (GA). We use
GA because it gives us a breakdown by date that is not easily found in Google Search Console (GSC) without
substantial sampling.

ga_orgdatelp_raw = pd.read_csv('data/Analytics www.salesorder.com All
Traffic 20200901-20201231.csv', skiprows = 5)

Here, we’re getting rid of the rows which are not part of the main table that is default in GA tabular
exports:

ga_orgdatelp_raw = ga_orgdatelp_raw[~ga_orgdatelp_raw['Landing
Page'].isnull()]
ga_orgdatelp_raw = ga_orgdatelp_raw[~ga_orgdatelp_raw['Sessions'].isnull()]

To make the columns cleaner, we’ll perform a number of string operations:

ga_orgdatelp_raw.columns = ga_orgdatelp_raw.columns.str.lower()
ga_orgdatelp_raw.columns = ga_orgdatelp_raw.columns.str.replace('/', '',
regex = False)



ga_orgdatelp_raw.columns = ga_orgdatelp_raw.columns.str.replace('.', '',
regex = False)
ga_orgdatelp_raw.columns = ga_orgdatelp_raw.columns.str.replace('% ', '',
regex = False)
ga_orgdatelp_raw.columns = ga_orgdatelp_raw.columns.str.replace('  ', ' ',
regex = False)
ga_orgdatelp_raw.columns = ga_orgdatelp_raw.columns.str.replace(' ', '_',
regex = False)
ga_orgdatelp_raw = ga_orgdatelp_raw[ga_orgdatelp_raw['landing_page'] !=
'/pages/login.aspx']
ga_orgdatelp_raw

This results in the following:

With the data imported and the column names cleaned and nicely formatted, we’ll get to work on cleaning
the actual data inside the columns themselves.

This again will make use of string operations to remove special characters and cast the data type as a
number as opposed to a string.

Clean the GA data:

ga_clean = ga_orgdatelp_raw

Format the dates:

ga_clean['date'] = pd.to_datetime(ga_clean.date, format='%Y%m%d')

ga_clean['bounce_rate'] = ga_clean.bounce_rate.str.replace('%', '')
ga_clean['bounce_rate'] = ga_clean.bounce_rate.astype(float)
ga_clean['new_sessions'] = ga_clean.new_sessions.str.replace('%', '')
ga_clean['new_sessions'] = ga_clean.new_sessions.astype(float)
ga_clean['ecommerce_conversion_rate'] =
ga_clean.ecommerce_conversion_rate.str.replace('%', '')
ga_clean['ecommerce_conversion_rate'] =
ga_clean.ecommerce_conversion_rate.astype(float)
ga_clean['revenue'] = ga_clean.revenue.str.replace('$', '')
ga_clean['revenue'] = ga_clean.revenue.astype(float)
ga_clean['avg_session_duration'] =
ga_clean.avg_session_duration.str.replace('<', '')



ga_clean['avg_session_duration'] =
pd.to_timedelta(ga_clean.avg_session_duration).astype(int) / 1e9
ga_clean

This results in the following:

ga_stats = ga_clean

We select the columns we actually want. You may have noticed that some columns were cleaned up and
ended up not being used. This may seem like a waste of effort; however, you don’t always know what you
will need or for what purpose. So cleaning columns is a good standard practice so that the data is ready
should you discover that you need it later on.

ga_stats = ga_stats[['landing_page', 'date', 'new_sessions',
'avg_session_duration']]
ga_stats = ga_stats.rename(columns = {'landing_page': 'subpath'})
ga_stats

This results in the following:

Import GSC Pages data to grab all of the unique URLs for crawling:

all_gsc_raw = pd.read_csv('data/throughout_Pages.csv')



all_gsc_raw.columns = all_gsc_raw.columns.str.lower()
all_gsc_raw.columns = all_gsc_raw.columns.str.replace('/', '', regex =
False)
all_gsc_raw.columns = all_gsc_raw.columns.str.replace('.', '', regex =
False)
all_gsc_raw.columns = all_gsc_raw.columns.str.replace('% ', '', regex =
False)
all_gsc_raw.columns = all_gsc_raw.columns.str.replace('  ', ' ', regex =
False)
all_gsc_raw.columns = all_gsc_raw.columns.str.replace(' ', '_', regex =
False)
all_gsc_raw['ctr'] = all_gsc_raw.ctr.str.replace('%', '', regex = False)
print(all_gsc_raw.head())
all_gsc_urls = all_gsc_raw[['top_pages']]
all_gsc_urls = all_gsc_urls.rename(columns = {'top_pages':
'url'}).drop_duplicates()
all_gsc_urls

This results in the following:

The GA URLs will also be extracted and joined to the domain ready for crawling:

ga_raw_urls = ga_raw_comb[['landing_page']]
ga_raw_urls = ga_raw_urls.rename(columns = {'landing_page':
'url'}).drop_duplicates()
ga_raw_urls['url'] = root_url + ga_raw_urls['url']
ga_raw_urls

This results in the following:



Combine the GA and GSC URLs, dropping duplicates, ready for crawling:

crawl_urls = pd.concat([ga_raw_urls, all_gsc_urls]).drop_duplicates()
crawl_urls.to_csv('data/urls_to_crawl.csv')
crawl_urls

This results in the following:

With the crawl completed, we’re ready to import the data, clean the columns, and view the raw data:

audit_urls_raw =
pd.read_csv('data/all_urls__excluding_uncrawled__filtered_20210803163126.csv')
audit_urls_raw.columns = audit_urls_raw.columns.str.lower()
audit_urls_raw.columns = audit_urls_raw.columns.str.replace('/', '', regex =
False)



audit_urls_raw.columns = audit_urls_raw.columns.str.replace('.', '', regex =
False)
audit_urls_raw.columns = audit_urls_raw.columns.str.replace('% ', '', regex =
False)
audit_urls_raw.columns = audit_urls_raw.columns.str.replace('  ', ' ', regex =
False)
audit_urls_raw.columns = audit_urls_raw.columns.str.replace(' ', '_', regex =
False)
#audit_urls_raw['ctr'] = audit_urls_raw.ctr.str.replace('%', '', regex =
False)
#audit_urls_raw.drop_duplicates()
audit_urls_raw

This results in the following:

We can see that most of the server status has not been extracted. This is likely to be a bug in the crawling
software. The best thing to do is to take it up with the software vendor and recrawl with a longer timeout
setting and at a slower pace to improve the numbers.

audit_urls_raw.groupby('final_redirect_url_status_code').size()

final_redirect_url_status_code
200        452
404          1
Not Set    731
dtype: int64

After our recrawl, 452 URLs is the best we could come up with. Next, we’re ensuring any rows with
duplicate URLs are dropped:

audit_urls_map = audit_urls_raw.drop_duplicates(subset =
['url']).reset_index()
audit_urls_map.to_csv('exports/audit_urls_map.csv')
audit_urls_map

This results in the following:



The row count has now dropped from 1122 to 922 rows. Next, we’ll �ind the �inal redirect URL so we can see
where the URLs map to. Again, this seemingly unnecessary step is taken to overcome any glitches produced
by the audit software.

Prepare the columns for content evaluation:

audit_urls = audit_urls_map[['url', 'redirect_url', 'final_redirect_url']]
ult_dest_url = []

This function will take a row, turn it into a list, and take the last value that isn’t equal to “No Data” and
stick the URL in the list ult_dest_url created earlier:

def find_ult_dest_url(row):
    data = row.values.tolist()
    data = [e for e in data if str(e) not in ('No Data')]
    data = data[-1]
    #print(data)
    ult_dest_url.append(data)

The preceding function is applied by calling the following function to take the dataframe row by row,
which is considered to be a less computationally intensive way to iterate over a dataframe, certainly faster
than iterrows:

def apply_fudu(df):
  return df.apply(lambda row: find_ult_dest_url(row), axis=1)

Call the apply_fudu function that calls the �ind_ult_dest_url function:

apply_fudu(audit_urls)

The resulting list is now converted into a dataframe:

ult_dest_url_df =  pd.DataFrame(ult_dest_url, columns=['ult_dest_url'])
ult_dest_url_df

This results in the following:



Append the dataframe to the audit dataframe:

audit_urls_map_prep = audit_urls_map.join(ult_dest_url_df)
audit_urls_map_prep

This results in the following:

With the ultimate destination URLs found, we need a simple way to test how similar they are. We can do this
by measuring the string distance between the URL and the redirect URL. We’ll use Sorensen-Dice which is
fast and effective for SEO purposes:

audit_urls_map_prep['content_simi'] = audit_urls_map_prep.loc[:, ['url',
                                                    'ult_dest_url']].apply(lam
x: sorensen_dice(*x), axis=1)



audit_urls_map = audit_urls_map_prep
audit_urls_map

This results in the following:

Segmenting	URLs
With all of these audit URLs, we’d want to make sense of them so we can discern trends by content type.
Since we don’t have a trained neural network at hand, we’re going to use a crude yet useful method of
grouping URLs by their URL address.

This method is not only fast, it’s also cheap in that you won’t require a million content documents to
train an AI to categorize web documents by content type.

We’ll start by extracting the URLs and ensuring they are unique before sticking them into a dataframe:

crawled_urls_unq = audit_urls_raw.url.drop_duplicates().to_frame()
crawled_urls_unq

This results in the following:



all_urls = pd.concat([crawl_urls, crawled_urls_unq])
all_urls = all_urls.drop_duplicates()
all_urls

This results in the following:

This code cleans up the URLs ready for some text processing so we can start grouping the URLs. We’ll start
with removing the domain portion of the URL as that is constant throughout the URLs:

classified_start = all_urls[['url']]
classified_start['slug'] = classified_start.url.str.replace(root_url, '',
regex = True)

The home page can be immediately classi�ied:

classified_start['slug'] = np.where(classified_start.slug == "/", "home",
classified_start.slug)

The following will deal with dates which won’t add value to the classi�ication:

classified_start['slug'] = classified_start.slug.str.replace("\\d{4}\\-(0[1-
9]|1[012])\\-(0[1-9]|[12][0-9]|3[01])",
                                                          '', regex = True)

Remove excessive spaces between words:

classified_start['slug'] = classified_start.slug.str.replace("[^\w\s]", " ",
regex = True)

Remove spaces at the beginning and end:

classified_start['slug'] = classified_start.slug.str.strip()
classified_start = classified_start.reset_index()
del classified_start['index']
classified_start.head(10)

This results in the following:



The result is the URL words without all of the characters, that is, the slug. We’ll want to apply some numbers
to get a sense of priority, so we’ll use GSC traf�ic data to weight the slugs.

Get GSC traf�ic data:

url_clicks_gsc = all_gsc_raw[['top_pages', 'clicks']]
url_clicks_gsc = url_clicks_gsc.rename(columns = {'top_pages': 'url'})
url_clicks_gsc

This results in the following:

Then merge into the URL slug table earlier:

classified_stats = classified_start.merge(url_clicks_gsc, on = 'url', how =
'left')

Remove URLs with no clicks. Choose your GSC date range wisely here. If you just went for 28 days, then
there’s the risk of seasonal bias as some content may not receive traf�ic at certain times of the year. Our
recommendation is to select 16 months, the maximum possible for extraction from GSC.

classified_stats = classified_stats[classified_stats.clicks > 0]
classified_stats

This results in the following:



We’re going to explode the slug column into unigrams. That means taking the slug and expanding the
column into several rows such that each word in the slug has its own row as one column:

bigrams = classified_stats['slug']
bigrams = bigrams.str.split(' ').explode().to_frame()
bigrams = bigrams.rename(columns = {'slug': 'ngram'})
bigrams.head(10)

This results in the following:

With the slugs “exploded” into ngrams, this will be mapped to their original URL and traf�ic stats table:

bigrams_df = classified_stats.join(bigrams)

bigrams_df.head(20)

This results in the following:



With the data merged, we’ll want to remove some rows containing some stop words and other unhelpful
words that could be used when creating group names.

A note of warning: The code is a bit repetitive on purpose to give you practice and build your muscle
memory even if there are smarter ways to do the entire block in two lines – think list and ‘|’.join(list):

bigrams_df = bigrams_df[['url', 'ngram', 'clicks']]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\band\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\bfor\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\bto\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\ba\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\ban\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\bin\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\bcom\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\bwww\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\bthe\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\busing\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\bwith\b', regex =
True)]
bigrams_df = bigrams_df[~bigrams_df.ngram.str.contains(r'\b(http|https)\b',
regex = True)]
bigrams_df['ngram'] = bigrams_df.ngram.str.strip()



bigrams_df = bigrams_df[~bigrams_df.ngram.isnull()]
bigrams_df

This results in the following:

The table has ngrams with more sensible labels which can now be sum aggregated to pick the most
common labels per URL:

bigram_stats = bigrams_df[['ngram', 'clicks']]
bigram_stats = bigram_stats[bigram_stats.ngram.str.contains(r'[\w\s]', regex
= True)]
ngram_ins = pd.DataFrame(bigram_stats.value_counts(subset=['ngram']),
columns = ['count'])
bigram_stats = bigram_stats.merge(ngram_ins, on = 'ngram', how = 'left')

The idea here is to create an index based on traf�ic and the amount of instances of the ngram label:

bigram_stats['g_score'] = bigram_stats['clicks'] * bigram_stats['count']
bigram_stats = bigram_stats.sort_values('g_score', ascending =
False).reset_index()
del bigram_stats['index']
bigram_stats.head(10)

This results in the following:



We now have a table with ngrams with their stats and their ultimate score. The following function will select
the highest score per ngram:

def filter_highest_stat(df, delcol, metric):
    del df[delcol]
    max_count = df[metric].max()
    df = df[df[metric] == max_count]
    df = df.iloc[0]
    return df

ngram_stats_map = bigram_stats.groupby('ngram').apply(lambda x:
filter_highest_stat(x, 'ngram', 'g_score')).reset_index()
ngram_stats_map = ngram_stats_map.sort_values('g_score', ascending =
False).reset_index()
del ngram_stats_map['index']
ngram_stats_map.head(10)

This results in the following:



The result is a prioritized table showing the most common ngrams that can be used to categorize URLs as
segments.

Using the scores, we’ll create two levels of segments, taking the most popular ngrams as labels while
classifying the rest as “other.” We’re creating two levels so that we have a more high-level and a more
detailed view to hand.

ngram_segments = ngram_stats_map[['ngram', 'g_score']]
ngram_segments['segment_one'] = np.where(ngram_segments.index < 11,
ngram_segments.ngram, 'other')
ngram_segments['segment_two'] = np.where(ngram_segments.index < 21,
ngram_segments.ngram, 'other')
ngram_segments.head(10)

This results in the following:



We’ll join the segment labels to the dataset so that all URLs are now classi�ied by segment label:

# Join stats and then select highest
#bigram_stats
urls_grams_stats = bigrams_df.merge(ngram_segments, on = 'ngram', how =
'left').sort_values(['url', 'g_score'], ascending = False)
urls_grams_stats

This results in the following:

There are multiple rows per URL; however, we only want the top result, so we’ll apply a function to �ilter for
the row with the highest g_score:

urls_stats_grams_map = urls_grams_stats.groupby('url').apply(lambda x:
filter_highest_stat(x, 'url', 'g_score')).reset_index()

pd.set_option('display.max_colwidth', None)
urls_grams_map = urls_stats_grams_map
urls_grams_map = urls_grams_map.drop_duplicates()
del urls_grams_map['clicks']



del urls_grams_map['g_score']
#urls_grams_map.iloc[0, 'ngram'] = 'home'
urls_grams_map['subpath'] =
urls_grams_map.url.str.replace(r'(http|https)://www.saasforecom.com', '',
regex = True)
urls_grams_map

This results in the following:

All the preceding URLs have a unique row and are categorized by segment label. Let’s summarize the data
by segment to see the distribution of content:

urls_grams_map.groupby('segment_one').count().reset_index()

This results in the following:

Most of the traf�ic is in the other classi�ication, followed by management, documentation, and sales.
The next step is merging the performance data from GA with the segment labels and dropping duplicate

URL combinations:



ga_segmented = ga_stats.merge(urls_grams_map, on = 'subpath', how = 'left')
ga_segmented = ga_segmented.drop_duplicates(subset=['date', 'url'],
keep='last')

ga_segmented = ga_segmented.drop_duplicates(subset=['subpath', 'date'],
keep='first')

Clean up the data such that null sessions are zero and new_sessions are treated as whole numbers (i.e.,
integers):

ga_segmented['new_sessions'] = np.where(ga_segmented.new_sessions.isnull(),
0, ga_segmented.new_sessions)
ga_segmented['new_sessions'] = ga_segmented['new_sessions'].astype(int)
ga_segmented

This results in the following:

The result is a dataset ready for time series analysis that can be broken down by segment.

Time	Trends	and	Change	Point	Analysis
Time trends use time series data to help us understand and demonstrate to our colleagues the changes in
search traf�ic over time. This includes

Con�irming the change point of traf�ic
Seeing which types of content were impacted (thanks to the segmentation work done earlier)

There is a bit of a limitation in that it’s quite dif�icult (though not impossible) to get time series data
from Google Search Console (GSC). For Google Analytics (GA), getting time series data at a URL isolated to
organic search is also very dif�icult.

Time series data can also be quite noisy by nature due to the way it cycles over the week such that there
are peaks and troughs. To tease a trend, we’ll need to dampen the noise which we will achieve by computing
a moving average.

We start by grouping sessions by date:

time_trends = ga_segmented.groupby('date')
['new_sessions'].sum().to_frame().reset_index()

Then apply the rolling function to compute a seven-day average:

sess_trends_roll = time_trends.rolling(7, min_periods=1)



sess_trends_mean = sess_trends_roll.mean()
time_trends['avg_sess'] = sess_trends_mean
time_trends

This results in the following:

Let’s visualize:

pre_time_trends_plt = (
    ggplot(time_trends, aes(x = 'date', y = 'avg_sess', group = 1)) +
    geom_line(alpha = 0.6, colour = 'blue', size = 3) +
    labs(y = 'GA Sessions', x = 'Date') +
    scale_y_continuous() +
    scale_x_date() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         ))
Pre_time_trends_plt

The shift is quite evident in Figure 9-1 with the better half of the traf�ic trend switching over to the
worse half at around the 20th of December 2020.



Figure	9-1 Time series of analytics visits

Using change point analysis, let’s con�irm this analytically using the ruptures package:

import ruptures as rpt
import matplotlib.pyplot as plt

points = np.array(overall_trends['avg_sess'])

model="rbf"
algo = rpt.Pelt(model=model).fit(points)
result = algo.predict(pen=6)
rpt.display(points, result, figsize=(10, 6))
plt.title('Change Point Detection using Pelt')
plt.show()

The change point analysis in Figure 9-2 con�irms that on the 20th of December, there’s a shift downward
in traf�ic.



Figure	9-2 Time series of analytics visits with estimated change point between before (blue shaded area) and after (red)

Yes, it could be coinciding with the Christmas holidays, but unfortunately for this particular company, we
don’t have the data for the previous year to con�irm how much of the downward change is attributable to
seasonality vs. the new site relaunch migration.

Segmented	Time	Trends
With the change point con�irmed, let’s now see which content areas were affected. We’ll start by performing
a similar aggregation to calculate the rolling average:

segmented_trends = postmortem_df.groupby(['date', 'segment_two'])
['new_sessions'].sum().to_frame().reset_index()#.rolling(7).
sessseg_trends_roll = segmented_trends.rolling(8, min_periods=1)

sessseg_trends_mean = sessseg_trends_roll.mean()
segmented_trends['avg_sess'] = sessseg_trends_mean

segmented_trends

This results in the following:



The data is in long format with the rolling averages calculated ready for visualization:

ga_seg_trends_plt = (
    ggplot(time_trends_segmented, aes(x = 'date', y = 'avg_sess',
                               group = 'segment_one', colour =
'segment_one')) +
    geom_line(alpha = 0.7, size = 2) +
    labs(y = 'GA Sessions', x = 'Date') +
    scale_y_continuous() +
    scale_x_date() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         ))

ga_seg_trends_plt.save(filename = 'images/1_ga_seg_trends_plt.png',
height=5, width=15, units = 'in', dpi=1000)
ga_seg_trends_plt

No obvious trends are apparent in Figure 9-3, as most (if not all) of the content appear to move in the
same direction over time. It’s not as if a couple of segments decreased while others increased or were
unchanged.



Figure	9-3 Time series of analytics visits segmented by content type

Analysis	Impact
With the time trends dissected, we turn our attention to analyzing the before and after impact of the
migration to hopefully generate recommendations or areas for further research.

We’ll use GSC data at the page level which can be segmented by merging the map created earlier:

gsc_before = pd.read_csv('data/gsc_before.csv')

Clean the column names as usual:

gsc_before.columns = gsc_before.columns.str.lower()
gsc_before.columns = gsc_before.columns.str.replace('/', '', regex = False)
gsc_before.columns = gsc_before.columns.str.replace('.', '', regex = False)
gsc_before.columns = gsc_before.columns.str.replace('% ', '', regex = False)
gsc_before.columns = gsc_before.columns.str.replace('  ', ' ', regex =
False)
gsc_before.columns = gsc_before.columns.str.replace(' ', '_', regex = False)
gsc_before['ctr'] = gsc_before.ctr.str.replace('%', '', regex = False)

just so we know which phase of the migration this data refers to:

gsc_before['phase'] = 'before'

Rename the top_pages column before we merge the segment labels:

gsc_before = gsc_before.rename(columns = {'top_pages': 'url'})
gsc_before = gsc_before.merge(urls_grams_map, on = 'url', how = 'left')
gsc_before['count'] = 1
gsc_before['ngram'] = np.where(gsc_before['ngram'].isnull(), 'other',
gsc_before['ngram'])
gsc_before['segment_one'] = np.where(gsc_before['segment_one'].isnull(),
'other', gsc_before['segment_one'])
gsc_before['segment_two'] = np.where(gsc_before['segment_two'].isnull(),
'other', gsc_before['segment_two'])
gsc_before

This results in the following:



So we have the before GSC data at the page level which is now segmented. The operations are repeated for
the phase post migration, known as “after”:

gsc_after = pd.read_csv('data/gsc_after.csv')
gsc_after.columns = gsc_after.columns.str.lower()
gsc_after.columns = gsc_after.columns.str.replace('/', '', regex = False)
gsc_after.columns = gsc_after.columns.str.replace('.', '', regex = False)
gsc_after.columns = gsc_after.columns.str.replace('% ', '', regex = False)
gsc_after.columns = gsc_after.columns.str.replace('  ', ' ', regex = False)
gsc_after.columns = gsc_after.columns.str.replace(' ', '_', regex = False)
gsc_after['ctr'] = gsc_after.ctr.str.replace('%', '', regex = False)
gsc_after['phase'] = 'after'
gsc_after = gsc_after.rename(columns = {'top_pages': 'url'})
gsc_after = gsc_after.merge(urls_grams_map, on = 'url', how = 'left')
gsc_after['count'] = 1
gsc_after['ngram'] = np.where(gsc_after['ngram'].isnull(), 'other',
gsc_after['ngram'])
gsc_after['segment_one'] = np.where(gsc_after['segment_one'].isnull(),
'other', gsc_after['segment_one'])
gsc_after['segment_two'] = np.where(gsc_after['segment_two'].isnull(),
'other', gsc_after['segment_two'])
gsc_after

This results in the following:



With both datasets imported and cleaned, we’re ready to start analyzing using aggregations, starting with
weighted average rank positions by phase.

The weighted average rank position function (wavg_rank_imps) takes two arguments (position and
impressions) and returns the calculation result using the column name “wavg_rank”:

def wavg_rank_imps(x):
    names = {'wavg_rank': (x['position'] *
x['impressions']).sum()/(x['impressions']).sum()}
    return pd.Series(names, index=['wavg_rank']).round(1)

We’ll make a copy of the “before” dataset before applying the function:

gsc_before_agg = gsc_before
gsc_before_wavg =
gsc_before_agg.groupby('phase').apply(wavg_rank_imps).reset_index()

In addition to the weighted average ranking positions, we’re also interested in the total number of URLs
and the total number of clicks (organic search traf�ic):

gsc_before_sum = gsc_before_agg.groupby('phase').agg({'count': 'sum',
                                                      'clicks':
'sum'}).reset_index()

gsc_before_stats = gsc_before_wavg.merge(gsc_before_sum, on = ['phase'], how
= 'left')

The index is a ratio of clicks to count that forms our index to give us some sense of proportion:

gsc_before_stats['index'] =
gsc_before_stats['clicks']/gsc_before_stats['wavg_rank']
gsc_before_stats.sort_values('index', ascending = False)

This results in the following:



That’s the stats before the migration. Now let’s look at the stats after the migration, applying the same
methods used earlier to data post migration:

gsc_after_agg = gsc_after
gsc_after_wavg =
gsc_after_agg.groupby('phase').apply(wavg_rank_imps).reset_index()
gsc_after_sum = gsc_after_agg.groupby('phase').agg({'count': 'sum',
                                                    'clicks':
'sum'}).reset_index()

gsc_after_stats = gsc_after_wavg.merge(gsc_after_sum, on = ['phase'], how =
'left')
gsc_after_stats['index'] =
gsc_after_stats['clicks']/gsc_after_stats['wavg_rank']
gsc_after_stats.sort_values('index', ascending = False)

This results in the following:

With both datasets aggregated, we can concatenate them into a single table to compare directly:

pd.concat([gsc_before_stats, gsc_after_stats])

This results in the following:

So the average rank doesn’t appear to have changed that much, which implies the dramatic change could be
more seasonal. However, as we’ll see later, averages can often mask what’s really happening.

The amount of pages receiving traf�ic has decreased by roughly –20%, which is telling as that appears to
be migration related.

We’ll start visualizing some data to help us investigate deeper:

overall_clicks_plt = (
    ggplot(pd.concat([gsc_before_stats, gsc_after_stats]),
           aes(x = 'reorder(phase, -clicks)', y = 'clicks' , fill =
'phase')) +
    geom_bar(stat = 'identity', alpha = 0.6, position = 'dodge') +
position=position_stack(vjust=0.01)) +
    labs(y = 'GSC Clicks', x = 'phase') +

    theme(legend_position = 'right',
         )
)

overall_clicks_plt.save(filename = 'images/2_overall_clicks_plt.png',
height=5, width=10, units = 'in', dpi=1000)
overall_clicks_plt



Clicks are down in Figure 9-4, which we obviously know, by about –67%.

Figure	9-4 Column chart of before and after Google Search Console (GSC) clicks

Let’s break it down at the segment level.
We’ll start by computing segment rank averages and total clicks and derive an index of visibility based

on the ratio of clicks to rank:

gsc_before_seg_agg = gsc_before
gsc_before_seg_wavg = gsc_before_seg_agg.groupby(['segment_two',
'phase']).apply(wavg_rank_imps).reset_index()
gsc_before_seg_sum = gsc_before_seg_agg.groupby(['segment_two',
'phase']).agg({'count': 'sum', 'clicks': 'sum'}).reset_index()

gsc_before_seg_stats = gsc_before_seg_wavg.merge(gsc_before_seg_sum, on =
['segment_two', 'phase'], how = 'left')
gsc_before_seg_stats['index'] =
gsc_before_seg_stats['clicks']/gsc_before_seg_stats['wavg_rank']
gsc_before_seg_stats.sort_values('index', ascending = False)

This results in the following:



The preceding segment breakdown shows much of the content is in the “management” classi�ication,
followed by “documentation.” We’ll repeat the aggregations for the postmigration data:

gsc_after_seg_agg = gsc_after
gsc_after_seg_wavg = gsc_after_seg_agg.groupby(['segment_two',
'phase']).apply(wavg_rank_imps).reset_index()
gsc_after_seg_sum = gsc_after_seg_agg.groupby(['segment_two',
'phase']).agg({'count': 'sum',
 'clicks': 'sum'}).reset_index()

gsc_after_seg_stats = gsc_after_seg_wavg.merge(gsc_after_seg_sum, on =
['segment_two', 'phase'], how = 'left')
gsc_after_seg_stats['index'] =
gsc_after_seg_stats['clicks']/gsc_after_seg_stats['wavg_rank']
gsc_after_seg_stats.sort_values('index', ascending = False)

This results in the following:



Curiously, “management” has 10% more URLs ranking than premigration with no real change in ranking.
“Documentation” has lost virtually all of its clicks and half of its URLs.

To visualize this, the dataframes will need to be concatenated in long format to feed the graphics code:

gsc_long_seg_stats = pd.concat([gsc_before_seg_stats, gsc_after_seg_stats])
gsc_long_seg_stats['phase'] = gsc_long_seg_stats['phase'].astype('category')
gsc_long_seg_stats['phase'].cat.reorder_categories(['before', 'after'],
inplace=True)

segment_clicks_plt = (
    ggplot(gsc_long_seg_stats,
           aes(x = 'reorder(segment_two, -clicks)', y = 'clicks' , fill =
'phase')) +
    geom_bar(stat = 'identity', alpha = 0.6, position = 'dodge') +
position=position_stack(vjust=0.01)) +
    labs(y = 'GSC Clicks', x = '') +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         )
)

segment_clicks_plt.save(filename = 'images/2_segment_clicks_plt.png',
height=5, width=10, units = 'in', dpi=1000)
segment_clicks_plt

As shown in Figure 9-5, most of the click losses appear to have happened at the home page.



Figure	9-5 Column chart of before and after Google Search Console (GSC) clicks by content segment

What about the number of URLs receiving traf�ic from Google?

segment_urls_plt = (
    ggplot(gsc_long_seg_stats,
           aes(x = 'reorder(segment_two, -count)', y = 'count' , fill =
'phase')) +
    geom_bar(stat = 'identity', alpha = 0.6, position = 'dodge') +
    position=position_stack(vjust=0.01)) +
    labs(y = 'GSC URL Count', x = '') +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         )
)

segment_urls_plt.save(filename = 'images/2_segment_urls_plt.png', height=5,
width=10, units = 'in', dpi=1000)
segment_urls_plt

So there are more management URLs receiving traf�ic post migration (Figure 9-6).



Figure	9-6 Column chart of before and after Google Search Console (GSC) URL counts by content segment

However, there is much less in “documentation” and “other” and a bit less in “help,” “sales,” and “stock.”
What about Google rank positions?

segment_rank_plt = (
    ggplot(gsc_long_seg_stats,
           aes(x = 'reorder(segment_two, -wavg_rank)', y = 'wavg_rank' ,
fill = 'phase')) +
    geom_bar(stat = 'identity', alpha = 0.6, position = 'dodge') +
    #geom_text(dd_factor_df, aes(label = 'serps_name'),
position=position_stack(vjust=0.01)) +
    labs(y = 'GSC Clicks', x = '') +
    scale_y_reverse() +
    #theme_classic() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         )
)

segment_rank_plt.save(filename = 'images/2_segment_rank_plt.png', height=5,
width=15, units = 'in', dpi=1000)
segment_rank_plt

Rankings fell for the inventory, sales, wholesalers, and stock classi�ications (Figure 9-7).

Figure	9-7 Column chart of before and after Google Search Console (GSC) rank position averages by content segment

So there is some correlation between the losses in traf�ic and rankings. As a general conclusion, some of
the downshift in organic performance, as initially suspected, is a mixture of seasonality and site migration.

Diagnostics
So we see that rankings fell for inventory and others, but why?

To understand what went wrong, we’re now going to merge performance data with crawl data to help us
diagnose what went wrong. We’ll also append the segment names so we can diagnose by content area.

Select the clicks and rank columns we want before merging:

gsc_before_diag = gsc_before[['url', 'clicks', 'segment_two', 'position']]
gsc_after_diag = gsc_after[['url', 'clicks', 'segment_two', 'position']]

Now merge to create a new dataframe gsc_ba_diag so we can compare performance at the URL level
before and after.

We use an outer join to capture all URLs before and after the migration. If we did a left join (equivalent of
a vlookup in Excel), Pandas would assume an inner join, which means we’d miss out on any URLs that had



no data post migration.

gsc_ba_diag = gsc_before_diag.merge(gsc_after_diag, on = ['url',
'segment_two'], how = 'outer')

Because the dataframes of the before and after share the same column names, Pandas interprets this as
unintended and correctly assumes these columns are different and therefore adds the suf�ixes _x and _y. So
we’re renaming them to be more user-friendly:

gsc_ba_diag = gsc_ba_diag.rename(columns = {'segment_two': 'segment',
                                            'clicks_x': 'clicks_before',
'clicks_y': 'clicks_after', 'position_x': 'rank_before', 'position_y':
'rank_after' })

After joining, we’d expect to see some rows where they have null clicks before or (more likely) after the
migration. So we’re cleaning up the data to replace “not a number” (NaNs) values with 100 for rankings and
0 for clicks:

gsc_ba_diag['rank_before'] = np.where(gsc_ba_diag['rank_before'].isnull(),
100, gsc_ba_diag['rank_before'])

gsc_ba_diag['rank_after'] = np.where(gsc_ba_diag['rank_after'].isnull(),
100,
 gsc_ba_diag['rank_after'])

gsc_ba_diag['clicks_before'] =
np.where(gsc_ba_diag['clicks_before'].isnull(),
0,  gsc_ba_diag['clicks_before'])

gsc_ba_diag['clicks_after'] = np.where(gsc_ba_diag['clicks_after'].isnull(),
0,
 gsc_ba_diag['clicks_after'])

With the data in wide format and the null values cleaned up, we can compute the differences in clicks
and rankings before and after, which we will now do:

gsc_ba_diag['rank_delta'] = gsc_ba_diag['rank_before'] -
gsc_ba_diag['rank_after']
gsc_ba_diag['clicks_delta'] = gsc_ba_diag['clicks_after'] -
gsc_ba_diag['clicks_before']

gsc_ba_diag

This results in the following:



The performance deltas are now in place, so we can merge the crawl data with performance data into a new
dataframe aptly named “perf_crawl.”

Since we have all the URLs we want and there’s a lot of unwanted URLs in the crawl data, we’ll take the
desired URLs (perf_crawl) and join the crawl data speci�ied in the merge function, which will be set to “left.”
This is equivalent to an Excel vlookup, which will only join the desired crawl URLs.

perf_crawl = gsc_ba_diag.merge(audit_urls_map, on = 'url', how = 'left')

perf_crawl = perf_crawl[['url', 'segment', 'clicks_after', 'clicks_before',
'clicks_delta', 'crawl_depth',
                         'host', 'crawl_source', 'http_status_code',
'indexable_status', 'canonical_url',
                         'canonical_status', 'redirect_url',
'redirect_url_status_code',
                         'final_redirect_url',
'final_redirect_url_status_code', 'urls_with_similar_content',
                         'ult_dest_url', 'content_simi']]

perf_crawl

This results in the following:



More fun awaits us as we now get to diagnose the URLs. To do this, we’re going to use a set of conditions in
the data, such that when they are met, they will be given a diagnosis value. This is where your SEO
experience comes in, because your ability to spot patterns dictates the conditions you will set as follows:

perf_diags = perf_crawl.copy()

Create a list of our conditions:

modifier_conds = [
    (perf_crawl['http_status_code'] == '200') & (perf_crawl['crawl_source']
!= 'Crawler'),
    (perf_crawl['redirect_url_status_code'] == '301'),
    (perf_crawl['http_status_code'].isnull()),
    perf_crawl['http_status_code'].isin(['400', '403', '404']),
    (perf_diags['canonical_status'] != 'Missing') &
(perf_diags['indexable_status'] == 'Noindex'),
    perf_diags['content_simi'] < 1
]

Create a list of the values we want to assign for each condition:

segment_values = ['outside_ia', 'redirect_chain', 'lost_content', 'error',
'robots_conflict', 'lost_content']

Create a new column and use np.select to assign values to it using our lists as arguments:

perf_diags['diagnosis'] = np.select(modifier_conds, segment_values, default
= 'other')
perf_diags['diagnosis'] = np.where((perf_diags['diagnosis'] ==
'redirect_chain') & (perf_diags['content_simi'] < 1),
                                  'lost_content', perf_diags['diagnosis'])

perf_diags

This results in the following:

A new column “diagnosis” has been added based on the rules we just created, helping us to make sense, at
the URL level, what has happened.

With each URL labeled, we can start to quantify the diagnosis:

diagnosis_clicks = perf_diags.groupby('diagnosis').agg({'clicks_delta':



'sum'}).reset_index()
diagnosis_urls = perf_diags.groupby('diagnosis').agg({'url':
'count'}).reset_index()
diagnosis_stats = diagnosis_clicks.merge(diagnosis_urls, on = 'diagnosis',
how = 'left')

diagnosis_stats['clicks_pURL'] = (diagnosis_stats['clicks_delta'] /
diagnosis_stats['url']).round(2)

diagnosis_stats

This results in the following:

According to the analysis, around 25% of the total loss of clicks is down to error codes (HTTP server status
4XX) and lost content (URLs redirected to a parent folder).

Most of the URLs affected are those 373 redirected which is most of the website.
Other (with no URLs) implies the traf�ic loss would be seasonal and/or an indirect effect of the

migration errors.
If you want to share what you found, you could visualize this for your colleagues using the following

code:

diagnosis_plt = (
    ggplot(diagnosis_stats,
           aes(x = 'reorder(diagnosis, -clicks_delta)', y = 'clicks_delta'))
+
    geom_bar(stat = 'identity', alpha = 0.6, position = 'dodge', fill =
'blue') +
position=position_stack(vjust=0.01)) +
    labs(y = 'GSC Clicks Impact', x = '') +
    coord_flip() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         )
)

diagnosis_plt.save(filename = 'images/3_diagnosis_plt.png', height=5,
width=10, units = 'in', dpi=1000)
diagnosis_plt

“Other” (probably seasonality) was the major reason for the click losses (Figure 9-8), followed by
lost_content (i.e., URLs redirected).



Figure	9-8 Bar chart of Google Search Console (GSC) click impact by tech SEO diagnosis

But what was the number of URLs impacted?

diagnosis_count_dat = perf_diags.groupby('diagnosis').agg({'url':
'count'}).reset_index()
print(diagnosis_count_dat)

diagnosis_urlcount_plt = (
    ggplot(diagnosis_count_dat,
           aes(x = 'reorder(diagnosis, url)', y = 'url')) +
    geom_bar(stat = 'identity', alpha = 0.6, position = 'dodge', fill =
'blue') +
position=position_stack(vjust=0.01)) +
    labs(y = 'URL Count', x = '') +
    coord_flip() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         )
)

diagnosis_urlcount_plt.save(filename =
'images/3_diagnosis_urlcount_plt.png', height=5, width=15, units = 'in',
dpi=1000)
diagnosis_urlcount_plt

Despite “Other” losing the most clicks, it was “lost content” that impacted the most URLs (Figure 9-9).



Figure	9-9 Column chart of Google Search Console (GSC) URLs affected counts by tech SEO diagnosis

That’s the overview done; let’s break it down by content type. We’ll use the content segment labels to get
click impact stats:

diagnosis_seg_clicks = perf_diags.groupby(['diagnosis',
'segment']).agg({'clicks_delta': 'sum'}).reset_index()
diagnosis_seg_urls = perf_diags.groupby(['diagnosis',
'segment']).agg({'url': 'count'}).reset_index()

diagnosis_seg_stats = diagnosis_seg_clicks.merge(diagnosis_seg_urls,
                                                 on = ['diagnosis',
'segment'], how = 'left')
diagnosis_seg_stats['clicks_p_url'] = (diagnosis_seg_stats['clicks_delta'] /
diagnosis_seg_stats['url']).round(2)
diagnosis_seg_stats.sort_values('clicks_p_url')

This results in the following:

So not only is “Other” the biggest reason for the click losses, most of it impacted the home page. This would
be consistent with the idea of seasonality, that is, a characteristically quiet December.

While tables are useful, we’ll make use of data visualization to see the overall picture more easily:



diagnosis_seg_clicks_plt = (
    ggplot(diagnosis_seg_stats,
           aes(x = 'diagnosis', y = 'segment', fill = 'clicks_delta')) +
    geom_tile(stat = 'identity', alpha = 0.6) +
position=position_stack(vjust=0.00)) +
    labs(y = '', x = '') +
    theme_classic() +
    theme(legend_position = 'right')
)

diagnosis_seg_clicks_plt.save(filename =
'images/5_diagnosis_seg_clicks_plt.png',
 height=5, width=10, units = 'in', dpi=1000)
diagnosis_seg_clicks_plt

The home page followed by “management content” is the most affected within “other” (Figure 9-10).

Figure	9-10 Heatmap chart of clicks delta by content type and SEO diagnosis

In terms of lost content, these are mostly “documentation” and “other.” This is quite useful for deciding
where to focus our attention.

Although “other” as a reason isn’t overly helpful for �ixing a site post migration, we can still explain
where some of the migration errors occurred, start labeling URLs for recommended actions, and visualize.
This is what we’re doing next.

Road	Map
We’ll start with our dataframe “perf_diags” and copy it into “perf_recs” before creating the
recommendations based on the errors found:

perf_recs = perf_diags

The aptly named diag_conds is a list of diagnoses based on the value of the diagnosis column in the
perf_recs dataframe. The np.select function (shortly later on) will draw from this list to assign a
recommendation.

diag_conds = [
    perf_recs['diagnosis'] == 'outside_ia',
    perf_recs['diagnosis'] == 'redirect_chain',
    perf_recs['diagnosis'] == 'error',
    perf_recs['diagnosis'] == 'robots_conflict',
    perf_recs['diagnosis'] == 'lost_content',
    perf_recs['diagnosis'] == 'other'



]

rec_values is a list of recommendations to go with the preceding diagnosis list. At this point, it’s
assumed that you have done the detective work to know what recommendations you’re putting forward for
each of the preceding labels.

The recommendation list items are ordered to match the order of the diag_conds list. For example, if the
diagnosis cell value is “lost_content,” then the recommendation is to “create_integrate,” which means to
create the content redirected, unredirect, and reintegrate into the website.

rec_values = ['integrate', 'disintermediate', 'fix/remove links to error
URL', 'remove canonical', 'create_integrate', 'no further action']

With the lists in place, we can now match them when we create a new column and use np.select to assign
values to it using our lists as arguments:

perf_recs['recommendation'] = np.select(diag_conds, rec_values, default =
'na')
perf_recs = perf_recs.sort_values('clicks_delta')

perf_recs.to_csv('exports/' + hostname + '_migration_data_1.csv')

perf_recs

This results in the following:

You’ll now see the perf_recs dataframe updated with a new column to match the diagnosis.
Of course, we’ll now want to quantify all of this for our presentation decks to our colleagues, using the

hopefully familiar groupby() function:

recs_clicksurl = perf_recs.groupby('recommendation')
['clicks_delta'].agg(['sum', 'count']).reset_index()
recs_clicksurl['recovery_clicks_url'] = np.abs(recs_clicksurl['sum'] /
recs_clicksurl['count'])

We’re taking the absolute as we want to put a positive slant on the presentation of the numbers:

recs_clicksurl['sum'] = np.abs(recs_clicksurl['sum'])

recs_clicksurl

This results in the following:



The preceding table shows the recommendation with clicks to be recovered (sum), URL count (count), and
the potential recovery clicks per URL. Although it may seem strange to recover 297 clicks per month
through “no further action,” some may well be recovered by �ixing the other issues.

Time to visualize:

recs_clicks_plt = (
    ggplot(recs_clicksurl,
           aes(x = 'reorder(recommendation, sum)', y = 'sum')) +
    geom_bar(stat = 'identity', alpha = 0.6, position = 'dodge', fill =
'blue') +
position=position_stack(vjust=0.01)) +
    labs(y = 'Recovery Clicks Available', x = '') +
    coord_flip() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         )
)

recs_clicks_plt.save(filename = 'images/8_recs_clicks_plt.png',
                     height=5, width=10, units = 'in', dpi=1000)
recs_clicks_plt

Figure 9-11 visualizes the recommendations.

Figure	9-11 Bar chart of estimated recovery clicks available by tech SEO diagnosis

Summary
This chapter covered site migration mapping so that you could set the structure of your new site and
semiautomate the formation of your migration URLs. Some of the techniques used are as follows:



String manipulation
Iterating through dataframe rows by converting these into a list
Using NLP to compare URL strings

While these techniques were applied to speed up the processing of data for a site migration, they can
easily be applied to other use cases. In the next chapter, we will show how algorithm updates can be better
understood using data.
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Just as death and taxes are the certainties of life, algorithm updates are a certainty for any SEO career.
That’s right, Google frequently introduces changes to its ranking algorithm, which means your website (and
many others) may experience �luctuations in rankings and, by extension, traf�ic. These changes may be
positive or negative, and in some cases, you’ll discern no impact at all.

To compound matters, Google in particular gives rather vague information as to what the algorithm
updates are about and how business and SEO professionals should respond. Naturally, the lack of
prescriptive advice from Google other than delivering “a great user experience” and “creating compelling
content” means SEOs must �ind answers using various analysis tools. Fortunately, for the SEO

Google is a system of algorithms. That means that the changes in ranking factors are likely to be
consistent and predictable and not at the whim of a human. These changes are likely to have been tested
beforehand.
The outcomes of Google’s algorithm changes are in the public domain by virtue of the Search Engine
Results Pages (SERPs), which means that there is data available for analysis, even if it is against the
Google Webmaster Guidelines.
Even without the SERPs, Google Search Console is a valuable data source for understanding the nature of
Google’s updates.

In this chapter, we will cover algorithm updates analysis which is to analyze the difference in search
results before and after the algorithm update event at different levels:

Domains
Result types
Cannibalization
Keywords
Within client tracked queries (target)
Segmented SERPs

Algo	Updates
The general approach here is to compare performance between the before and after phases of the Google
algorithm update. In this case, we’ll focus on a newly listed webinar company known as ON24. ON24
suffered from the December 2019 core update.

With some analysis and visualization, we can get an idea of what’s going on with the update. As well as
the usual libraries, we’ll be importing SERPs data from getSTAT (an enterprise-level rank tracking platform,
available at getstat.com):

import re
import time
import random
import pandas as pd
import numpy as np
import datetime
import re
import time

https://doi.org/10.1007/978-1-4842-9175-7_10


import requests
import json
from datetime import timedelta
from glob import glob
import os
from textdistance import sorensen_dice
from plotnine import *
import matplotlib.pyplot as plt
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
import uritools

pd.set_option('display.max_colwidth', None)
%matplotlib inline

root_domain = 'on24.com'
hostdomain = 'www.on24.com'
hostname = 'on24'
full_domain = 'https://www.on24.com'
target_name = 'ON24'

getstat_raw.head()

The following is the printout of the getSTAT data:

To make the column names more data-friendly, we’ll do some cleaning:

getstat_cleancols = getstat_raw

Convert to lowercase:

getstat_cleancols.columns = [x.lower() for x in getstat_cleancols.columns]

Given ON24 is a global brand and using a single website to capture all English language searches
worldwide, we’re using the global monthly search volume instead of the usual regional (country level)
numbers. Hence, we’re renaming the global volumes as the search volume:

getstat_cleancols = getstat_cleancols.rename(columns = {'global monthly
search volume': 'search_volume'})

We �ilter out rows for brand searches as we would expect ON24 to rank well for its own brand and we’re
more interested in the general core update:

getstat_cleancols =
getstat_cleancols[~getstat_cleancols['keyword'].str.contains('24')]
getstat_cleancols



The columns are now in lowercase with some columns renamed:

To make the calculations easier, we’ll split the dataframe column-wise into before and after. The splits will
be aggregated and then compared to each other.

We’ll start with the before dataframe, selecting the before columns:

getstat_before = getstat_cleancols[['keyword', 'market', 'location',
'device', 'search_volume', 'rank',
                                    'result types for nov 19, 2020',
'protocol for nov 19, 2020',
                                    'ranking url on nov 19, 2020']]

We build the full URL:

getstat_before['url'] = getstat_before['protocol for nov 19, 2020'] + '://'
+ getstat_before['ranking url on nov 19, 2020']

Change the values of the URL column such that if there are any blanks (null values), then replace it with
'' as opposed to a NaN (not a number). This helps avoid any errors when aggregating later on.

getstat_before['url'] = np.where(getstat_before['url'].isnull(), '',
getstat_before['url'])

We’ll derive site names using the urisplit function (embedded inside a list comprehension) to extract
the domain name. This will be useful to summarize performance at the site level.

getstat_before['site'] = [uritools.urisplit(x).authority if
uritools.isuri(x) else x for x in getstat_before['url']]

We initialize a list named strip_subdomains to help strip out string components of the URL:

strip_subdomains = ['hub\.', 'blog\.', 'www\.', 'impact\.', 'harvard\.',
'its\.', 'is\.', 'support\.']



We change the site �ield to replace any strip_subdomains strings found in the site column and replace
with nothing:

getstat_before['site'] =
getstat_before['site'].str.replace('|'.join(strip_subdomains), '')

We set a new column phase to “before”:

getstat_before['phase'] = 'before'

Stratifying the ranking position data helps us perform more detailed aggregations so that we can break
down performance into Google’s top 3, page 1, etc. This uses np.where which is the Python equivalent of
Excel’s if function:

getstat_before['rank_profile'] = np.where(getstat_before['rank'] < 11,
'page_1', 'page_2')
getstat_before['rank_profile'] = np.where(getstat_before['rank'] < 3,
'top_3',
         getstat_before['rank_profile'])

Here, we’ll rename some columns as we don’t need the month year in the column title:

getstat_before = getstat_before.rename(columns = {'result types for nov 19,
2020': 'snippets'})

Column selection is not absolutely necessary, but it does help clean up the dataframe and remind us of
what we’re working with:

getstat_before = getstat_before[['keyword', 'market', 'phase', 'device',
'search_volume', 'rank',
                                 'url', 'site', 'snippets', 'rank_profile']]

We’ll set zero search volumes to one so that we don’t get “divide by zero errors” later on when deriving
calculations:

getstat_before['search_volume'] = np.where(getstat_before['search_volume']
== 0, 1, getstat_before['search_volume'])

Initialize a new column count which also comes in handy for aggregations:

getstat_before['count'] = 1

Sometimes, you’ll want to dissect the SERPs by head, middle, and long tail. To make this possible, we’ll
initialize a column called “token_count” which counts the amount of gaps between the words (and add 1) to
extract the query word count in the “keyword” column:

getstat_before['token_count'] = getstat_before['keyword'].str.count(' ') + 1

Thanks to the word count, we use the np.select() function to classify the query length:

before_length_conds = [
    getstat_before['token_count'] == 1,
    getstat_before['token_count'] == 2,
    getstat_before['token_count'] > 2]

length_vals = ['head', 'middle', 'long']

getstat_before['token_size'] = np.select(before_length_conds, length_vals)

getstat_before



Here are the before dataset with additional features to make the analysis more useful.

Let’s repeat the data transformation steps for the after dataset:

getstat_after = getstat_cleancols[['keyword', 'market', 'location',
'device', 'search_volume', 'rank',
                                    'result types for dec 17, 2020',
'protocol for dec 17, 2020',
                                    'ranking url on dec 17, 2020']]
getstat_after['url'] = getstat_after['protocol for dec 17, 2020'] + '://' +
getstat_after['ranking url on dec 17, 2020']
getstat_after['url'] = np.where(getstat_after['url'].isnull(), '',
getstat_after['url'])

getstat_after['site'] = [uritools.urisplit(x).authority if uritools.isuri(x)
else x for x in getstat_after['url']]
strip_subdomains = ['hub\.', 'blog\.', 'www\.', 'impact\.', 'harvard\.',
'its\.', 'is\.', 'support\.']
getstat_after['site'] =
getstat_after['site'].str.replace('|'.join(strip_subdomains), '')

getstat_after['phase'] = 'after'

getstat_after = getstat_after.rename(columns = {'result types for dec 17,
2020': 'snippets'})

getstat_after = getstat_after[['keyword', 'market', 'phase', 'device',
'search_volume', 'rank', 'url', 'site', 'snippets']]

getstat_after['search_volume'] = np.where(getstat_after['search_volume'] ==
0, 1, getstat_after['search_volume'])

getstat_after['count'] = 1

getstat_after['rank_profile'] = np.where(getstat_after['rank'] < 11,
'page_1', 'page_2')
getstat_after['rank_profile'] = np.where(getstat_after['rank'] < 3, 'top_3',
getstat_after['rank_profile'])

getstat_after['token_count'] = getstat_after['keyword'].str.count(' ') + 1



after_length_conds = [
    getstat_after['token_count'] == 1,
    getstat_after['token_count'] == 2,
    getstat_after['token_count'] > 2,
]

getstat_after['token_size'] = np.select(after_length_conds, length_vals)

getstat_after

getstat_after is the after dataset transformation which is now complete, allowing us to proceed to the
next step of deduplicating our data:

Dedupe
The reason for deduplication is that the search engines often rank multiple URLs from the same SERPs. This
is �ine if you want to evaluate SERPs share or rates of cannibalization (i.e., multiple URLs from the same
domain competing for the same ranking and ultimately constraining the maximum ranking achieved).
However, in our use case of just seeing which sites come �irst, in what rank order, and how often,
deduplication is key.

Using the transformed datasets, we will group by site, selecting and keeping the highest ranked URL in
the unique (deduplicated) dataset:

getstat_bef_unique = getstat_before.sort_values('rank').groupby(['site',
'device', 'keyword']).first()
getstat_bef_unique = getstat_bef_unique.reset_index()
getstat_bef_unique = getstat_bef_unique[getstat_bef_unique['site'] != '']
getstat_bef_unique = getstat_bef_unique.sort_values(['keyword', 'device',
'rank'])

getstat_bef_unique = getstat_bef_unique[['keyword', 'market', 'phase',
'device', 'search_volume',
    'rank', 'url', 'site', 'snippets', 'rank_profile', 'count',
'token_count','token_size']]

getstat_bef_unique

This results in the following:



The dataset has been reduced noticeably from 27,000 to 23,600 rows. We’ll repeat the same operation for
the after dataset:

getstat_aft_unique = getstat_after.sort_values('rank').groupby(['site',
'device', 'keyword']).first()
getstat_aft_unique = getstat_aft_unique.reset_index()

getstat_aft_unique = getstat_aft_unique[getstat_aft_unique['site'] != '']
getstat_aft_unique = getstat_aft_unique.sort_values(['keyword', 'device',
'rank'])

getstat_aft_unique = getstat_aft_unique[['keyword', 'market', 'phase',
'device', 'search_volume',
    'rank', 'url', 'site', 'snippets', 'rank_profile', 'count',
    'token_count','token_size']]

getstat_aft_unique

This results in the following:



With both datasets deduplicated, we can start performing aggregations from different viewpoints and
generate insights.

Domains
One of the most common questions of any algo update is which sites gained and which ones lost. We will
start by �iltering for those in the top 10 to calculate the “reach” and sum these by site:

before_unq_reach = getstat_bef_unique
before_unq_reach = before_unq_reach[before_unq_reach['rank'] < 11 ]
before_unq_reach = before_unq_reach.groupby(['site']).agg({'count':
'sum'}).reset_index()

Rename count as reach:

before_unq_reach = before_unq_reach.rename(columns = {'count': 'reach'})
before_unq_reach = before_unq_reach[['site', 'reach']]

Swap null values for zero:

before_unq_reach['reach'] = np.where(before_unq_reach['reach'].isnull(), 0,
before_unq_reach['reach'])
before_unq_reach.sort_values('reach', ascending = False).head(10)

Unsurprisingly, Google has the most keyword presence of any site. After that, it’s HubSpot, then ON24,
our site of interest. Note that this is before the Google update.

We’ll repeat the domain reach aggregation for after the update:

after_unq_reach = getstat_aft_unique
after_unq_reach = after_unq_reach[after_unq_reach['rank'] < 11 ]
after_unq_reach = after_unq_reach.groupby(['site']).agg({'count':
'sum'}).reset_index()
after_unq_reach = after_unq_reach.rename(columns = {'count': 'reach'})
after_unq_reach['reach'] = np.where(after_unq_reach['reach'].isnull(), 0,
after_unq_reach['reach'])

after_unq_reach = after_unq_reach[['site', 'reach']]



after_unq_reach.sort_values('reach', ascending = False).head(10)

This results in the following:

Google is an even bigger winner post its own update. HubSpot has lost out slightly, and ON24 is virtually
unchanged. Or so it appears on the surface as we’ll see later on when we get deeper into the analysis.

Rather than eyeballing two separate dataframes, we’ll join them together for a side-by-side comparison:

compare_reach_loser = before_unq_reach.merge(after_unq_reach, on = ['site'],
how = 'outer')

Rename the columns to be more user-friendly:

compare_reach_loser = compare_reach_loser.rename(columns = {'reach_x':
'before_reach', 'reach_y': 'after_reach'})
compare_reach_loser['before_reach'] =
np.where(compare_reach_loser['before_reach'].isnull(),
          0, compare_reach_loser['before_reach'])

Swap null values with zero to prevent errors for the next step:

compare_reach_loser['after_reach'] =
np.where(compare_reach_loser['after_reach'].isnull(),
         0, compare_reach_loser['after_reach'])

Create new columns to quantify the difference in reach between before and after:

compare_reach_loser['delta_reach'] = compare_reach_loser['after_reach'] -
compare_reach_loser['before_reach']
compare_reach_loser = compare_reach_loser.sort_values('delta_reach')
compare_reach_loser = compare_reach_loser[['site', 'before_reach',
'after_reach', 'delta_reach']]
compare_reach_loser.head(10)

This results in the following:



The biggest loser by far appears to be WorkCast, a major player in the webinar software space, followed by
HubSpot. As you’ll realize, having the tables aggregated separately and then joined makes the comparison
much easier. Let’s repeat to �ind the winners:

compare_reach_winners = compare_reach_loser.sort_values('delta_reach',
ascending = False)
compare_reach_winners.head(10)

This results in the following:

Interesting, so WorkCast lost, yet its subdomain gained. A few publishers like Medium and blogs from
indirect B2B software competitors also gain. Intuitively, this looks like blogs and guides have been favored.

Time to visualize. We’ll convert to long format which is the data structure of choice for data visualization
graphing packages (think pivot tables):

compare_reach_losers_long = compare_reach_loser[['site',
'before_reach','after_reach']].head(28)
compare_reach_losers_long = compare_reach_losers_long.melt(id_vars =
['site'], var_name='Phase', value_name='Reach')



compare_reach_losers_long['Phase'] =
compare_reach_losers_long['Phase'].str.replace('_reach', '')
compare_reach_losers_long['Phase'] =
compare_reach_losers_long['Phase'].astype('category')
compare_reach_losers_long['Phase'] =
compare_reach_losers_long['Phase'].cat.reorder_categories(['before',
'after'])

stop_doms = ['en.wikipedia.org', 'google.com', 'youtube.com',
'lexisnexis.com']
compare_reach_losers_long =
compare_reach_losers_long[~compare_reach_losers_long['site'].isin(stop_doms)]

compare_reach_losers_long.head(10)

This results in the following:

#VIZ
compare_reach_losers_plt = (
    ggplot(compare_reach_losers_long, aes(x = 'reorder(site, Reach)', y =
'Reach', fill = 'Phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    #geom_text(dd_factor_df, aes(label = 'market_name'),
position=position_stack(vjust=0.01)) +
    labs(y = 'Reach', x = ' ') +
    #scale_y_reverse() +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12)) +
    facet_wrap('device')
)

compare_reach_plt.save(filename = 'images/1_compare_reach_losers_plt.png',
height=5, width=10, units = 'in', dpi=1000)
compare_reach_plt

It seems not all websites had a consistent presence across both device search result types (Figure 10-1).



Figure	10-1 Website top 10 ranking counts (reach) before and after by browser device

Reach	Strati�ied
Reach is helpful, but as always the devil is in the detail, and no doubt you and your colleagues will want to
drill down further by rank strata, that is, rankings in the top 3 positions or perhaps only rankings on page 1
of Google, etc. Let’s aggregate only this time with reach strata starting with the before dataset:

before_unq_reachstrata = getstat_bef_unique
before_unq_reachstrata = before_unq_reachstrata.groupby(['site',
'rank_profile']).agg({'count': 'sum'}).reset_index()
before_unq_reachstrata = before_unq_reachstrata.rename(columns = {'count':
'reach'})
before_unq_reachstrata = before_unq_reachstrata[['site', 'rank_profile',
'reach']]
before_unq_reachstrata.sort_values('reach', ascending = False).head(10)

This results in the following:

Now we have an ordered dataframe by reach, this time split by rank_pro�ile, thus stratifying the reach
metric. For example, we see HubSpot has twice as many keywords on page 1 of Google search results



compared to page 2, whereas with ON24, it’s more or less equal.
Repeat the operation for the after dataset:

after_unq_reachstrata = getstat_aft_unique
after_unq_reachstrata = after_unq_reachstrata.groupby(['site',
'rank_profile']).agg({'count': 'sum'}).reset_index()
after_unq_reachstrata = after_unq_reachstrata.rename(columns = {'count':
'reach'})
after_unq_reachstrata = after_unq_reachstrata[['site', 'rank_profile',
'reach']]
after_unq_reachstrata.sort_values('reach', ascending = False).head(10)

This results in the following:

As you can imagine, it’s less easy to see who won and lost by eyeballing the separate dataframes, so we will
merge as usual:

compare_strata_loser = before_unq_reachstrata.merge(after_unq_reachstrata,
on = ['site', 'rank_profile'], how = 'outer')
compare_strata_loser = compare_strata_loser.rename(columns = {'reach_x':
'before_reach', 'reach_y': 'after_reach'})

compare_strata_loser['before_reach'] =
np.where(compare_strata_loser['before_reach'].isnull(), 0,
compare_strata_loser['before_reach'])
compare_strata_loser['after_reach'] =
np.where(compare_strata_loser['after_reach'].isnull(), 0,
compare_strata_loser['after_reach'])
compare_strata_loser['delta_reach'] = compare_strata_loser['after_reach'] -
compare_strata_loser['before_reach']

compare_strata_loser = compare_strata_loser.sort_values('delta_reach')
compare_strata_loser.head(10)

This results in the following:



This dataframe merge makes things much clearer as we can now see ON24 lost most of its rankings on page
1, whereas WorkCast has lost everywhere.

We’ll turn our attention to the reach winners strati�ied by rank pro�ile:

compare_strata_winners = before_unq_reachstrata.merge(after_unq_reachstrata,
on = ['site', 'rank_profile'], how = 'outer')
compare_strata_winners = compare_strata_winners.rename(columns = {'reach_x':
'before_reach', 'reach_y': 'after_reach'})

compare_strata_winners['before_reach'] =
np.where(compare_strata_winners['before_reach'].isnull(),
             0, compare_strata_winners['before_reach'])
compare_strata_winners['after_reach'] =
np.where(compare_strata_winners['after_reach'].isnull(),
            0, compare_strata_winners['after_reach'])
compare_strata_winners['delta_reach'] =
compare_strata_winners['after_reach'] -
compare_strata_winners['before_reach']

compare_strata_winners = compare_strata_winners.sort_values('delta_reach',
ascending = False)

compare_strata_winners = compare_strata_winners[['site',
'rank_profile','before_reach', 'after_reach', 'delta_reach']]
compare_strata_winners =
compare_strata_winners[compare_strata_winners['delta_reach'] > 0]

compare_strata_winners.head(10)

This results in the following:



Although WorkCast’s info subdomain gained 40 positions overall, their main site lost 69 positions, so it’s a
net loss. Time to visualize, we’ll take the top 28 sites using the head() function:

compare_strata_losers_long = compare_strata_loser[['site', 'rank_profile',
'before_reach','after_reach']].head(28)

The melt() function helps reshape the data from wide format (as per the preceding dataframe) to long
format (where the column names are now in a single column as rows):

compare_strata_losers_long = compare_strata_losers_long.melt(id_vars =
['site', 'rank_profile'], var_name='Phase', value_name='Reach')
compare_strata_losers_long['Phase'] =
compare_strata_losers_long['Phase'].str.replace('_reach', '')

The astype() function allows us to instruct Pandas to treat a data column as a different data type. In this
case, we’re asking Pandas to treat Phase as a category as this is a discrete variable which then allows us to
order these categories:

compare_strata_losers_long['Phase'] =
compare_strata_losers_long['Phase'].astype('category')

With Phase now set as a category, we can now set the order:

compare_strata_losers_long['Phase'] =
compare_strata_losers_long['Phase'].cat.reorder_categories(['before',
'after'])

The same applies to rank pro�ile. Top 3 is obviously better than page 1, which is better than page 2.

compare_strata_losers_long['rank_profile'] =
compare_strata_losers_long['rank_profile'].astype('category')
compare_strata_losers_long['rank_profile'] =
compare_strata_losers_long['rank_profile'].cat.reorder_categories(['top_3',
'page_1', 'page_2'])

The stop_doms list is used to weed out domains from our analysis that the audience wouldn’t be
interested in:

stop_doms = ['en.wikipedia.org', 'google.com', 'youtube.com']



With the stop_doms list, we can �ilter the dataframe of these undesirable domain names by negating any
sites that are in (using the isin() function) the stop_doms list:

compare_strata_losers_long =
compare_strata_losers_long[~compare_strata_losers_long['site'].isin(stop_doms)

compare_strata_losers_long.head(10)

This results in the following:

The data is now in long format with the Phase extracted from the before_reach and after_reach columns and
pushed into a column called Phase. The values of the two columns sit under a new single column Reach.
Let's visualize:

compare_strata_losers_plt = (
    ggplot(compare_strata_losers_long, aes(x = 'reorder(site, Reach)', y =
'Reach', fill = 'rank_profile')) +
    geom_bar(stat = 'identity', position = 'fill', alpha = 0.8) +
position=position_stack(vjust=0.00)) +
    labs(y = 'Reach', x = ' ') +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12)) +
    facet_wrap('Phase')
)

compare_strata_losers_plt.save(filename =
'images/1_compare_strata_losers_plt.png', height=5, width=10, units = 'in',
dpi=1000)
compare_strata_losers_plt

We see the proportions of keywords in their rank pro�ile, which are much easier to see thanks to the
�ixed lengths (Figure 10-2).



Figure	10-2 Website Google rank proportions (reach) by top 3, page 1, and page 2 before and after

For example, WorkCast had a mixture of top 3 and page 1 rankings which are now all on page 2.
FounderJar had page 2 listings, which are now nowhere to be found.

The �ixed lengths are set in the geom_bar() function using the parameter position set to “�ill.” Despite
following best practice data visualization as shown earlier, you may have to acquiesce to your business
audience who may want multilength bars as well as proportions (even if it’s much harder to infer from the
chart). So instead of the position set to �ill, we will set it to “stack”:

compare_strata_losers_plt = (
    ggplot(compare_strata_losers_long, aes(x = 'reorder(site, Reach)', y =
'Reach', fill = 'rank_profile')) +
    geom_bar(stat = 'identity', position = 'stack', alpha = 0.8)
+  position=position_stack(vjust=0.01)) +
    labs(y = 'Reach', x = ' ') +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12)) +
    facet_wrap('Phase')
)

compare_strata_losers_plt.save(filename =
'images/1_compare_strata_losers_stack_plt.png', height=5, width=10, units =
'in', dpi=1000)
compare_strata_losers_plt

Admittedly, in cases like ON24 where in the �ixed bar length chart above (Figure 10-2), the differences
were not as obvious (Figure 10-3).



Figure	10-3 Website Google rank counts (reach) by top 3, page 1, and page 2 before and after

In contrast, with the free length bars, we can see that ON24 lost at least 10% of their reach.

Rankings
While reach is nice, as a single metric on its own it is not enough. If you consider the overall value of your
organic presence as a function of price and volume, then reach is the volume (which we have just
addressed). And now we must come to the price, which in the organic value paradigm is ranking positions.

We’ll aggregate rankings by site for both before and after the core update, starting with the before
dataset:

before_unq_ranks = getstat_bef_unique

Unlike reach where we took the sum of keyword search results, in this case, we’re taking the average
(also known as the mean):

before_unq_ranks = before_unq_ranks.groupby(['site']).agg({'rank':
'mean'}).reset_index()
before_unq_ranks = before_unq_ranks[['site', 'rank']]
before_unq_ranks.sort_values('rank').head(10)

This results in the following:



The table shows the average rank by site. As you may infer, the rank per se is quite meaningless because
Some keywords have higher search volumes than others.
The average rank is not zero in�lated for keywords the sites don’t rank for. For example, qlik.com’s average
rank of 1 may be just on one keyword.

Instead of going through the motions, repeating code to calculate and visualize the rankings for the after
dataset and then comparing, we’ll move on to a search volume weighted average ranking.

WAVG	Search	Volume
This time, we will weight the average ranking position by search volume:

before_unq_svranks = getstat_bef_unique

De�ine the function that takes the dataframe and uses the rank column. The weighted average is
calculated by multiplying the rank by the search volume and then dividing by the total weight (being the
search volume sum):

def wavg_rank_sv(x):
    names = {'wavg_rank': (x['rank'] *
x['search_volume']).sum()/(x['search_volume']).sum()}
    return pd.Series(names, index=['wavg_rank']).round(1)

With the function in place, we’ll now use the apply() function to apply the wavg_rank() function just
de�ined earlier:

before_unq_svranks =
before_unq_svranks.groupby(['site']).apply(wavg_rank_sv).reset_index()
before_unq_svranks.sort_values('wavg_rank').head(10)

This results in the following:



We can see already that the list of sites have changed due to the search volume weighting. Even though the
weighted average rankings don’t add much value from a business insight perspective, this is an
improvement. However, what we really need is the full picture being the overall visibility.

Visibility
The visibility will be our index metric for evaluating the value of a site’s organic search presence taking
both reach and ranking into account.

Merge the search volume weighted rank data with reach:

before_unq_visi = before_unq_svranks.merge(before_unq_reach, on = 'site',
how = 'left')

Clean the columns of null values:

before_unq_visi['reach'] = np.where(before_unq_visi['reach'].isnull(), 0,
before_unq_visi['reach'])
before_unq_visi['wavg_rank'] =
np.where(before_unq_visi['wavg_rank'].isnull(), 100,
before_unq_visi['wavg_rank'])

Computing the visibility index is derived by dividing the reach by the weighted average rank. That’s
because the smaller the weighted average rank number, the more visible the site is, hence why rank is the
divisor. In contrast, the reach is the numerator because the higher the number, the higher your visibility.

before_unq_visi['visibility'] = before_unq_visi['reach'] /
before_unq_visi['wavg_rank']
before_unq_visi = before_unq_visi.sort_values('visibility', ascending =
False)
before_unq_visi

This results in the following:



The results are looking a lot more sensible and re�lect what we would expect to see in the webinar software
space. We can also see that gotomeeting.com, despite having less reach, has a higher visibility score by
virtue of ranking higher on more sought-after search terms. We can thus conclude the visibility score works.

Compute the same for the after dataset:

after_unq_visi = after_unq_svranks.merge(after_unq_reach, on = 'site', how =
'left')
after_unq_visi['reach'] = np.where(after_unq_visi['reach'].isnull(), 0,
after_unq_visi['reach'])
after_unq_visi['wavg_rank'] = np.where(after_unq_visi['wavg_rank'].isnull(),
100, after_unq_visi['wavg_rank'])

after_unq_visi['visibility'] = after_unq_visi['reach'] /
after_unq_visi['wavg_rank']
after_unq_visi = after_unq_visi.sort_values('visibility', ascending = False)
after_unq_visi

This results in the following:



GoToMeeting has gained in visibility, and ON24 is no longer in the top 5.
Join the tables to compare before and after directly in a single dataframe:

compare_visi_losers = before_unq_visi.merge(after_unq_visi, on = ['site'],
how = 'outer')
compare_visi_losers = compare_visi_losers.rename(columns = {'wavg_rank_x':
'before_rank', 'wavg_rank_y': 'after_rank',
                       'reach_x': 'before_reach', 'reach_y': 'after_reach',
                       'visibility_x': 'before_visi', 'visibility_y':
'after_visi'
                      })

compare_visi_losers['before_visi'] =
np.where(compare_visi_losers['before_visi'].isnull(), 0,
compare_visi_losers['before_visi'])
compare_visi_losers['after_visi'] =
np.where(compare_visi_losers['after_visi'].isnull(), 0,
compare_visi_losers['after_visi'])
compare_visi_losers['delta_visi'] = compare_visi_losers['after_visi'] -
compare_visi_losers['before_visi']

compare_visi_losers = compare_visi_losers.sort_values('delta_visi')

compare_visi_losers.head(10)

This results in the following:



The comparison view is much clearer, and ON24 and WorkCast are the biggest losers of the 2019 core
update from Google.

Let’s see the winners:

compare_visi_winners = before_unq_visi.merge(after_unq_visi, on = ['site'],
how = 'outer')
compare_visi_winners = compare_visi_winners.rename(columns = {'wavg_rank_x':
'before_rank', 'wavg_rank_y': 'after_rank',
                       'reach_x': 'before_reach', 'reach_y': 'after_reach',
                       'visibility_x': 'before_visi', 'visibility_y':
'after_visi'
                      })

compare_visi_winners['before_visi'] =
np.where(compare_visi_winners['before_visi'].isnull(), 0,
compare_visi_winners['before_visi'])
compare_visi_winners['after_visi'] =
np.where(compare_visi_winners['after_visi'].isnull(), 0,
compare_visi_winners['after_visi'])
compare_visi_winners['delta_visi'] = compare_visi_winners['after_visi'] -
compare_visi_winners['before_visi']

compare_visi_winners = compare_visi_winners.sort_values('delta_visi',
ascending  = False)

compare_visi_winners.head(10)

This results in the following:



The biggest winners are publishers which include nonindustry players like PCMag and Medium.
Here’s some code to convert to long format for visualization:

compare_visi_losers_long = compare_visi_losers[['site',
'before_visi','after_visi']].head(12)
compare_visi_losers_long = compare_visi_losers_long.melt(id_vars = ['site'],
var_name='Phase', value_name='Visi')
compare_visi_losers_long['Phase'] =
compare_visi_losers_long['Phase'].str.replace('_visi', '')

compare_visi_losers_long['Phase'] =
compare_visi_losers_long['Phase'].astype('category')
compare_visi_losers_long['Phase'] =
compare_visi_losers_long['Phase'].cat.reorder_categories(['before',
'after'])

stop_doms = ['en.wikipedia.org', 'google.com', 'youtube.com']
compare_visi_losers_long =
compare_visi_losers_long[~compare_visi_losers_long['site'].isin(stop_doms)]

compare_visi_losers_long.head(10)

This results in the following:



The preceding data is in long format. This will now feed the following graphics code:

compare_visi_losers_plt = (
    ggplot(compare_visi_losers_long, aes(x = 'reorder(site, Visi)', y =
'Visi', fill = 'Phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
position=position_stack(vjust=0.01)) +
    labs(y = 'Visiblity', x = ' ') +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12)) +
    facet_wrap('Phase')
)

compare_visi_losers_plt.save(filename =
'images/1_compare_visi_losers_plt.png', height=5, width=10, units = 'in',
dpi=1000)
compare_visi_losers_plt

The separate panels are achieved by using the facet_wrap() function where we instruct plotnine (the
graphics package) to separate panels by Phase as a parameter (Figure 10-4).



Figure	10-4 Website Google visibility scores before and after

Let’s see the winners:

compare_visi_winners_long = compare_visi_winners[['site',
'before_visi','after_visi']].head(12)
compare_visi_winners_long = compare_visi_winners_long.melt(id_vars =
['site'], var_name='Phase', value_name='Visi')
compare_visi_winners_long['Phase'] =
compare_visi_winners_long['Phase'].str.replace('_visi', '')

compare_visi_winners_long['Phase'] =
compare_visi_winners_long['Phase'].astype('category')
compare_visi_winners_long['Phase'] =
compare_visi_winners_long['Phase'].cat.reorder_categories(['before',
'after'])

stop_doms = ['en.wikipedia.org', 'google.com', 'youtube.com',
'lexisnexis.com']
compare_visi_winners_long =
compare_visi_winners_long[~compare_visi_winners_long['site'].isin(stop_doms)]

compare_visi_winners_long.head(10)

This results in the following:



compare_visi_winners_plt = (
    ggplot(compare_visi_winners_long, aes(x = 'reorder(site, Visi)', y =
'Visi', fill = 'Phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
position=position_stack(vjust=0.01)) +
    labs(y = 'Rank', x = ' ') +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12)) +
    facet_wrap('Phase')
)

compare_visi_winners_plt.save(filename =
'images/1_compare_visi_winners_plt.png', height=5, width=10, units = 'in',
dpi=1000)
compare_visi_winners_plt

This time, we’re not using the facet_wrap() function which puts both before and after bars on the same
panel (Figure 10-5).

Figure	10-5 Website Google rank average before and after



This makes it easier to compare directly and even get a better sense of the difference for each site
before and after.

Result	Types
With the overall performance in hand, we’ll drill down further, starting with result types. By result types, we
mean the format in which the ranking is displayed. This could be

Regular organic (think the usual ten blue links)
Video
Image
News
People Also Ask

As usual, we’ll perform aggregations on both before and after datasets. Only this time, we’ll group by the
snippets column:

before_unq_snippets = getstat_bef_unique

We’re aggregating by counting the number of keyword search results the snippet appears in, which is a
form of reach. Most snippets rank in the top 5 positions of the Search Engine Results Pages, so we won’t
bother with snippet rankings.

before_unq_snippets =
before_unq_snippets.groupby(['snippets']).agg({'count':
'sum'}).reset_index()
before_unq_snippets = before_unq_snippets[['snippets', 'count']]
before_unq_snippets = before_unq_snippets.rename(columns = {'count':
'reach'})
before_unq_snippets.sort_values('reach', ascending = False).head(10)

This results in the following:

Organic predictably has the most reach followed by images and AMP (accelerated mobile pages).
Repeat the process for the after dataset:

after_unq_snippets = getstat_aft_unique



after_unq_snippets = after_unq_snippets.groupby(['snippets']).agg({'count':
'sum'}).reset_index()
after_unq_snippets = after_unq_snippets[['snippets', 'count']]
after_unq_snippets = after_unq_snippets.rename(columns = {'count': 'reach'})
after_unq_snippets.sort_values('reach', ascending = False).head(10)

This results in the following:

Organic has gone down implying that there could be more diversi�ication of search results. Join the datasets
to facilitate an easier comparison:

compare_snippets = before_unq_snippets.merge(after_unq_snippets, on =
['snippets'], how = 'outer')
compare_snippets = compare_snippets_losers.rename(columns = {'reach_x':
'before_reach', 'reach_y': 'after_reach'})
compare_snippets['before_reach'] =
np.where(compare_snippets['before_reach'].isnull(), 0,
compare_snippets['before_reach'])
compare_snippets['after_reach'] =
np.where(compare_snippets['after_reach'].isnull(), 0,
compare_snippets['after_reach'])
compare_snippets['delta_reach'] = compare_snippets['after_reach'] -
compare_snippets['before_reach']

compare_snippets_losers = compare_snippets.sort_values('delta_reach')
compare_snippets_losers.head(10)

This results in the following:



The table con�irms that organic sitelinks’ listings have fallen, followed by places, videos, and related
searches. What does this mean? It means that Google is diversifying its results but not in the way of videos
or local business results. Also, the fall in sitelinks implies the searches are less navigational, which possibly
means more opportunity to rank for search phrases that were previously the preserve of certain brands.

compare_snippets_winners = compare_snippets.sort_values('delta_reach',
ascending = False)
compare_snippets_winners.head(10)

This results in the following:

Comparing the winners, we see that images and pure organic have increased as has People Also Ask. So the
high-level takeaway here is that the content should be more FAQ driven and tagged with schema markup.
There should also be more use of images in the content. Let’s visualize by reformatting the data and feeding
it into plotnine:



each']].head(10)
compare_snippets_losers_long = compare_snippets_losers_long.melt(id_vars =
['snippets'], var_name='Phase', value_name='Reach')
compare_snippets_losers_long['Phase'] =
compare_snippets_losers_long['Phase'].str.replace('_reach', '')

compare_snippets_losers_long['Phase'] =
compare_snippets_losers_long['Phase'].astype('category')
compare_snippets_losers_long['Phase'] =
compare_snippets_losers_long['Phase'].cat.reorder_categories(['after',
'before'])
compare_snippets_losers_long =
compare_snippets_losers_long[compare_snippets_losers_long['snippets'] !=
'organic']

compare_snippets_losers_long.head(10)

This results in the following:

compare_snippets_losers_plt = (
    ggplot(compare_snippets_losers_long, aes(x = 'reorder(snippets, Reach)',
y = 'Reach', fill = 'Phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    #geom_text(dd_factor_df, aes(label = 'market_name'),
position=position_stack(vjust=0.01)) +
    labs(y = 'Visiblity', x = ' ') +
    #scale_y_reverse() +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

compare_snippets_losers_plt.save(filename =
'images/2_compare_snippets_losers_plt.png', height=5, width=10, units =
'in', dpi=1000)
compare_snippets_losers_plt

The great thing about charts like Figure 10-6 is that you get an instant sense of proportion.



Figure	10-6 Google visibility by result type before and after

It’s much easier to spot that there are more carousel videos than organic sitelinks post update.

compare_snippets_winners_long = compare_snippets_winners[['snippets',
'before_reach','after_reach']].head(10)
compare_snippets_winners_long = compare_snippets_winners_long.melt(id_vars =
['snippets'], var_name='Phase', value_name='Reach')
compare_snippets_winners_long['Phase'] =
compare_snippets_winners_long['Phase'].str.replace('_reach', '')

compare_snippets_winners_long['Phase'] =
compare_snippets_winners_long['Phase'].astype('category')
compare_snippets_winners_long['Phase'] =
compare_snippets_winners_long['Phase'].cat.reorder_categories(['after',
'before'])
compare_snippets_winners_long =
compare_snippets_winners_long[compare_snippets_winners_long['snippets'] !=
'organic']

compare_snippets_winners_long.head(10)

This results in the following:



compare_snippets_winners_plt = (
    ggplot(compare_snippets_winners_long, aes(x = 'reorder(snippets,
Reach)', y = 'Reach', fill = 'Phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8)
+position=position_stack(vjust=0.01)) +
    labs(y = 'Rank', x = ' ') +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

compare_snippets_winners_plt.save(filename =
'images/1_compare_snippets_winners_plt.png', height=5, width=10, units =
'in', dpi=1000)
compare_snippets_winners_plt

Other than more of each snippet or result type, the increases across all types look relatively the same
(Figure 10-7).

Figure	10-7 Google’s top 10 count reach by result type before and after

Cannibalization
With performance determined, our attention turns to the potential drivers of performance, such as
cannibals.

Cannibals occur when there are instances of sites with multiple URLs ranking in the search results for a
single keyword.

We’ll start by using the duplicated SERPs datasets and counting the number of URLs from the same site
per keyword. This will involve a groupby() function on the keyword and site:

cannibals_before_agg = getstat_before.groupby(['keyword',
'site']).agg({'count': 'sum'}).reset_index()

At this stage, we want to isolate the SERPs rows that are cannibalized. That means URLs that have other
URLs from the same site appearing in the same keyword results.

cannibals_before_agg = cannibals_before_agg[cannibals_before_agg['count'] >
1]

We reset the count to 1 so we can perform further sum aggregations:

cannibals_before_agg['count'] = 1



Next, we aggregate by keyword to count the number of cannibalized URLs in the SERPs data:

cannibals_before_agg = getstat_before[getstat_before['device'] == 'desktop']
cannibals_before_agg =
cannibals_before_agg.groupby(['keyword']).agg({'count':
'sum'}).reset_index()
cannibals_before_agg = cannibals_before_agg.rename(columns = {'count':
'cannibals'})
cannibals_before_agg

This results in the following:

You could argue that these numbers contain one URL per site that are not strictly cannibals. However, this
looser calculation is simple and does a robust enough job to get a sense of the cannibalization trend.

Let’s see how cannibalized the SERPs were following the update:

cannibals_after_agg = getstat_after.groupby(['keyword',
'site']).agg({'count': 'sum'}).reset_index()
cannibals_after_agg = cannibals_after_agg[cannibals_after_agg['count'] > 1]
cannibals_after_agg['count'] = 1
cannibals_after_agg = cannibals_after_agg.groupby(['keyword']).agg({'count':
'sum'}).reset_index()
cannibals_after_agg = cannibals_after_agg.rename(columns = {'count':
'cannibals'})
cannibals_after_agg

This results in the following:



The preceding preview hints that not much has changed; however, this is hard to tell by looking at one table.
So let’s merge them together and get a side-by-side comparison:

compare_cannibals = cannibals_before_agg.merge(cannibals_after_agg, on =
'keyword', how = 'left')

compare_cannibals = compare_cannibals.rename(columns = {'cannibals_x':
'before_cannibals', 'cannibals_y': 'after_cannibals',
                  })

compare_cannibals['before_cannibals'] =
np.where(compare_cannibals['before_cannibals'].isnull(),
           0, compare_cannibals['before_cannibals'])
compare_cannibals['after_cannibals'] =
np.where(compare_cannibals['after_cannibals'].isnull(),
          0, compare_cannibals['after_cannibals'])

compare_cannibals['delta_cannibals'] = compare_cannibals['after_cannibals']
- compare_cannibals['before_cannibals']

compare_cannibals = compare_cannibals.sort_values('delta_cannibals')
compare_cannibals

This results in the following:



The table shows at the keyword level that there are less cannibals for “webcast guidelines” but more for
“enterprise training platform.” But what was the overall trend?

cannibals_trend = compare_cannibals
cannibals_trend['project'] = target_name
cannibals_trend =
cannibals_trend.groupby('project').agg({'before_cannibals': 'sum',
                     'after_cannibals': 'sum',
                     'delta_cannibals': 'sum'}).reset_index()
cannibals_trend

This results in the following:

So there were less cannibals overall by just over 13%, following the core update, as we would expect.
Let’s convert to format before graphing the top cannibals for both SERPs that gained and lost cannibals:

compare_cannibals_less = compare_cannibals[['keyword', 'before_cannibals',
'after_cannibals']].head(10)
compare_cannibals_less = compare_cannibals_less.melt(id_vars = ['keyword'],
                var_name = 'Phase', value_name = 'cannibals')

compare_cannibals_less['Phase'] =
compare_cannibals_less['Phase'].str.replace('_cannibals', '')

compare_cannibals_less['Phase'] =
compare_cannibals_less['Phase'].astype('category')
compare_cannibals_less['Phase'] =
compare_cannibals_less['Phase'].cat.reorder_categories(['after', 'before'])



compare_cannibals_less

This results in the following:

compare_cannibals_less_plt = (
    ggplot(compare_cannibals_less, aes(x = 'keyword', y = 'cannibals',
                     fill = 'Phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    #geom_text(dd_factor_df, aes(label = 'market_name'),
position=position_stack(vjust=0.01)) +
    labs(y = '# Cannibals in SERP', x = ' ') +
    #scale_y_reverse() +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

compare_cannibals_less_plt.save(filename =
'images/5_compare_cannibals_less_plt.png', height=5, width=10, units = 'in',
dpi=1000)
compare_cannibals_less_plt

Figure 10-8 shows keywords that lost their cannibalizing URLs or had less cannibals.



Figure	10-8 Cannibalized SERP result instance counts by keyword

The most dramatic loss appears to be “live streaming software” going from 4 to 1. All of the phrases
appear to be quite generic apart from the term “act on webinars” which appears to be a brand term for act-
on.com.

compare_cannibals_more = compare_cannibals[['keyword', 'before_cannibals',
'after_cannibals']].tail(10)
compare_cannibals_more = compare_cannibals_more.melt(id_vars = ['keyword'],
                var_name = 'Phase', value_name = 'cannibals')

compare_cannibals_more['Phase'] =
compare_cannibals_more['Phase'].str.replace('_cannibals', '')

compare_cannibals_more['Phase'] =
compare_cannibals_more['Phase'].astype('category')
compare_cannibals_more['Phase'] =
compare_cannibals_more['Phase'].cat.reorder_categories(['after', 'before'])

compare_cannibals_more

This results in the following:



compare_cannibals_more_plt = (
    ggplot(compare_cannibals_more, aes(x = 'keyword', y = 'cannibals',
                     fill = 'Phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    labs(y = '# Cannibals in SERP', x = ' ') +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

compare_cannibals_more_plt.save(filename =
'images/5_compare_cannibals_more_plt.png', height=5, width=10, units = 'in',
dpi=1000)
compare_cannibals_more_plt

Nothing obvious appears as to why these keywords received more cannibals when compared with the
keywords that lost their cannibals, as both had a mixture of generic and brand hybrid keywords (Figure 10-
9).



Figure	10-9 Cannibalized SERP result instance counts by keyword, before and after

Keywords
Let’s establish a general trend before moving the analysis toward the site in question.

Token	Length
Perhaps there are keyword patterns such as token length that could explain the gains and losses following
the core update. We’ll try token length which measures the number of keywords in a search query.

Metrics such as search volume before and after are not available in the getSTAT before and after the
update. We’re interested to see how many unique sites were present for each token length for a general
trend view.

We’ll analyze the SERPs for desktop devices; however, the code can easily be adapted for other devices
such as mobiles:

tokensite_before = getstat_bef_unique[getstat_bef_unique['device'] ==
'desktop']
tokensite_after = getstat_aft_unique[getstat_aft_unique['device'] ==
'desktop']
tokensite_after.sort_values(['keyword', 'rank'])



The �irst step is to aggregate both datasets by token size and phase for both before and after. We only want
the top 10 sites; hence, the �ilter rank is less than 11. We start by aggregating at the keyword level within the
token size and phase to sum the number of sites. Then aggregate again by token size and phase to get the
overall number of sites ranking in the top 10 for the token size.

The two-step aggregation was made necessary because of the �iltering for the top 10 sites within the
keyword; otherwise, we would have aggregated within the phase and token size in one line.

tokensite_before_reach = tokensite_before[tokensite_before['rank'] <
11].groupby(['token_size', 'keyword', 'phase']).agg({'count':
'sum'}).reset_index()
tokensite_before_reach = tokensite_before_reach.groupby(['token_size',
'phase']).agg({'count': 'sum'}).reset_index()

tokensite_before_agg = tokensite_before_reach.rename(columns = {'count':
'site_count'})

tokensite_before_agg

This results in the following:

The two-step aggregation approach is repeated for the after dataset:

targetsite_after_token = targetsite_after.groupby(['token_size',
'phase']).agg({'count': 'sum'}).reset_index()
targetsite_after_sv = targetsite_after.groupby(['token_size',
'phase']).agg({'search_volume': 'sum'}).reset_index()
targetsite_after_agg = targetsite_after_token.merge(targetsite_after_sv, on
= ['token_size', 'phase'], how = 'left')
targetsite_after_agg = targetsite_after_agg.rename(columns = {'count':
'reach'})
targetsite_after_agg

This results in the following:

With both phases aggregated by site count, we’ll merge these for a side-by-side comparison:

tokensite_token_deltas = tokensite_before_agg.merge(tokensite_after_agg, on
= ['token_size'], how = 'left')

tokensite_token_deltas['sites_delta'] =
(tokensite_token_deltas['site_count_y'] -
tokensite_token_deltas['site_count_x'])



Cast the token size as a category data type so that we can order these for the table and the graphs later:

tokensite_token_deltas['token_size'] =
tokensite_token_deltas['token_size'].astype('category')
tokensite_token_deltas['token_size'] =
tokensite_token_deltas['token_size'].cat.reorder_categories(['head',
'middle', 'long'])

tokensite_token_deltas = tokensite_token_deltas.sort_values('token_size')

tokensite_token_deltas

This results in the following:

So the table is sorted by token_size rather than in alphabetical order thanks to converting the data type
from a string to category. Most of the changes have been in the long tail and middle body in that there are
more sites in the top 10 than before, whereas the head terms didn’t change much by volume. This may be a
push by Google to diversify the search results and cut down on site dominance and cannibals.

Let’s visualize:

targetsite_token_viz = pd.concat([targetsite_before_agg,
targetsite_after_agg])

targetsite_token_viz

This results in the following:

targetsite_token_sites_plt = (
    ggplot(tokensite_token_viz,
           aes(x = 'token_size', y = 'site_count', fill = 'phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    position=position_stack(vjust=0.01)) +
    labs(y = 'Unique Site Count', x = 'Query Length') +
    coord_flip() +
    theme(legend_position = 'right',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),



          legend_title = element_blank()
         )
)

targetsite_token_sites_plt.save(filename =
'images/8_targetsite_token_sites_plt.png', height=5, width=10, units = 'in',
dpi=1000)
targetsite_token_sites_plt

So that’s the general trend graphed for our PowerPoint deck (Figure 10-10). The question is which sites
gained and lost?

Figure	10-10 Count of unique sites by query length

Token	Length	Deep	Dive
With the sense of the general trend in hand, we’ll get into the details to see how sites were affected within
the long tail.

As before, we’ll focus on desktop results, in addition to �iltering for the long tail:

longs_before = tokensite_before[tokensite_before['token_size'] == 'long']
longs_after = tokensite_after[tokensite_after['token_size'] == 'long']
longs_after

This results in the following:



The data is now �iltered for the desktop and long tail, making it ready for analysis using aggregation:

longs_before_reach = longs_before.groupby('site').agg({'count':
'sum'}).reset_index()
longs_before_rank =
longs_before.groupby('site').apply(wavg_rank_sv).reset_index()
longs_before_agg = longs_before_reach.merge(longs_before_rank, on = 'site',
how = 'left')
longs_before_agg['visi'] = longs_before_agg['count'] /
longs_before_agg['wavg_rank']
longs_before_agg['phase'] = 'before'
longs_before_agg = longs_before_agg.sort_values('count', ascending = False)
longs_before_agg.head()

This results in the following:

So far, we see that Qualtrics ranked around 1.2 (on average) on 112 long-tail keywords on desktop searches.
We’ll repeat the aggregation for the after data:

longs_after_reach = longs_after.groupby('site').agg({'count':
'sum'}).reset_index()
longs_after_rank =
longs_after.groupby('site').apply(wavg_rank_sv).reset_index()



longs_after_agg = longs_after_reach.merge(longs_after_rank, on = 'site', how
= 'left')
longs_after_agg['visi'] = longs_after_agg['count'] /
longs_after_agg['wavg_rank']
longs_after_agg['phase'] = 'after'
longs_after_agg = longs_after_agg.sort_values('visi', ascending = False)
longs_after_agg.head()

This results in the following:

Following the core update, HubSpot and Sitecore have moved ahead of Qualtrics within the top 5 in the long
tail. Medium has moved out of the top 5. Let’s make this comparison easier:

compare_longs = longs_before_agg.merge(longs_after_agg, on = ['site'], how =
'outer')
compare_longs = compare_longs.rename(columns = {'count_x': 'before_reach',
'count_y': 'after_reach',
           'wavg_rank_x': 'before_rank', 'wavg_rank_y': 'after_rank',
           'visi_x': 'before_visi', 'visi_y': 'after_visi',
          })

compare_longs['before_reach'] =
np.where(compare_longs['before_reach'].isnull(),
       0, compare_longs['before_reach'])
compare_longs['after_reach'] =
np.where(compare_longs['after_reach'].isnull(),
       0, compare_longs['after_reach'])

compare_longs['before_rank'] =
np.where(compare_longs['before_rank'].isnull(),
       100, compare_longs['before_rank'])
compare_longs['after_rank'] = np.where(compare_longs['after_rank'].isnull(),
       100, compare_longs['after_rank'])

compare_longs['before_visi'] =
np.where(compare_longs['before_visi'].isnull(),
       0, compare_longs['before_visi'])
compare_longs['after_visi'] = np.where(compare_longs['after_visi'].isnull(),
       0, compare_longs['after_visi'])

compare_longs['delta_reach'] = compare_longs['after_reach'] -
compare_longs['before_reach']
compare_longs['delta_rank'] = compare_longs['before_rank'] -
compare_longs['after_rank']
compare_longs['delta_visi'] = compare_longs['after_visi'] -
compare_longs['before_visi']

compare_longs.sort_values('delta_visi').head(12)



This results in the following:

As con�irmed, Qualtrics lost the most in the long tail. Let’s visualize, starting with the losers:

longs_reach_losers_long = compare_longs.sort_values('delta_visi')
longs_reach_losers_long = longs_reach_losers_long[['site', 'before_visi',
'after_visi']]
longs_reach_losers_long =
longs_reach_losers_long[~longs_reach_losers_long['site'].isin(['google.co.uk',
'youtube.com'])]
longs_reach_losers_long = longs_reach_losers_long.head(10)

longs_reach_losers_long = longs_reach_losers_long.melt(id_vars = 'site',
var_name = 'phase', value_name = 'visi')
longs_reach_losers_long['phase'] =
longs_reach_losers_long['phase'].str.replace('_visi', '')

longs_reach_losers_long

This results in the following:



longs_reach_losers_plt = (
    ggplot(longs_reach_losers_long,
           aes(x = 'reorder(site, visi)', y = 'visi', fill = 'phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    #geom_text(dd_factor_df, aes(label = 'market_name'),
position=position_stack(vjust=0.01)) +
    labs(y = 'Visibility', x = '') +
    #scale_y_log10() +
    coord_flip() +
    theme(legend_position = 'right',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),
          legend_title = element_blank()
         )
)

longs_reach_losers_plt.save(filename =
'images/10_longs_visi_losers_plt.png', height=5, width=10, units = 'in',
dpi=1000)
longs_reach_losers_plt

Qualtrics and major competing brand GoToMeeting (Figure 10-11) were notably among the top losers
following the Google update.



Figure	10-11 Visibility by website before and after

For the winners

longs_reach_winners_long = compare_longs.sort_values('delta_visi')
longs_reach_winners_long = longs_reach_winners_long[['site', 'before_visi',
'after_visi']]

We’ll also remove Google and YouTube as Google may have biased their owned properties in search
results following the algorithm update:

longs_reach_winners_long =
longs_reach_winners_long[~longs_reach_winners_long['site'].isin(['google.co.uk
'google.com', 'youtube.com'])]

Taking the tail as opposed to the head allows us to select the winners as the table was ordered in
ascending order of importance from lost visibility all the way down to sites that gained the most visibility:

longs_reach_winners_long = longs_reach_winners_long.tail(10)

longs_reach_winners_long = longs_reach_winners_long.melt(id_vars = 'site',
var_name = 'phase', value_name = 'visi')
longs_reach_winners_long['phase'] =
longs_reach_winners_long['phase'].str.replace('_visi', '')

longs_reach_winners_plt = (
    ggplot(longs_reach_winners_long,
           aes(x = 'reorder(site, visi)', y = 'visi', fill = 'phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    labs(y = 'Google Visibility', x = '') +
    coord_flip() +
    theme(legend_position = 'right',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),
          legend_title = element_blank()
         )
)

longs_reach_winners_plt.save(filename =
'images/10_longs_visi_winners_plt.png', height=5, width=10, units = 'in',
dpi=1000)
longs_reach_winners_plt

In the long-tail space, HubSpot and Sitecore are the clear winners (Figure 10-12).



Figure	10-12 Website Google visibility gainers, before and after

This may be as a result of their numerous, well-produced, content-rich guides.

Target	Level
With the general trends established, it’s time to get into the details. Naturally, SEO practitioners and
marketers want to know the performance by keywords and pages in terms of top gainers and losers. We’ll
split the analysis between keywords and pages.

Keywords
To achieve this, we’ll �ilter for the target site “ON24” for both before and after the core update:

before_site = getstat_bef_unique[getstat_bef_unique['site'] == root_domain]

The weighted average rank doesn’t apply here because we’re aggregating at a keyword level where there
is only value for a given keyword:

before_site_ranks = before_site.groupby(['keyword',
'search_volume']).agg({'rank': 'mean'}).reset_index()
before_site_ranks = before_site_ranks.sort_values('search_volume', ascending
= False).head(10)

after_site = getstat_aft_unique[getstat_aft_unique['site'] == root_domain]
after_site_ranks = after_site.groupby(['keyword',
'search_volume']).agg({'rank': 'mean'}).reset_index()
after_site_ranks = after_site_ranks.sort_values('search_volume', ascending =
False).head(10)
after_site_ranks

This results in the following:



With the two datasets in hand, we’ll merge them to get a side-by-side comparison:

compare_site_ranks = before_site_ranks. merge(after_site_ranks, on =
['keyword', 'search_volume'],
         how = 'outer')
compare_site_ranks = compare_site_ranks.rename(columns = {'rank_x':
'before_rank', 'rank_y': 'after_rank'})
compare_site_ranks['before_rank'] =
np.where(compare_site_ranks['before_rank'].isnull(), 100,
compare_site_ranks['before_rank'])
compare_site_ranks['after_rank'] =
np.where(compare_site_ranks['after_rank'].isnull(), 100,
compare_site_ranks['after_rank'])

compare_site_ranks['delta_rank'] = compare_site_ranks['before_rank'] -
compare_site_ranks['after_rank']
compare_site_ranks

This results in the following:



The biggest losing keyword was webinar, followed by “what is a webinar.”
Let’s visualize:

compare_site_ranks_long = compare_site_ranks[['keyword', 'before_rank',
'after_rank']]
compare_site_ranks_long = compare_site_ranks_long.melt(id_vars = 'keyword',
var_name = 'Phase', value_name = 'rank')
compare_site_ranks_long['Phase'] =
compare_site_ranks_long['Phase'].str.replace('_rank', '')

compare_site_ranks_long

compare_keywords_rank_plt = (
    ggplot(compare_site_ranks_long, aes(x = 'keyword', y = 'rank',
                     fill = 'Phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    labs(y = 'Google Rank', x = ' ') +
    scale_y_reverse() +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

compare_keywords_rank_plt.save(filename =
'images/6_compare_keywords_rank_plt.png', height=5, width=10, units = 'in',
dpi=1000)
compare_keywords_rank_plt

“Salesforce webinars” and “online webinars” really fell by the wayside going from the top 10 to nowhere
(Figure 10-13).



Figure	10-13 Average rank positions by keyword for ON24 before and after

By contrast, “webinar events” and “live webinar” gained. Knowing this information would help us
prioritize keywords to analyze further to recover traf�ic back. For example, the SEO in charge of ON24 might
want to analyze the top 20 ranking competitors for “webinar” to generate recovery recommendations.

Pages
Use the target keyword dataset which has been pre�iltered to include the target site ON24:

targetURLs_before_reach = before_site.groupby(['url',
'phase']).agg({'count': 'sum'}).reset_index()
targetURLs_before_sv = before_site.groupby(['url',
'phase']).agg({'search_volume': 'mean'}).reset_index()
targetURLs_before_rank = before_site.groupby(['url',
'phase']).apply(wavg_rank_sv).reset_index()
targetURLs_before_agg = targetURLs_before_reach.merge(targetURLs_before_sv,
on = ['url', 'phase'], how = 'left')
targetURLs_before_agg = targetURLs_before_agg.merge(targetURLs_before_rank,
on = ['url', 'phase'], how = 'left')
targetURLs_before_agg = targetURLs_before_agg.rename(columns = {'count':
'reach'})
targetURLs_before_agg['visi'] = (targetURLs_before_agg['search_volume'] /
targetURLs_before_agg['wavg_rank']).round(2)
targetURLs_before_agg

This results in the following:



targetURLs_after_reach = after_site.groupby(['url', 'phase']).agg({'count':
'sum'}).reset_index()
targetURLs_after_sv = after_site.groupby(['url',
'phase']).agg({'search_volume': 'mean'}).reset_index()
targetURLs_after_rank = after_site.groupby(['url',
'phase']).apply(wavg_rank_sv).reset_index()
targetURLs_after_agg = targetURLs_after_reach.merge(targetURLs_after_sv, on
= ['url', 'phase'], how = 'left')
targetURLs_after_agg = targetURLs_after_agg.merge(targetURLs_after_rank, on
= ['url', 'phase'], how = 'left')
targetURLs_after_agg = targetURLs_after_agg.rename(columns = {'count':
'reach'})
targetURLs_after_agg['visi'] = (targetURLs_after_agg['search_volume'] /
targetURLs_after_agg['wavg_rank']).round(2)
targetURLs_after_agg

This results in the following:

target_urls_deltas = targetURLs_before_agg.merge(targetURLs_after_agg, on =
['url'], how = 'left')
target_urls_deltas = target_urls_deltas.rename(columns = {'reach_x':
'before_reach', 'reach_y': 'after_reach',
                     'search_volume_x': 'before_sv', 'search_volume_y':
'after_sv',



                     'wavg_rank_x': 'before_rank', 'wavg_rank_y':
'after_rank',
                     'visi_x': 'before_visi', 'visi_y': 'after_visi'})

target_urls_deltas = target_urls_deltas[['url', 'before_reach', 'before_sv',
'before_rank', 'before_visi',
          'after_reach', 'after_sv', 'after_rank', 'after_visi']]

target_urls_deltas['after_reach'] =
np.where(target_urls_deltas['after_reach'].isnull(),
           0, target_urls_deltas['after_reach'])
target_urls_deltas['after_sv'] =
np.where(target_urls_deltas['after_sv'].isnull(),
           target_urls_deltas['before_sv'], target_urls_deltas['after_sv'])
target_urls_deltas['after_rank'] =
np.where(target_urls_deltas['after_rank'].isnull(),
           100, target_urls_deltas['after_rank'])
target_urls_deltas['after_visi'] =
np.where(target_urls_deltas['after_visi'].isnull(),
           0, target_urls_deltas['after_visi'])

target_urls_deltas['sv_delta'] = (target_urls_deltas['after_sv'] -
target_urls_deltas['before_sv'])
target_urls_deltas['rank_delta'] = (target_urls_deltas['before_rank'] -
target_urls_deltas['after_rank'])
target_urls_deltas['reach_delta'] = (target_urls_deltas['after_reach'] -
target_urls_deltas['before_reach'])
target_urls_deltas['visi_delta'] = (target_urls_deltas['after_visi'] -
target_urls_deltas['before_visi'])

target_urls_deltas = target_urls_deltas.sort_values(['visi_delta'],
ascending = False)
target_urls_deltas

This results in the following:

winning_urls = target_urls_deltas['url'].head(10).tolist()

target_url_winners = pd.concat([targetURLs_before_agg,
targetURLs_after_agg])
target_url_winners =
target_url_winners[target_url_winners['url'].isin(winning_urls) ]

target_url_winners['phase'] = target_url_winners['phase'].astype('category')



target_url_winners['phase'] =
target_url_winners['phase'].cat.reorder_categories(['after', 'before'])
target_url_winners

This results in the following:

target_url_winners_plt = (
    ggplot(target_url_winners,
           aes(x = 'reorder(url, visi)', y = 'visi', fill = 'phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    labs(y = 'Visi', x = '') +
    coord_flip() +
    theme(legend_position = 'right',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),
          legend_title = element_blank()
         )
)

target_url_winners_plt.save(filename =
'images/8_target_url_winners_plt.png', height=5, width=10, units = 'in',
dpi=1000)
target_url_winners_plt

The Live Webcast Elite is the page that gained the most impressions, which is due to gaining positions
on searches for “webcast” as seen earlier (Figure 10-14).

Figure	10-14 URL visibility gainers for ON24 before and after

If we had website analytics data such as Google, we could merge it with the URLs to get an idea of how
much traf�ic the rankings were worth and how closely it correlates with search volumes.

Let’s take a look at the losing URLs:

losing_urls = target_urls_deltas['url'].tail(10).tolist()
print(losing_urls)

target_url_losers = pd.concat([targetURLs_before_agg, targetURLs_after_agg])



target_url_losers =
target_url_losers[target_url_losers['url'].isin(losing_urls) ]

target_url_losers['visi'] = (target_url_losers['search_volume'] /
target_url_losers['wavg_rank']).round(3)

target_url_losers['phase'] = target_url_losers['phase'].astype('category')
target_url_losers['phase'] =
target_url_losers['phase'].cat.reorder_categories(['after', 'before'])
target_url_losers

This results in the following:

target_url_losers_plt = (
    ggplot(target_url_losers, aes(x = 'reorder(url, visi)', y = 'visi', fill
= 'phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    position=position_stack(vjust=0.01)) +
    labs(y = 'Visi', x = '') +
    coord_flip() +
    theme(legend_position = 'right',
          axis_text_y =element_text(rotation=0, hjust=1, size = 12),
          legend_title = element_blank()
         )
)

target_url_losers_plt.save(filename = 'images/8_target_url_losers_plt.png',
                             height=5, width=10, units = 'in', dpi=1000)
target_url_losers_plt

“How webinars work” and “upcoming webinars” were the biggest losing URLs (Figure 10-15).



Figure	10-15 URL visibility losers for ON24 before and after

The https://www.on24.com/blog/how-webinars-
work/#:~:text=Let's%20start%20with%20a%20simple,using%20other%20available%20
interactive%20tools URL seems like it wasn’t canonicalized (i.e., there was no de�ined rel="canonical"
URL to consolidate any URL variant or duplicate to).

To all of this, one possible follow-up would be to use Google Search Console data to extract the search
queries for each URL and see

Whether the search intent is shared within the URL
If the URLs have the content to satisfy the queries generating the impressions

Another possible follow-up would be to segment the URLs and keywords according to their content type.
This could help determine if there were any general patterns that could explain and speed up the recovery
process.

Segments
We return back to the SERPs to analyze how different site types fared in the Google update. The general
approach will be to work out the most visible sites, before using the np.select() function to categorize and
label these sites.

Top	Competitors
To �ind the top competitor sites, we’ll aggregate both before and after datasets to work out the visibility
index derived from the reach and search volume weighted rank average:

players_before = getstat_bef_unique
print(players_before.columns)

players_before_rank =
players_before.groupby('site').apply(wavg_rank_sv).reset_index()
players_before_reach = players_before.groupby('site').agg({'count':
'sum'}).sort_values('count', ascending = False).reset_index()
players_before_agg = players_before_rank.merge(players_before_reach, on =
'site', how = 'left')
players_before_agg['visi'] = players_before_agg['count'] /
players_before_agg['wavg_rank']
players_before_agg = players_before_agg.sort_values('visi', ascending =
False)
players_before_agg

This results in the following:

https://www.on24.com/blog/how-webinars-work/#:~:text=Let's%2520start%2520with%2520a%2520simple,using%2520other%2520available%2520interactive%2520tools


players_after = getstat_aft_unique
print(players_before.columns)

players_after_rank =
players_after.groupby('site').apply(wavg_rank_sv).reset_index()
players_after_reach = players_after.groupby('site').agg({'count':
'sum'}).sort_values('count', ascending = False).reset_index()
players_after_agg = players_after_rank.merge(players_after_reach, on =
'site', how = 'left')
players_after_agg['visi'] = players_after_agg['count'] /
players_after_agg['wavg_rank']
players_after_agg = players_after_agg.sort_values('visi', ascending = False)
players_after_agg

This results in the following:



To put the data aggregation together, we take the before dataset and exclude any sites appearing in the after
dataset. The purpose is to perform an outer join with the after dataset, to capture every single site possible.

players_agg =
players_before_agg[~players_before_agg['site'].isin(players_after_agg['site'])
players_agg = players_agg.merge(players_after_agg, how='outer', indicator=True
players_agg = players_agg.sort_values('visi', ascending = False)
players_agg.head(50)

This results in the following:



Now that we have all of the sites in descending order of priority, we can start categorizing the domains by
site type. Using the hopefully now familiar np.select() function, we will categorize the sites manually,
creating a list of our conditions that create lists of sites and then mapping these to a separate list of
category names:

site_conds = [
    players_agg['site'].str.contains('|'.join(['google.com',
'youtube.com'])),
    players_agg['site'].str.contains('|'.join(['wikipedia.org'])),
    players_agg['site'].str.contains('|'.join(['medium.com', 'forbes.com',
'hbr.org', 'smartinsights.com', 'mckinsey.com',
                              'techradar.com','searchenginejournal.com',
'cmswire.com', 'entrepreneur.com',
                              'pcmag.com', 'elearningindustry.com',
'businessnewsdaily.com'])),
    players_agg['site'].isin(['on24.com', 'gotomeeting.com', 'marketo.com',
'zoom.us', 'livestorm.co', 'hubspot.com', 'drift.com', 'salesforce.com',
'clickmeeting.com', 'liferay.com',
                              'qualtrics.com', 'workcast.com',
'livewebinar.com', 'getresponse.com', 'brightwork.com',
                              'superoffice.com', 'myownconference.com',
'info.workcast.com', 'tallyfy.com',
                              'readytalk.com', 'eventbrite.com',
'sitecore.com', 'pgi.com', '3cx.com', 'walkme.com',
                              'venngage.com', 'tableau.com', 'netsuite.com',
'zoominfo.com', 'sproutsocial.com']),
    players_agg['site'].isin([ 'neilpatel.com', 'ventureharbour.com',
'wordstream.com', 'business.tutsplus.com',
                              'convinceandconvert.com',
'growthmarketingpro.com', 'marketinginsidergroup.com',
                              'adamenfroy.com', 'danielwaas.com',
'newbreedmarketing.com']),
    players_agg['site'].str.contains('|'.join(['trustradius.com', 'g2.com',
'capterra.com', 'softwareadvice.com'])),
    players_agg['site'].str.contains('|'.join(['facebook.com',
'linkedin.com', 'business.linkedin.com'])),
    players_agg['site'].str.contains('|'.join(['.edu', '.ac.uk']))
]

Create a list of the values we want to assign for each condition. The categories in this case are based on
their business model or site purpose:

segment_values = ['search', 'reference', 'publisher', 'martech',
'consulting', 'reviews', 'social_media', 'education']

Create a new column and use np.select to assign values to it using our lists as arguments:

players_agg['segment'] = np.select(site_conds, segment_values, default =
'other')
players_agg.head(5)

This results in the following:



The sites are categorized. We’ll now look at the sites classed as other. This is useful because if we see any
sites we think are important enough to be categorized as not “other,” then we can update the conditions
earlier.

players_agg[players_agg['segment'] == 'other'].head(20)

This results in the following:

players_agg_map = players_agg[['site', 'segment']]
players_agg_map

This results in the following:



There you have a mapping dataframe which will be used to give segmented SERPs insights, starting with
visibility.

Visibility
With the sites categorized, we can now compare performance by site type before and after the update.

As usual, we’ll aggregate the before and after datasets. Only this time, we will also merge the site type
labels.

Start with the before dataset:

before_sector_unq_reach = getstat_bef_unique.merge(players_agg_map, on =
'site', how = 'left')

We �ilter for the top 10 to calculate our reach statistics, which we’ll need for our visibility calculations
later on:

before_sector_unq_reach =
before_sector_unq_reach[before_sector_unq_reach['rank'] < 11 ]

before_sector_agg_reach =
before_sector_unq_reach.groupby(['segment']).agg({'count':
'sum'}).reset_index()
before_sector_agg_reach = before_sector_agg_reach.rename(columns = {'count':
'reach'})
before_sector_agg_reach = before_sector_agg_reach[['segment', 'reach']]
before_sector_agg_reach['reach'] =
np.where(before_sector_agg_reach['reach'].isnull(),
       0, before_sector_agg_reach['reach'])

The same logic and operation is applied to the after dataset:

after_sector_unq_reach = getstat_aft_unique.merge(players_agg_map, on =
'site', how = 'left')



after_sector_unq_reach =
after_sector_unq_reach[after_sector_unq_reach['rank'] < 11 ]

after_sector_agg_reach =
after_sector_unq_reach.groupby(['segment']).agg({'count':
'sum'}).reset_index()
after_sector_agg_reach = after_sector_agg_reach.rename(columns = {'count':
'reach'})
after_sector_agg_reach['reach'] =
np.where(after_sector_agg_reach['reach'].isnull(), 0,
after_sector_agg_reach['reach'])

after_sector_agg_reach = after_sector_agg_reach[['segment', 'reach']]
after_sector_agg_reach.sort_values('reach', ascending = False).head(10)

This results in the following:

“Other” as a site type segment dominates the statistics in terms of reach. We may want to �ilter this out
later on. Now for the weighted average rankings by search volume, which will include the wavg_rank_sv()
function de�ined earlier.

before_sector_unq_visi =
before_sector_unq_svranks.merge(before_sector_agg_reach, on = 'segment', how
= 'left')
before_sector_unq_visi['reach'] =
np.where(before_sector_unq_visi['reach'].isnull(), 0,
before_sector_unq_visi['reach'])

before_sector_unq_visi['wavg_rank'] =
np.where(before_sector_unq_visi['wavg_rank'].isnull(), 100,
before_sector_unq_visi['wavg_rank'])

before_sector_unq_visi['visibility'] = before_sector_unq_visi['reach'] /
before_sector_unq_visi['wavg_rank']
before_sector_unq_visi = before_sector_unq_visi.sort_values('visibility',
ascending = False)

after_sector_unq_visi =
after_sector_unq_svranks.merge(after_sector_agg_reach, on = 'segment', how =



'left')
after_sector_unq_visi['reach'] =
np.where(after_sector_unq_visi['reach'].isnull(), 0,
after_sector_unq_visi['reach'])
after_sector_unq_visi['wavg_rank'] =
np.where(after_sector_unq_visi['wavg_rank'].isnull(), 100,
after_sector_unq_visi['wavg_rank'])

after_sectaor_unq_visi['visibility'] = after_sector_unq_visi['reach'] /
after_sector_unq_visi['wavg_rank']
after_sector_unq_visi = after_sector_unq_visi.sort_values('visibility',
ascending = False)
after_sector_unq_visi

This results in the following:

As well as reach, other performs well in the search volume weighted rank stakes and therefore in overall
visibility. With the before and after segmented datasets aggregated, we can now join them:

compare_sector_visi_players =
before_sector_unq_visi.merge(after_sector_unq_visi, on = ['segment'], how =
'outer')
compare_sector_visi_players = compare_sector_visi_players.rename(columns =
{'wavg_rank_x': 'before_rank', 'wavg_rank_y': 'after_rank',
                       'reach_x': 'before_reach', 'reach_y': 'after_reach',
                       'visibility_x': 'before_visi', 'visibility_y':
'after_visi'
                      })

compare_sector_visi_players['before_visi'] =
np.where(compare_sector_visi_players['before_visi'].isnull(),
                0, compare_sector_visi_players['before_visi'])
compare_sector_visi_players['after_visi'] =
np.where(compare_sector_visi_players['after_visi'].isnull(),
               0, compare_sector_visi_players['after_visi'])
compare_sector_visi_players['delta_visi'] =
compare_sector_visi_players['after_visi'] -
compare_sector_visi_players['before_visi']



compare_sector_visi_players =
compare_sector_visi_players.sort_values('delta_visi')

compare_sector_visi_players.head(10)

This results in the following:

The only site group that lost were reference sites like Wikipedia, dictionaries, and so on. Their reach
increased by 11%, but their rankings declined by almost two places on average. This could be that
nonreference sites are churning out more value adding articles which are crowding out generic sites like
Wikipedia that have no expertises in those areas.

Let’s reshape the data for visualization:

compare_sector_visi_players_long = compare_sector_visi_players[['segment',
'before_visi','after_visi']]
compare_sector_visi_players_long =
compare_sector_visi_players_long.melt(id_vars = ['segment'],
var_name='Phase',
                                  value_name='Visi')
compare_sector_visi_players_long['Phase'] =
compare_sector_visi_players_long['Phase'].str.replace('_visi', '')

compare_sector_visi_players_long['Phase'] =
compare_sector_visi_players_long['Phase'].astype('category')
compare_sector_visi_players_long['Phase'] =
compare_sector_visi_players_long['Phase'].cat.reorder_categories(['after',
                                    'before'])

compare_sector_visi_players_long.head(10)

This results in the following:



compare_sector_visi_players_long_plt = (
    ggplot(compare_sector_visi_players_long, aes(x = 'reorder(segment,
Visi)', y = 'Visi', fill = 'Phase')) +
    geom_bar(stat = 'identity', position = 'dodge', alpha = 0.8) +
    labs(y = 'Visibility', x = ' ') +
    coord_flip() +
    theme(legend_position = 'right', axis_text_x=element_text(rotation=0,
hjust=1, size = 12))
)

compare_sector_visi_players_long_plt.save(filename =
'images/11_compare_sector_visi_players_long_plt.png', height=5, width=10,
units = 'in', dpi=1000)
Compare_sector_visi_players_long_plt

So other than reference sites, every other category gained, including martech and publishers which
gained the most (Figure 10-16).

Figure	10-16 Visibility before and after by site type



Snippets
In addition to visibility, we can dissect result types by segment too. Although there are many visualizations
that can be done by segment, we’ve chosen snippets so that we can introduce a heatmap visualization
technique.

This time, we’ll aggregate on snippets and segments, having performed the join for both before and after
datasets:

before_sector_unq_snippets = getstat_bef_unique.merge(players_agg_map, on =
'site', how = 'left')
before_sector_agg_snippets = before_sector_unq_snippets.groupby(['snippets',
'segment']).agg({'count': 'sum'}).reset_index()

before_sector_agg_snippets = before_sector_agg_snippets[['snippets',
'segment', 'count']]
before_sector_agg_snippets = before_sector_agg_snippets.rename(columns =
{'count': 'reach'})

after_sector_unq_snippets = getstat_aft_unique.merge(players_agg_map, on =
'site', how = 'left')
after_sector_agg_snippets = after_sector_unq_snippets.groupby(['snippets',
                            'segment']).agg({'count': 'sum'}).reset_index()

after_sector_agg_snippets = after_sector_agg_snippets[['snippets',
'segment', 'count']]
after_sector_agg_snippets = after_sector_agg_snippets.rename(columns =
{'count': 'reach'})
after_sector_agg_snippets.sort_values('reach', ascending = False).head(10)

This results in the following:

For post update, we can see that much of other’s reach are organic, images, and AMP post update. How does
that compare pre- and post update?

compare_sector_snippets =
before_sector_agg_snippets.merge(after_sector_agg_snippets, on =
['snippets', 'segment'], how = 'outer')



compare_sector_snippets = compare_sector_snippets.rename(columns =
{'reach_x': 'before_reach', 'reach_y': 'after_reach'})
compare_sector_snippets['before_reach'] =
np.where(compare_sector_snippets['before_reach'].isnull(), 0,
compare_sector_snippets['before_reach'])
compare_sector_snippets['after_reach'] =
np.where(compare_sector_snippets['after_reach'].isnull(), 0,
compare_sector_snippets['after_reach'])
compare_sector_snippets['delta_reach'] =
compare_sector_snippets['after_reach'] -
compare_sector_snippets['before_reach']

compare_sector_snippets = compare_sector_snippets.sort_values('delta_reach')
compare_sector_snippets.head(10)

This results in the following:

Review sites lost the most reach in the organic listings and Google images. Martech lost out on AMP results.

compare_sector_snippets.tail(10)

This results in the following:



By contrast, publisher sites appear to have displaced review sites on images and organic results. Since
we’re more interested in result types other than the regular organic links, we’ll strip these out and visualize.
Otherwise, we’ll end up with charts that show a massive weight for organic links while dwar�ing out the rest
of the result types.

compare_sector_snippets_graphdf =
compare_sector_snippets[compare_sector_snippets['snippets'] != 'organic']

compare_sector_snippets_plt = (
    ggplot(compare_sector_snippets_graphdf,
           aes(x = 'segment', y = 'snippets', fill = 'delta_reach')) +
    geom_tile(stat = 'identity', alpha = 0.6) +
    labs(y = '', x = '') +
    theme_classic() +
    theme(legend_position = 'right',
          axis_text_x=element_text(rotation=90, hjust=1)
         )
)

compare_sector_snippets_plt.save(filename =
'images/12_compare_sector_snippets_plt.png', height=5, width=10, units =
'in', dpi=1000)
compare_sector_snippets_plt

The heatmap in Figure 10-17 uses color as the third dimension to display where the major changes in
reach were for the different site segments (bottom) and result types (vertical).

This results in the following:



Figure	10-17 Heatmap showing the difference in top 10 counts by site type and result type

The major change that stands out is Google image results for the other segment. The rest appears
inconsequential by contrast. The heatmap is an example of how three-dimensional categorical data can be
visualized.

Summary
We focused on analyzing performance following algorithm updates with a view to explaining what
happened and possible extraction of insights for areas of further research and recommendation generation.

Not only did we evaluate methods for establishing visibility changes, our general approach was to
analyze the general SERP trends before segmenting by result types, cannibals. Then we looked at the target
site level, seeing the changes by keyword, query length, and URLs.

We also tried evaluating general SERP trends by grouping sites into site category segments to give a
richer analysis of the SERPs by visibility and snippets. While the visualization of data before and after the
core update doesn’t always reveal the causes of any algorithm update, some patterns can be learned to
inform further areas of research for recommendation generation. The data can always be joined with other
data sources and use the techniques outlined in competitor analysis to uncover potential ranking factor
hypotheses for split testing.

The next chapter discusses the future of SEO.
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The exploration of applying data science methods to SEO ultimately
leads to further questions on the evolution of SEO as an industry and a
profession.

As paid search has increasingly become more automated and
commoditized, could the same happen to SEO?

To answer that question, let’s re�lect on how data science has been
applied to SEO in this book, the limitations and opportunities for
automation.

Aggregation
Aggregation is a data analysis technique where data is summarized at a
group level, for example, the average number of clicks by content
group. In Microsoft Excel, this would be achieved using pivot tables.

Aggregation is something that can and should be achieved by
automation. Aggregation has been applied to help us understand too
many different areas of SEO to name (covered in this book). With the
code supplied, this could be integrated into cloud-based data pipelines
for SEO applications to load data warehouses and power dashboards.

Aggregation for most use cases is good enough. However, for
scienti�ic exploration of the data and hypothesis testing, we need to
consider the distribution of the data, its variation, and other statistical
properties.

https://doi.org/10.1007/978-1-4842-9175-7_11


Aggregation for reporting and many analytical aspects of SEO
consulting can certainly be automated, which would be carried out in
the cloud. This is pretty straightforward to do given the data pipeline
technology by Apache that’s already in place.

Distributions
The statistical distribution has power because we’re able to
understand what is normal and therefore identify anything that is
signi�icantly above or below performance.

We used distributions to �ind growth keywords where keywords in
Google Search Console (GSC) had impressions above the 95th
percentile for their ranking position.

We also used distributions to identify content that lacked internal
links in a website architecture and hierarchy.

This can also be automated in the cloud which could lead to
applications being released for the SEO industry to automate the
identi�ication of internal link opportunities. There is a slight risk of
course that all internal links are done on a pure distribution basis and
not factoring in content not intended for search channels which would
need to be part of the software design.

String	Matching
String matching using the Sorensen-Dice algorithm has been applied to
help match content to URLs for use cases such as keyword mapping,
migration planning, and others.

The results are decent as it’s relatively quick and scales well, but it
relies on descriptive URLs and title tags in the �irst instance. It also
relies on preprocessing such as removing the website domain portion
of the URL before applying string matching, which is easily automated.
Less easy to work around is the human judgment of what is similar
enough for the title and URL slug to be a good match. Should the
threshold be 70%, 83%, or 92%?

That is less easy and probably would require some self-learning in
the form of an AI, more speci�ically a recurrent neural network (RNN).
It’s not impossible, of course, as you would need to determine what a



good and less good outcome metric is to know how to train a model.
Plus, you’d need at least a million data points to train the model.

A key question for keyword mapping will be “what is the metric that
shows which URL is the best for users searching for X keyword.” An
RNN could be good here as it could learn from top ranking SERP
content, reduce it to an object, and then compare site content against
that object to map the keyword to.

For redirecting expired URLs (with backlinks) to live URLs with a
200 HTTP response, it could be more straightforward and not require
an AI. You might use a decision tree–based algorithm using user
behavior to inform what is the best replacement URL, that is, users on
“URL A” would always go to URL X out of the other URL choices
available.

A non-AI-based solution doesn’t rely on millions of SERP or Internet
data and would therefore be (relatively) inexpensive to construct in-
house. The AI-based solutions on the other hand are likely to either be
built as a SaaS or by a mega enterprise brand that relies on organic
traf�ic like Amazon, Quora, or Tripadvisor.

Clustering
In this book, clustering has been applied to determine search intent by
comparing search results at scale. The principles are based on
comparing distances between data points, and wherever a distance is
relatively small, a cluster exists. Word stemming hasn’t been applied in
this book as it lacks the required precision despite the speed.

Clustering is useful not only for understanding keywords but also
for grouping keywords for reporting performance and grouping
content to set the website hierarchy. Your imagination as an SEO expert
is the limit.

Applications already exist in the SEO marketplace for clustering
keywords according to search intent by comparing search results, so
this can and already has been automated in the cloud by Artios,
Keyword Insights, Keyword Cupid, SEO Scout and others.

Machine	Learning	(ML)	Modeling



Trying to understand how things work in organic search is one of the
many pleasures and trials of SEO, especially in the current era of Google
updates. Modeling aided by machine learning helps in that regard
because you’re effectively feeding data into a machine learning
algorithm, and it will show the most in�luential factors behind the
algorithm update.

Machine learning models could most certainly be deployed into the
cloud as part of automated applications to highlight most in�luential
SERP factors and qualities of backlinks as part of a wider dashboard
intelligence system or a stand-alone application.

Because no neural network is required, this is relatively cheap to
build and deploy, leaving the SEO professionals to understand the
model outputs and how to apply them.

Set	Theory
Set theory is where we compare sets (think lists) of data like keywords
and compare them to another set. This can be used to see the
difference between two datasets. This was used for content gap
analysis to �ind common keywords (i.e., where the keywords of two
websites intersect) and to �ind the gap between the target site and the
core keyword set.

This is pretty straightforward and can easily be automated using
tools like SEMRush and AHREFs. So why do it in Python? Because it’s
free and it gives you more control over the degree of intersection
required.

Knowing the perfect degree of intersection is less clear because it
would require research and development to work out the degree of
intersects required which for one will depend on the number of sites
being intersected.

However, the skill is knowing which competitors to include in the
set in the �irst place which may not be so easy for a machine to discern.

What	Computers	Can	and	Can’t	Do
From the preceding text, we see a common pattern, that is, when it
comes to straightforward tasks such as responding to statistical



properties or decisions based on numerical patterns, computers excel
(albeit with some data cleanup and preparation).

When matters are somewhat fuzzy and subject to interpretation
such as language, computers can still rise to the challenge, but that
requires signi�icant resources to get the data and train an AI model.

For	the	SEO	Experts
We should learn Python for data analysis because that’s how we
generate insights and recommendations in response. It doesn’t make
sense not to make use of technology and data science thinking to solve
SEO problems, especially when the SERPs are determined by a
consistent (and therefore more predictable) algorithm.

Not only will learning Python and data science help future-proof
your career as an SEO, it will give you a deeper appreciation for how
search engines work (given they are mathematical) and enable you to
devote much more time and energy toward de�ining hypotheses to test
and create SEO solutions. Spending less time collecting and analyzing
data and more time responding to the data is the order of the day.

You’ll also be in a far better position to work with software
engineers when it comes to specifying cloud apps, be it reporting,
automation, or otherwise.

Of course, creativity comes from knowledge, so the more you know
about SEO, the better the questions you will be able to ask of the data,
producing better insights as a consequence and much more targeted
recommendations.

Summary
In this chapter, we consolidated at a very high level the ideas and
techniques used to make SEO data driven:

Aggregation
Distributions
String matching
Clustering
Machine learning (ML) modeling



Set theory
We also examined what computers can and can’t do and provided a

reminder why SEO experts should turn to data science.
Here’s to the future of SEO.
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See Data-driven approach
search engines and websites interaction

Tech SEO diagnosis
TF-IDF
Think vlookup/index match
Time series data
TLD extract package
Token length
Token size



Top-level domain (TLD)
Touched Interiors
Traf�ic post migration
Traf�ic/ranking changes

parent and child nodes
separate migration documents
site levels
site taxonomy/hierarchy

Travel nodes
Two-step aggregation approach

U
Underindexed URLs
Underlinked page authority URLs

optimal threshold
pageauth_agged_plt
PageRank
site-level approach

Underlinked site-level URLs
average internal links
code exports
depth_uidx_plt
depth_uidx_prop_plt
intlinks_agged table
list comprehension
lower levels
orphaned URLs
percentile number
place marking
quantiles

Upper quantile
Urisplit() function
URL by site level
URL Rating
452 URLs
URLs by site level
URL strings



URL structure
URL visibility
User experience (UX)
User query

V
Variance in�lation factor (VIF)
Visibility
Visualization

W
wavg_rank
wavg_rank_imps
wavg_rank_sv() function
WAVG search volume
Webinar
Webinar best practices
Webinar events
Webmaster tools
Webmaster World
Website analytics
Website analytics data
Winning benchmark
Wordcloud function
WorkCast

X,	Y
xbox series x

Z
Zero in�lation
Zero string similarity


	Front Matter
	1. Introduction
	2. Keyword Research
	3. Technical
	4. Content and UX
	5. Authority
	6. Competitors
	7. Experiments
	8. Dashboards
	9. Site Migration Planning
	10. Google Updates
	11. The Future of SEO
	Back Matter

